九年级数学上册期末考试试卷附答案
人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试题一、单选题1.下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.下列一元二次方程中没有实数根是()A .2540x x ++=B .2440x x -+=C .2320x x --=D .2230x x ++=3.从2,5,3,6,4这5个数中随机抽取一个,恰好为2的倍数的概率为()A .15B .25C .35D .454.某商品原价为225元,连续两次平均降价的百分率为a ,连续两次降价后售价为144元,下面所列方程正确的是()A .()22251144a +=B .()22251144a -=C .()222512144a -=D .()21441225a +=5.在同一平面直角坐标系内,将函数22y x -=的图象向右平移3个单位,再向下平移2个单位得到图象的顶点坐标是()A .()32-,-B .()32-,C .(3,-2)D .(3,2)6.如图,将△ABC 绕着点C 按顺时针方向旋转25°,B 点落在B′位置,点A 落在A'位置,若AC ⊥A'B',则∠BAC 的度数是()A .55°B .65°C .75°D .85°7.如图,点,,,,A B C D E 都在⊙O 上,,24BC DE BAC =∠=︒,则∠DOE=()A .24°B .42°C .48°D .72°8.一个圆锥的母线长为6,侧面展开图是半圆,则圆锥的侧面积是()A .6πB .12πC .18πD .24π9.在同一直角坐标系中,函数y ax a =+和函数22y ax x =++(a 是常数,且a≠0)的图象可能是()A .B .C .D .10.抛物线2y ax bx c =++的顶点为D(-1,3),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图所示,则以下结论:①240ac b -<;②0a b c ++<;③3c a -=;④方程220ax bx c ++-=有两个不相等的实数根;⑤若点()()1122,,,x y x y 都在该函数图象上,且1230.5x x --<<<,则123y y <<.其中正确结论的个数为()A .2个B .3个C .4个D .5个二、填空题11.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是____12.若一元二次方程220x x -=的两个根分别为12,x x ,则1212x x x x +-的值是____.13.如图,D 、E 分别是ΔABC 的边AB 、AC 上的动点,若3,8,6AE AC AB ===,且ΔADE 与ΔABC 相似,则AD 的长度是_______.14.如图,已知四边形ABCD 内接于⊙O ,E 在AD 的延长线上,∠CDE=82°,则∠ABC的度数是_____.15.已知CD 是⊙O 的一条弦,作直径AB ,使AB CD ⊥,垂足为E ,若1,6AE CD ==,则AB 的长为______.16.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,先向盒中放入5个黑球,摇匀后从中随机摸出1个球记下颜色,再把它放回盒中,不断重复,共摸球500次,其中25次摸到黑球,则估计盒中有__________个白球.17.如图所示,抛物线23y x bx =-++与x 轴交于点A 和点B ,与y 轴交于点C ,且OA=OC ,点M 、N 是直线x=-1上的两个动点,且MN=2(点N 在点M 的上方),则四边形BCNM 的周长的最小值是______.三、解答题18.解方程:(1)2450x x --=(2)()()22320x x x +-+=19.某商品的进价为每件33元,现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.(1)商场要想平均每星期盈利8500元,每件商品的售价应为多少元?(2)商场要想平均每星期获得最大利润,每件商品的售价应为多少元?20.如图所示,AB 是⊙O 直径,OD AC ⊥弦于点F ,且交⊙O 于点E ,若BEC ADO ∠=∠.(1)判断直线AD 和⊙O 的位置关系,并说明理由;(2)当54AB AC ==,时,求AD 的长.21.如图,抛物线()20y ax bx c a =++≠经过点A(2,0),B(-2,4),(-4,0),直线AB 与抛物线的对称轴交于点E .(1)求抛物线的表达式;(2)点M 在直线AB 上方的抛物线上运动,当ΔABM 的面积最大时,求点M 的坐标;(3)若点F 为平面内的一点,且以点,,,B E C F 为顶点的四边形是平行四边形,请写出符合条件的点F 的坐标.22.如图,⊙O 与△ABC 的边BC 相切于点D ,与AB 、AC 的延长线分别相切于点E 、F ,连接OB ,OC .(1)若∠ABC=80°,∠ACB=40°,求∠BOC 的度数.(2)∠BOC 与∠A 有怎样的数量关系,并说明理由.23.如图,正比例函数2y x =的图象与反比例函数k y x=的图象交于点A(m ,2)(1)求反比例函数的解析式和A 点的坐标;(2)点C 在y 轴的正半轴上,点D 在x 轴的正半轴上,直线CD 经过点A ,直线CD 交反比例函数图象于另一点B ,若OD =2OC ,求点B 的坐标.24.如图,在⊙O中,AB为弦,CD为直径,且AB⊥CD,垂足为E,P为 AC上的动点(不与端点重合),连接PD.(1)求证:∠APD=∠BPD;(2)利用尺规在PD上找到点I,使得I到AB、AP的距离相等,连接AD(保留作图痕迹,不写作法).求证:∠AIP+∠DAI=180°;(3)在(2)的条件下,连接IC、IE,若∠APB=60°,试问:在P点的移动过程中,ICIE是否为定值?若是,请求出这个值;若不是,请说明理由.25.已知抛物线G:y1=mx2﹣(3m﹣3)x+2m﹣3,直线h:y2=mx+3﹣2m,其中m≠0.(1)当m=1时,求抛物线G与直线h交点的坐标;(2)求证:抛物线G与直线h必有一个交点A在坐标轴上;(3)在(2)的结论下,解决下列问题:①无论m怎样变化,求抛物线G一定经过的点坐标;②将抛物线G关于原点对称得到的图象记为抛物线'G,试结合图象探究:若在抛物线G与直线h,抛物线'G与直线h均相交,在所有交点的横坐标中,点A横坐标既不是最大值,也不是最小值,求此时抛物线G的对称轴的取值范围.26.如图,已知直线y=﹣2x+m与抛物线相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)若点P是y轴上一点,当∠APB=90°时,求点P的坐标.参考答案1.B2.D3.C4.B5.C6.B7.C8.C9.D10.C11.-112.213.4或9414.82°15.1016.9517.218.(1)15=x ,21x =-.(2)12x =-,21x =.【分析】(1)利用公式法解一元二次方程即可.(2)利用因式分解法解一元二次方程即可.(1)2450x x --=由题意得,a =1,b =﹣4,c =﹣5,∵∆=24b ac -=()()24415--⨯⨯-=36,∴46232x ±===±,∴15=x ,21x =-.(2)()()22320x x x +-+=原方程整理得,()()210x x +-=,∴20x +=或10x -=,∴12x =-,21x =.19.(1)50元或58元(2)54元【分析】(1)设每件商品的售价应为x 元,根据总利润和每件利润与件数的关系列出总利润的代数式,建立方程(x-33)[300+20(60-x)]=8500解答;(2)设每件商品的售价为x 元,商场平均每周的利润为w 元,根据w 和每件利润与件数的关系列出函数表达式,配方成顶点式,得到当每件商品的售价为54元时,商场平均每周的利润最大,其最大值为8820元.(1)解:设每件商品的售价应为x 元,根据题意,得(x-33)[300+20(60-x)]=8500解得150x =,258x =,∴售价应为50元或58元;(2)设每件商品的售价为x 元,商场平均每周的利润为w 元,根据题意,得()333002060w x x =-+⎦-⎡⎤⎣()220216049500x x =-+-()220548820x =--+,当每件商品的售价为54元时,商场平均每周的利润最大,其最大值为8820元.20.(1)相切,理由见解析(2)103【分析】(1)先证明∠FAO+∠AOF=90°,再根据圆周角定理证明∠BAC=∠ADO ,即可推出∠ADO+∠AOF=90°,由此得到∠DAO=90°,即可证明结论;(2)先利用垂径定理和勾股定理求出OE 的长,再证明△AOF ∽DOA ,利用相似三角形的性质求解即可.(1)解:直线AD 和⊙O 相切.理由如下:∵OD ⊥AC 于点F ,∴∠AFO=90°,在Rt △AOF 中,∠FAO+∠AOF=90°,又∵∠BEC=∠ADO ,∠BEC=∠BAC ,∴∠BAC=∠ADO ,∴∠ADO+∠AOF=90°,∴∠DAO=180°-(∠ADO+∠AOF )=180°-90°=90°,∵OA 为圆O 半径,∴直线AD 和⊙O 相切.(2)解:由垂径定理可知,122AF AC ==,又∵OA=12AB=2.5,由勾股定理可知 1.5OF ==,∵直线AD 和⊙O 相切,∴∠DAB=90°=∠AFO ,又∵∠AOD=∠AOF ,∴△AOF ∽△DOA ,∴OF AF OA AD =即15225AD =..,∴AD=103.【点睛】本题主要考查了圆周角定理,切线的判定,相似三角形的性质与判定,垂径定理,勾股定理等等,熟知切线的判定以及相似三角形的性质与判定条件是解题的关键.21.(1)2142y x x =--+(2)(0,4)(3)(-5,1)或(1,7)或(-3,-1)【分析】(1)已知抛物线上的三点用待定系数法求解析式;(2)根据抛物线的解析式,设出点M 的坐标,作一条竖线交AB 于N ,利用公式()12ABM A B S MN x x =-△求△ABM 的面积;(3)求出点E 坐标,利用平行四边形的性质和平移求点F 的坐标,注意分类讨论.(1)解:将点A(2,0),B(-2,4),C(-4,0)分别代入2y ax bx c =++得:4201640424a b c a b c a b c ++=⎧⎪-+=⎨⎪-+=⎩,解得1214a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩.∴抛物线的表达式为y=2142x x --+.(2)如图,作MN ∥y 轴交直线AB 于点N,设点M(m ,2142m m --+).设直线AB 的方程为y kx n =+,将20()2)4(A B -,,,代入解析式得:2024k n k n +=⎧⎨-+=⎩,解得12k n =-⎧⎨=⎩,∴直线AB 的解析式为:2y x =-+,∴2()N m m -+,,()221142222MN m m m m =--+--+=-+,∴()()2211122242222(2)ABM A B S MN x x m m m ∆=-=⨯-++=-+-⨯(<<),∵-1<0,且-2<0<2,∴当m=0时,ΔABM 的面积最大,此时21442m m --+=,所以M 的坐标为(0,4).(3)∵抛物线的对称轴为直线,将1x =-代入2y x =-+得y=3,∴E (-1,3),当BC 为对角线时,构成BECF .∵B(-2,4),E(-1,3),∴点E到点B向左一个单位长度,向上1个单位长度,∴点C到点F也向左一个单位长度,向上1个单位长度,∵C(-4,0),∴F(-5,1).同理,当BE为对角线时,构成BCEF,可得F(1,7);当BF为对角线时,构成BCFE,可得F(-3,-1).综上所述点F得坐标为(-5,1)或(1,7)或(-3,-1).22.(1)60°(2)∠BOC=90°-12∠A,见解析【分析】(1)方法一:先根据平角的定义求出∠EBC和∠DCF的度数,再根据切线长定理得到∠EBO=∠DBO=12∠EBC=50°,∠DCO=∠FCO=12∠DCF=70°,据此理由三角形内角和定理求解即可;方法二:如图,连接OD,OE,OF,则由切线的性质可知,证明Rt△ODB≌Rt△OEB(HL),Rt△ODC≌Rt△OFC(HL),得到∠EOB=∠DOB,∠COD=∠COF,先求出∠A的度数,再利用四边形内角和定理求出∠EOF=120°,则∠BOC=∠BOD+∠COD=12∠EOF=60°.(2)同(1)方法二求解即可.(1)解:方法一:由题意得∠EBC=180°-∠ABC=180°-80°=100°,∠DCF=180°-∠ACB=180°-40°=140°,由切线长定理可知,∠EBO=∠DBO=12∠EBC=50°,∠DCO=∠FCO=12∠DCF=70°,∴在△OBC中,∠BOC=180°-∠OBC-∠BCO=180°-70°-50°=60°;方法二:如图,连接OD,OE,OF,则由切线的性质可知,∠BEO=∠BDO=∠CDO=∠CFO=90°,又∵OD=OE=OF,OB=OB,OC=OC,∴Rt△ODB≌Rt△OEB(HL),Rt△ODC≌Rt△OFC(HL),∴∠EOB=∠DOB,∠COD=∠COF,在△ABC中,∠A=180°-∠ABC-∠ACB=60°,在四边形AEOF 中,∠A+∠EOF=180°,∴∠EOF=120°,∴∠BOC=∠BOD+∠COD=12∠EOF=60°.(2)解:同(1)方法二可得180EOF A =︒-∠∠,∠EOB=∠DOB ,∠COD=∠COF ,∴∠BOC=∠BOD+∠COD=12∠EOF=1902A ︒-∠.【点睛】本题主要考查了切线的性质,切线长定理,三角形内角和定理,四边形内角和定理,全等三角形的性质与判定等等,熟知切线的性质和切线长定理是解题的关键.23.(1)反比例函数解析式为2y x=,点A 的坐标为(1,2),(2)(4,12)【分析】(1)先把点A 的坐标代入正比例函数解析式求出点A 的坐标,然后把点A 的坐标代入反比例函数解析式求出反比例函数解析式即可;(2)设直线CD 的解析式为1=y k x b +,求出点C 的坐标为(0,b )点D 的坐标为10b k ⎛⎫- ⎪⎝⎭,得到1b OC b OD k ==-,,再根据OD=2OC ,求出112k =-,得到直线CD 的解析式为12y x b =-+,然后代入A 点坐标求出直线CD 的解析式即可求出点B 的坐标.(1)解:∵点A (m ,2)在正比例函数y=2x 的图象上,∴2m=2,∴m=1,∴点A 的坐标为(1,2),把点A 的坐标代入反比例函数解析式得2=1k,∴k=2,∴反比例函数解析式为2y x=(2)解:设直线CD 的解析式为1=y k x b +,令0x =,y b =,令0y =,10k x b +=,即1bx k =-,∴点C 的坐标为(0,b )点D 的坐标为10b k ⎛⎫- ⎪⎝⎭,∴1bOC b OD k ==-,,∵OD=2OC ,∴12bb k -=,∴112k =-,∴直线CD 的解析式为12y x b =-+,把点A 的坐标代入直线CD 解析式得1122b -⨯+=,∴52b =,∴直线CD 的解析式为1522y x =-+,联立15222y x y x⎧=-+⎪⎪⎨⎪=⎪⎩,解得412x y =⎧⎪⎨=⎪⎩或12x y =⎧⎨=⎩(舍去),∴点B 的坐标为(4,12).24.(1)见解析(2)见解析(3)2【分析】(1)根据垂径定理和圆周角定理可证明;(2)作∠BAP的平分线交BP于I,证明∠DAI=∠AID,进而命题可证;(3)连接BI,AC,先计算得∠AIB=120°,从而确定I在以D为圆心,AD为半径的圆上运动,根据“射影定理”得AD2=DE•CD,进而证明△DI′E∽△DCI′,从而求得结果.(1)解:证明:∵直径CD⊥弦AB,∴=,AD BD∴∠APD=∠BPD;(2)如图,作∠BAP的平分线,交PD于I,证:∵AI平分∠BAP,∴∠PAI=∠BAI,∴∠AID=∠APD+∠PAI=∠APD+BAI,∵=,AD BD∴∠DAB=∠APD,∴∠DAI=∠DAB+∠BAI=∠APD+∠BAI,∴∠AID=∠DAI,∵∠AIP+∠DAI=180°,∴∠AIP+∠DAI=180°;(3)如图2,连接BI,AC,OA,OB,∵AI平分∠BAP,PD平分∠APB,∴BI平分∠ABP,∠BAI=12∠BAP,∴∠ABI=12∠ABP,∵∠APB=60°,∴∠PAB+∠PBA=120°,∴∠BAI+∠ABI=12(∠BAP+∠ABP)=60°,∴∠AIB=120°,∴点I的运动轨迹是 AB,∴DI=DA,∵∠AOB=2∠APB=120°,∵AD⊥AB,∴AD BD,∴∠AOB=∠BOD=60°,∵OA=OD,∴△AOD是等边三角形,∴AD=AO,∵CD是⊙O的直径,∴∠DAC=90°,∵CD ⊥AB ,∴∠AED=90°,∴∠AED=∠CAD ,∵∠ADC=∠ADE ,∴△ADE ∽△CDA ,∴AD DE CD AD=,∴AD 2=DE•CD ,∵DI′=DI=AD ,∴DI 2=DE•CD ,∵∠I′DE 是公共角,∴△DIE ∽△DCI ,∴2IC CD IE DI==.25.(1)(1,0)-或(2,3)(2)见解析(3)①(2,3);②333022m m -<<【分析】(1)把1m =代入抛物线及直线解析式,并联立即可求解;(2)联立方程组求解即可求证;(3)①由(2)可直接得到;②先求出抛物线G ',再联立抛物线G '和直线h ,求出交点,再进行分类讨论即可.(1)解:当1m =时,抛物线21:1G y x =-,直线2:1h y x =+,令211x x -=+,解得1x =-或2x =,∴抛物线G 与直线h 交点的坐标为(1,0)-或(2,3);(2)证明:令2(33)2332mx m x m mx m --+-=+-,整理得2(43)460mx m x m --+-=,即(2)(23)0x mx m --+=,解得2x =或23m x m -=,当2x =时,3y =;当23m x m-=时,0y =;∴抛物线G 与直线h 的交点分别为(2,3)和23(m m-,0),∴必有一个交点在x 轴上;(3)①证明:由(2)可知,抛物线一定过点(2,3);②解:抛物线21:(33)23(23)(1)G y mx m x m mx m x =--+-=-+-,则抛物线G 与x 轴的交点为(1,0),23(m m-,0), 抛物线G 与抛物线G '关于原点对称,∴抛物线G '过点(1,0)-,23(m m--,0),∴抛物线G '的解析式为:223(1)((33)23m y m x x mx m x m m-'=-++=----+,令2(33)2332mx m x m mx m ----+=+-,整理得2(43)0mx m x +-=,0x ∴=或34m x m-=,即四个交点分别为:(0,32)m -,(2,3),23(m A m -,0),34(m m -,66)m -,2302(0)m m m-∴<<>,不等式无解,这种情况不成立;当340m m -<时,则304m <<,则34232m m m m --<<,解得1m >,不成立;当342m m->时,得102m <<,此时23340m m m m --<<,解得得102m <<,333022m m -∴<<.即抛物线G 对称轴的取值范围为:333022m m -<<.【点睛】本题主要考查二次函数与一次函数交点问题,第(3)关键是求出四个交点,由“点A 的横坐标既不是最大值又不是最小值”,对四个点进行分类讨论.26.(1)y=-x 2+2x+3(2)(0,1)或(0,3)【分析】(1)将点A (1,4)代入y=-2x+m ,确定直线解析式即可求出B 点坐标,再设抛物线解析式为y=a(x-1)2+4,将所求的B点坐标代入即可求a的值;(2)(2)设P(0,t),则可求AB=AB的中点M(2,2),再由直角三角形斜边的中线等于斜边的一半可得4+(t-2)2=5,即可求P点坐标为(0,1)或(0,3).【小题1】解:将点A(1,4)代入y=-2x+m,∴-2+m=4,∴m=6,∴y=-2x+6,令y=0,则x=3,∴B(3,0),设抛物线解析式为y=a(x-1)2+4,将B(3,0)代入y=a(x-1)2+4,∴4a+4=0,∴a=-1,∴y=-x2+2x+3;【小题2】设P(0,t),∵A(1,4),B(3,0),∴AB=AB的中点M(2,2),∵∠APB=90°,∴∴4+(t-2)2=5,∴t=1或t=3,∴P点坐标为(0,1)或(0,3).。
九年级数学上册期末考试卷(附答案解析)

九年级数学上册期末考试卷(附答案解析)一、选择题(每小题3分,共24分)1.(3分)如图,点D是△ABC的边BC上任一点,AB=4,AD=2,∠DAC=∠B.若△ABD的面积为a,则△ACD的面积为()A.a B.a C.a D.a2.(3分)如果Rt△ABC的各边长都扩大为原来的3倍,那么锐角A的正弦、余弦值是()A.都扩大为原来的3倍B.都缩小为原来的C.没有变化D.不能确定3.(3分)如图,点A、B、C、D、E都是⊙O上的点,=,∠D=128°,则∠B的度数为()A.128°B.126°C.118°D.116°4.(3分)用配方法解一元二次方程x2+8x+7=0,则方程可化为()A.(x+4)2=9 B.(x﹣4)2=9 C.(x+8)2=23 D.(x﹣8)2=95.(3分)将抛物线y=2(x﹣1)2﹣3先向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式为()A.y=2(x+2)2﹣1 B.y=2(x+2)2﹣5C.y=2(x﹣4)2﹣1 D.y=2(x﹣4)2﹣56.(3分)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tan B=()A.2B.2C.D.7.(3分)如图,在长为30m,宽20m的矩形田地中开辟两条宽度相等的道路,已知剩余田地的面积为551m2,求道路的宽度.设道路的宽度为xm,则可列方程()A.(20+x)(30+x)=551 B.(20﹣x)(30﹣x)=551C.20×30﹣20x﹣30x=551 D.20×30﹣20x﹣30x﹣x2=5518.(3分)二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值如下表:x…﹣2 ﹣1 0 2 4 5 …y…﹣7 ﹣2 1 1 ﹣7 ﹣14 …下列说法正确的是()A.抛物线的开口向上B.当x>1时,y随x的增大而增大C.二次函数的最大值是2D.抛物线与x轴只有一个交点二.填空题(每小题3分,共18分)9.(3分)若关于x的一元二次方程k2x2+(4k﹣1)x+4=0有两个不同的实数根,则k的取值范围是.10.(3分)如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为.11.(3分)如图,若二次函数y=ax2+bx+c(a≠0)的图象的对称轴为直线x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则下列结论:①abc>0;②二次函数的最大值为a+b+c;③a﹣b+c<0;④b2﹣4ac<0;⑤当y>0时,﹣1<x<3.⑥3a+c=0;其中正确的结论有.12.(3分)如图,正方形ABCD中,扇形ABC与扇形BCD的弧交于点E,AB=2cm,则图中阴影部分的面积为cm2.(不求近似值)13.(3分)抛物线y=ax2+bx+c经过点A(0,﹣3),B(2,﹣3),C(﹣2,5),则该抛物线上纵坐标为5的另一个点D的坐标是.14.(3分)车从甲地驶往乙地,行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的反比例函数关系如图所示.若列车要在 2.5h内到达,则速度至少需要提高到km/h.三、解答题(共78分)15.(4分)计算:﹣12022﹣+|﹣2|.16.(6分)如图,数学兴趣小组成员在热气球A上看到正面为横跨河流两岸的大桥BC,并测得B,C两点的角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:,,)17.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.18.(10分)由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包16.9元.(1)求出这两次价格上调的平均增长率;(2)在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?19.(6分)如图,△ABC是等腰三角形,AB=AC,AD⊥BC,以AD为直径作⊙O,分别交AB、AC于点E、F,连接EF.判断EF和BC的位置关系,并证明.20.(12分)已知抛物线y=ax2+bx﹣2经过(2,2),且顶点在y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N纵坐标n的取值范围.21.(10分)如图,一次函数y=x+m的图象与反比例函数的图象交于A,B两点,且与x 轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求△AOB的面积;(3)结合图象直接写出不等式组的解集.22.(6分)有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?23.(14分)已知抛物线y=﹣x2+bx+c(b、c为常数),若此抛物线与某直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线的函数解析式和顶点D的坐标;(2)若点P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)点H(n,t)为抛物线上的一个动点,H关于y轴的对称点为H1,当点H1落在第二象限内,H1A2取得最小值时,求n的值.参考答案与解析一、选择题(每小题3分,共24分)1.【分析】首先证明△CAD∽△CBA,得,从而,即可得出答案.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△CAD∽△CBA,∴,∴,∵△ABD的面积为a,∴S△CAD=a,故选:C.2.【分析】根据相似三角形的判定方法可得新三角形与Rt△ABC是相似的,从而可得锐角A 的大小是不变的,即可解答.【解答】解:∵Rt△ABC的各边长都扩大为原来的3倍后,所得的三角形与Rt△ABC是相似的,∴锐角A的大小是不变的,∴锐角A的正弦、余弦值是没有变化,故选:C.3.【分析】连接AC、CE,根据圆内接四边形的性质求出∠CAE,根据圆心角、弧、弦之间的关系定理求出∠ACE,根据圆内接四边形的性质计算,得到答案.【解答】解:连接AC、CE,∵点A、C、D、E都是⊙O上的点,∴∠CAE+∠D=180°,∴∠CAE=180°﹣128°=52°,∵=,∴∠ACE=∠AEC=×(180°﹣52°)=64°,∵点A、B、C、E都是⊙O上的点,∴∠AEC+∠B=180°,∴∠B=180°﹣64°=116°,故选:D.4.【分析】将常数项移动方程右边,方程两边都加上16,左边化为完全平方式,右边合并即可得到结果.【解答】解:x2+8x+7=0,移项得:x2+8x=﹣7,配方得:x2+8x+16=9,即(x+4)2=9.故选:A.5.【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【解答】解:将抛物线y=2(x﹣1)2﹣3先向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式为:y=2(x﹣1+3)2﹣3+2,即y=2(x+2)2﹣1;故选:A.6.【分析】先判断DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,由等腰三角形的性质,可得点F是AC中点,继而可得EF是△CAB的中位线,继而得出EF、DF的长度,在Rt△ADF中求出AF,然后得出AC,tan B的值即可计算.【解答】解:∵CA是∠BCD的平分线,∴∠DCA=∠ACB,又∵AD∥BC,∴∠ACB=∠CAD,∴∠DAC=∠DCA,∴DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,∵AB⊥AC,∴DE⊥AC(等腰三角形三线合一的性质),∴点F是AC中点,∴AF=CF,∴EF是△CAB的中位线,∴EF=AB=2,∵==1,∴DF=EF=2,在Rt△ADF中,AF==4,则AC=2AF=8,tan B===2.故选:B.7.【分析】由道路的宽度为xm,可得出剩余田地部分可合成长为(30﹣x)m,宽为(20﹣x)m的矩形,根据剩余田地的面积为551m2,即可得出关于x的一元二次方程,此题得解.【解答】解:∵道路的宽度为xm,∴剩余田地部分可合成长为(30﹣x)m,宽为(20﹣x)m的矩形.依题意得:(20﹣x)(30﹣x)=551.故选:B.8.【分析】根据给出的自变量x与函数值y的对应值逐一分析解答即可.【解答】解:∵抛物线经过点(﹣2,﹣7),(4,﹣7),则对称轴为x=1,设抛物线的解析式为y=a(x﹣1)2+k,代入点(0,1)和(﹣1,﹣2)得,,解得,∴抛物线的解析式为y=﹣(x﹣1)2+2,∵a=﹣1,∴抛物线开口向下,故A不符合题意;∵对称轴为x=1,∴当x>1时,y随x的增大而减小,故B不符合题意;∵抛物线的顶点坐标为(1,2),开口向下,∴二次函数的最大值为2,故C符合题意;∵抛物线开口向下,顶点为(1,2),∴抛物线与x轴有两个交点,故D不符合题意.故选:C.二.填空题9.答案为:且k≠0.10.(3分)如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为(1,2)或(﹣1,﹣2).【分析】根据位似变换的性质计算即可.【解答】解:由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点C的坐标为(3×,6×),即(1,2),当点C值第三象限时,C(﹣1,﹣2)故答案为:(1,2)或(﹣1,﹣2).11.答案为:②⑤⑥.12.答案为:π.13.答案为:(4,5).14.答案为:240.三、解答题(共78分)15.(4分)计算:﹣12022﹣+|﹣2|.【分析】这里,先算﹣12022=﹣1,=4,|﹣2|=2﹣,再进行综合运算.【解答】解:﹣12022﹣+|﹣2|=﹣1﹣4+2﹣=﹣3﹣.16.(6分)如图,数学兴趣小组成员在热气球A上看到正面为横跨河流两岸的大桥BC,并测得B,C两点的角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:,,)【分析】过A作AD⊥BC,交CB延长线于点D,证△ACD是等腰直角三角形,则CD=AD,再由锐角三角函数定义得BD=AD,则AD﹣AD=75,求出AD的长,即可解决问题.【解答】解:过A作AD⊥BC,交CB延长线于点D,如图所示:则∠ACD=45°,∠ABD=53°,在Rt△ACD中,tan∠ACD=,∴CD===AD,在Rt△ABD中,tan∠ABD=,∴BD=≈=AD,由题意得:AD﹣AD=75,解得:AD=300(m),∵此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,∴此时热气球(体积忽略不计)附近的温度约为:20℃﹣×0.6℃=18.2℃,答:此时热气球(体积忽略不计)附近的温度约为18.2℃.17.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.【分析】(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线;(2)AB是直径;故只需证明BC与半径相等即可;(3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MN •MC;代入数据可得MN•MC=BM2=8.【解答】(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC=AB.(3)解:连接MA,MB,∵点M是的中点,∴=,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴=.∴BM2=MN•MC.又∵AB是⊙O的直径,=,∴∠AMB=90°,AM=BM.∵AB=8,∴BM=4 .∴MN•MC=BM2=32.18.(10分)由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包16.9元.(1)求出这两次价格上调的平均增长率;(2)在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?【分析】(1)设这两次价格上调的平均增长率为x,利用经过两次上调价格后的价格=原价×(1+这两次价格上调的平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设每包应该降价m元,则每包的售价为(10﹣m)元,每天可售出(30+5m)包,根据每天该口罩的销售额为315元,即可得出关于m的一元二次方程,解之即可得出m的值,再结合要让顾客获得更大的优惠,即可得出每包应该降价3元.【解答】解:(1)设这两次价格上调的平均增长率为x,依题意得:10(1+x)2=16.9,解得:x1=0.3=30%,x2=﹣2.3(不符合题意,舍去).答:这两次价格上调的平均增长率为30%.(2)设每包应该降价m元,则每包的售价为(10﹣m)元,每天可售出(30+5m)包,依题意得:(10﹣m)(30+5m)=315,整理得:m2﹣4m+3=0,解得:m1=1,m2=3.又∵要让顾客获得更大的优惠,∴m的值为3.答:每包应该降价3元.19.(6分)如图,△ABC是等腰三角形,AB=AC,AD⊥BC,以AD为直径作⊙O,分别交AB、AC于点E、F,连接EF.判断EF和BC的位置关系,并证明.【分析】先利用等腰三角形的性质得到∠EAD=∠FAD,则根据圆周角定理得到=,再利用垂径定理的推理得到AD⊥EF,于是可判断EF∥BC.【解答】解:EF∥BC.理由如下:∵AB=AC,AD⊥BC,∴AD平分∠BAC,即∠EAD=∠FAD,∴=,∵AD为直径,∴AD⊥EF,而AD⊥BC,∴EF∥BC.20.(12分)已知抛物线y=ax2+bx﹣2经过(2,2),且顶点在y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N纵坐标n的取值范围.【分析】(1)由题意可知b=0,再将(2,2)代入y=ax2+bx﹣2即可求解析式;(2)①求出A(,0),B(﹣,0),再由2[c+2+(c+2)2]=4(c+2),即可求c;②由题意可得m=﹣,k<0,再由m>6,可得﹣<k<0,联立,得到AB的中点为(,+1),设AB的线段垂直平分线所在直线解析式为y=k'x+b,与x轴的交点P (﹣,0),与y轴的交点为N(0,b),由∠PNO=∠AMO,可得k'=m=﹣,则有线段AB的垂直平分线为y=﹣x++,所以N点纵坐标为n=+,即可求<n<.【解答】解:(1)∵顶点在y轴上,∴b=0,∵抛物线y=ax2+bx﹣2经过(2,2),∴4a﹣2=2,∴a=1,∴y=x2﹣2;(2)①当k=0时,y=c,联立,∴A(,c),B(﹣,c),∵△ABP为等腰直角三角形,∴P点在AB的垂直平分线上,∴P点在抛物线的顶点(0,﹣2)处,∵AB=2,AP=BP=,∴2[c+2+(c+2)2]=4(c+2),∴c=﹣1;②∵c=1,∴y=kx+1,∴m=﹣,由题意可知,k<0,∵m>6,∴﹣<k<0,联立,∴x2﹣kx﹣2=0,∴x A+x B=k,∴AB的中点为(,+1),设AB的线段垂直平分线所在直线解析式为y=k'x+b,∴与x轴的交点P(﹣,0),与y轴的交点为N(0,b),∵PN⊥AB,∴∠PNO=∠AMO,∴=,∴k'=m=﹣,∴y=﹣x+b,∴线段AB的垂直平分线为y=﹣x++,∴N点纵坐标为n=+,∴<n<.21.(10分)如图,一次函数y=x+m的图象与反比例函数的图象交于A,B两点,且与x 轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求△AOB的面积;(3)结合图象直接写出不等式组的解集.【分析】(1)把A点的坐标代入函数解析式,即可求出答案;(2)解由两函数解析式组成的方程组,求出方程组的解,即可得出B点的坐标,求出C点的坐标,再根据三角形面积公式求即可;(3)根据图象即可求出答案.【解答】解:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1,即m=﹣1,∵A(2,1)在反比例函数的图象上,∴,∴k=2;(2)连接OA、OB,∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由解得,,∴由图象可得:点B的坐标为(﹣1,﹣2),∴;(3)由图象可知不等式组的解集为1<x≤2.22.(6分)有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?【分析】本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.【解答】解:(1)利用列表法得出所有可能的结果,如下表:1 2 3 45 5 10 15 206 6 12 18 247 7 14 21 288 8 16 24 32由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为P甲=.(4分)(2)这个游戏对双方不公平,因为甲获胜的概率P甲=,乙获胜的概率P乙=,,所以,游戏对双方是不公平的.(6分)23.(14分)已知抛物线y=﹣x2+bx+c(b、c为常数),若此抛物线与某直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线的函数解析式和顶点D的坐标;(2)若点P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)点H(n,t)为抛物线上的一个动点,H关于y轴的对称点为H1,当点H1落在第二象限内,H1A2取得最小值时,求n的值.【分析】(1)用待定系数法求函数的解析式即可;(2)过点P作PG∥y轴交AC于点G,设P(t,﹣t2+2t+3),则G(t,t+1),S△PAC=﹣(t ﹣)2+当t=时,△PAC的面积最大值为,此时P(,);(3)由题意可知H1在抛物线y=﹣x2﹣2x+3上,再由H1A2=(t﹣)2+,可得当t=时,A2有最小值,求出n的值即可.H1【解答】解:(1)将A(﹣1,0),C(2,3)两点代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(2)设AC的直线解析式为y=kx+b,∴,解得,∴y=x+1,过点P作PG∥y轴交AC于点G,设P(t,﹣t2+2t+3),则G(t,t+1),∴PG=﹣t2+t+2,∴S△PAC=×3×(﹣t2+t+2)=﹣(t﹣)2+,∴当t=时,△PAC的面积最大值为,此时P(,);(3)点H(n,t)为抛物线上的一个动点,点H1与H点关于y轴对称,∴H1(﹣n,t),H1在抛物线y=﹣x2﹣2x+3上,∴t=﹣n2﹣2n+3,∴H1A2=(n+1)2+t2=t2﹣t+4=(t﹣)2+,∴当t=时,H1A2有最小值,∴=﹣n2+2n+3,解得n=1+.。
九年级数学上册期末考试试卷附答案

期末考试试卷 初三数学一、选择题(本大题共10小题,每小题3分,共30分)请把正确答案前面的英文字母填入下表.1.若两圆的半径分别是3和4,圆心距为8,则两圆的位置关系为 A .相交 B .内含 C .外切 D .外离2.在△ABC 中,∠A 、∠B 都是锐角,若1cos 2A =,sin B =,则△ABC 的形状为A .钝角三角形B .不等边锐角三角形C .等边三角形D .直角三角形 3.如图,在⊙O 中,∠BOC=120°,则∠BAC= A .120° B .150° C .60° D .30°4.已知圆锥的底面积的半径为3cm ,高为4cm ,则它的侧面积为A .15πcm 2B .16πcm 2C .19πcm 2D .24πcm 25.抛物线21522y x x =--+的顶点坐标为A .(1,3)B .(1,-3)C .(-1,3)D .(-1,-3) 6.学校为了了解500名初三学生的体重情况,从中抽取100名学生进行测量,下列说法中正确的是A .总体是500B .样本容量是100C .样本是100名学生D .个体是每个学生7.如图,边长为12米的正方形池塘的周围是草地,池塘边缘A 、B 、C 、D 处各有一棵树,且AB=BC=CD=3米.现用长4米的绳子将一头羊拴在其中一棵树上.为了使羊在草 地上活动区域的面积最大,应该将绳子拴在A .A 处B .B 处C .C 处D .D 处8.如图,已知∠AOB=30°,P 为边OA 上一点,且DP=5 cm ,若以P 为圆心,r 为半径的圆与OB 相切,则半径r 为A .5cmB .cmC .52cmD .3cm9.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为A.0 B.-1C.1 D.210.已知,函数y=x2-2009x+2010与x轴的交点是(m,0)(n,0),则(m2-2007m+20l0)·(n2-2007n+2010)的值为A.2007 B.2009 C.2010 D.8040 二、填空题:(本大题共8小题,每小题3分,共24分)11.抛物线y=(x-1)2+2向下平移3个单位,可得到y=_______________.12.方程x2-ax+3=0有一个根为-1,则a的值为_____________.13.已知(x2+y2+1)(x2+y2+2)=6,则x2+y2的值为______________.14.若10000张奖券中有200张中奖,则从中任抽一张能中奖的概率为__________.15.在△ABC中,∠C=90°,∠A=60°,a b+=+,则3a=___________.16.若a-b+c=0,且a≠0,则二次函数y=ax2+bx+c必经过交点___________.17.如图,已知AB是⊙O的直径,弦CD⊥AB,AC=BC=1,那么sin∠ABD的值是_________________.18.如图,从P点引⊙O的两切线PA、PB,A、B为切点,已知⊙O 的半径为2,∠P=60°,则图中阴影部分的面积为_____________________.三、解答题:(本大题共10题,共76分,请写出必要的演算推理步骤)19.(本题6分)解方程:2x2-4x-1=020.(本题6分)已知抛物线y=x2+(2m+1)x+m+1,根据下列条件分别求m的值.(1)若抛物线过原点;(2)若抛物线的顶点在x轴上;(3)若抛物线的对称轴为x=1.21.(本题6分)一个袋中装有四根长度分别为1cm,3cm,4cm和5cm 的细木棒,小红手中有一根长度为4cm的细木棒现随机从袋中取出两根细木棒与小红手中的木棒放在一起.(1)求这三根细木棒能构成三角形的概率;(2)求这三根细木棒能构成直角三角形的概率;(3)求这三根细木棒能构成等腰三角形的概率.22.(本题6分)如图所示,AB是⊙O的一条弦,E在⊙O上,设⊙O的半径为4 cm,AB .(1)求圆心O到弦AB的距离OD;(2)求∠AEB的度数.23.(本题8分)已知x1,x2是一元二次方程x2-x+2m-2=0的两个实根.(1)求m的取值范围;(2)若m满足2x1+x2=m+1,求m的值.24.(本题8分)某风景区对5个旅游景点的门票价格进行了调整,根据统计,调价前各景点的旅客人数基本不变,有关数据如下表所示.(1)该风景区称调整前后这5个景点门票的平均收费不变,平均收入也持平,问风景区是怎样计算的.(2)旅客认为调整收费后景区的平均日收入较调价前实际增加了近13%,问旅客是怎么计算的.(3)你认为谁的说法更切合实际情况.25.(本题8分)在旧城改造中,要拆除一烟囟AB ,如图,在地面上事先规定以B 为圆心,半径与AB 等长的圆形危险区,现从离B 点21米的建筑物CD 顶端C 点测得A 点的仰角为45°,B 点的俯角为30°,问离B 点35米远的文物保护区是否在危险区内?26.(本题8分)已知:如图⊙O 的直径AD=2, BC CD DE ==,∠BAE=90°.(1)求△CAD 的面积;(2)如果在这个圆形区域中,随机确定一个点P , 那么点P 在四边形ABCD 区域的概率是多少?27.(本题10分)如图,已知⊙O 的半径为6 cm ,射线PM 经过点O ,OP=10 cm ,射线PN 与⊙O 相切于点Q ,A 、B 两点同时从点P 出发,点A 以5 cm /s 的速度沿射线PM 方向运动,点B 以4 cm /s 的速度沿射线PN 方向运动.设运动时间为t s . (1)求PQ 的长;(2)当t 为何值时,直线AB 与⊙O 相切?28.(本题10分)如图1,在平面直角坐标系中,二次函数y=ax 2 +bx+c(a <0)的图象的顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 在坐标为(3,0),OB=OC ,1tan 3ACO ∠=.(1)求这个二次函数的解析式.(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.(3)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG上方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.(4)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.。
九年级数学上册期末考试及答案【完整】

九年级数学上册期末考试及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列各式中,正确的是( )A 3=-B .3=-C 3=±D 3±2.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( ) A .﹣2B .﹣4C .2D .43.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣344.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩5.若α,β是方程2x 2x 20180+-=的两个实数根,则2α3αβ++的值为( ) A .2015B .2016-C .2016D .20196.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <﹣3B .c <﹣2C .c <14D .c <17.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则CPD ∠的度数为( )A .30B .36︒C .60︒D .72︒二、填空题(本大题共6小题,每小题3分,共18分)116.2.分解因式:ab 2﹣4ab+4a=________.3.33x x -=-,则x 的取值范围是__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311xx x x +=--2.已知关于x 的一元二次方程x 2+x +m ﹣1=0. (1)当m =0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m 的取值范围.3.如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点. (1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x +b >k x的解集;(3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G . (1)证明:ADG DCE ∆∆≌; (2)连接BF ,证明:AB FB =.5.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.6.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?;(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、C6、B7、D8、C9、B 10、B二、填空题(本大题共6小题,每小题3分,共18分)1、42、a (b ﹣2)2.3、3x ≤4、425、6、(,6)三、解答题(本大题共6小题,共72分)1、x=32、(1)x 1x 2(2)m <543、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0)4、(1)略;(2)略.5、(1)40,补图详见解析;(2)108°;(3)16.6、(1)到2020年底,全省5G 基站的数量是6万座;(2)2020年底到2022年底,全省5G 基站数量的年平均增长率为70%.。
人教版九年级上册数学期末考试试卷含答案

人教版九年级上册数学期末考试试题一、单选题1.下列图形中,是中心对称图形的是()A.B.C.D.2.下列事件中是必然事件的是()A.翻开数学课本,恰好翻到第30页B.三角形任意两边之和大于第三边C.在一个只装有红球的袋子中摸出白球D.在纸上任意画两条直线,这两条直线互相垂直3.反比例函数y=kx(k≠0)的图象经过点A(﹣2,3),则此图象一定经过下列哪个点()A.(3,2)B.(﹣3,﹣2)C.(﹣3,2)D.(﹣2,﹣3)4.如图,在Rt△ABC中,∠ACB=90°,AB=5cm,BC=3cm,△ABC绕AC所在直线旋转一周,所形成的圆锥侧面积等于()A.4πcm2B.8πcm2C.12πcm2D.15πcm25.如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC的外接圆的圆心坐标是()A.(-2,-1)B.(-1,0)C.(-1,-1)D.(0,-1)6.下列关于x的一元二次方程中,有两个相等的实数根的方程是()A .240x +=B .2210x x -+=C .230x x --=D .220x x +=7.抛物线2(1)2y x =+-的顶点坐标是()A .(-1,2)B .(-1,-2)C .(1,-2)D .(1,2)8.如图,正比例函数()1110y k x k =<的图象与反比例函数()2220k y k x=<的图象相交于A ,B 两点,点B 的横坐标为2,当12y y >时,x 的取值范围是()A .2x <-或2x >B .20x -<<或2x >C .2x <-或02x <<D .20x -<<或02x <<9.已知一个直角三角形的两边长是方程29200x x -+=的两个根,则这个直角三角形的斜边长为()A .3B C .3D .510.已知抛物线y =ax 2+bx +c (a >0),且a +b +c =-1,a ﹣b +c =-3.判断下列结论:①抛物线与x 轴负半轴必有一个交点;②b =1;③abc >0;④2a +2b +c <0;⑤当0≤x≤2时,y 最大=3a ,其中正确结论的个数()A .2B .3C .4D .5二、填空题11.将抛物线2y x =向下平移2个单位长度后,得到的抛物线解析式为______________.12.已知关于x 方程230x x m -+=的一个根是1,则m 的值等于______.13.反比例函数y =1m x-的图象在第一、三象限,则m 的取值范围是_______.14.在一个不透明袋子中,装有3个红球和一些白球,这些球除颜色外无其他差别,从袋中随机摸出一个球是红球的概率为13,则袋中白球的个数是________.15.某种产品今年的年产量是20t ,计划今后两年增加产量.如果每年的产量都比上一年增加x 倍,两年后这种产品的产量y 与x 之间的函数表达式是________________.16.如图,半径为2的扇形AOB 的圆心角为120°,点C 是弧AB 的中点,点D 、E 是半径OA 、OB 上的动点,且满足∠DCE =60°,则图中阴影部分面积等于___________.17.如图,等腰Rt △ABC 和等腰Rt △ADE 的腰长分别为4和2,其中∠BAC =∠DAE =90°,点M 为边DE 的中点,若等腰Rt △ADE 绕点A 旋转,则点B 到点M 的距离最小值为__________.18.如图,在圆的内接△ABC 中,AB AC =, 100BC =︒,BD AC ⊥于点D ,则DBC ∠=________°.三、解答题19.解方程:2144x x -=-.20.如图,M 是CD 的中点,EM ⊥CD ,若CD =4,EM =6,求 CED所在圆的半径.21.现有A 、B 两个不透明的袋子,A 袋中的两个小球分别标记数字1,2;B 袋中的三个小球分别标记数字3,4,5.这五个小球除标记的数字外,其余完全相同.分别将A、B两个袋子中的小球摇匀,然后小明从A、B袋中各随机摸出一个小球,请利用画树状图或列表的方法,求小明摸出的这两个小球标记的数字之和为5的概率.22.某运动品牌的鞋子,每天可销售20双,每双可获利40元.为庆祝新年,对该鞋子进行促销活动,该鞋子每双每降价1元,平均每天可多售出2双.若设该鞋子每双降价x元,请解答下列问题:(1)用含x的代数式表示:降价x元后,每售出一双该鞋子获得利润是元,平均每天售出双该鞋子;(2)在此次促销活动中,每双鞋子降价多少元,可使该品牌的鞋子每天的盈利为1250元?23.如图,正方形ABCD的边长为4,连接对角线AC,点E为BC边上一点,将线段AE 绕点A逆时针旋转45°得到线段AF,点E的对应点F恰好落在边CD上,过F作FM⊥AC 于点M.(1)求证:BE=FM;(2)求BE的长度.24.如图,△ABC内接于⊙O,AB为直径,点D为半径OA上一点,过点D作AB的垂线交AC于点E,交BC的延长线于点P,点F在线段PE上,且PF=CF.(1)求证:CF是⊙O的切线;(2)连接AP与⊙O相交于点G,若∠ABC=2∠PAC,求证:AB=BP;(3)在(2)的条件下,若AC=4,BC=3,求CF的长.25.已知等边△OAB,边长为8,点A在y轴上,点B在第一象限,反比例函数kyx(x>0)经过AB的中点M,与OB边相交于点N.(1)求k的值;(2)连接OM、MN,求△OMN的面积.26.如图,AB是⊙O的直径,C为半径OA的中点,CD⊥AB交⊙O于点D,E,DF∥AB 交⊙O于点F,连接AF,AD.(1)求∠DAF 的度数;(2)若AB =10,求阴影部分的面积.(结果保留π)27.抛物线y =ax 2+bx -2(a≠0)与x 轴交于点A (﹣1,0),B (3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)如图1,抛物线的对称轴与x 轴相交于点H ,连接AC ,BC .△ABC 绕点B 顺时针旋转一定角度后落在第一象限,当点C 的对应点C 1落在抛物线的对称轴上时,求此时点A 的对应点A 1的坐标;(3)如图2,过点C 作CE x ∥轴交抛物线于点E ,已知点D 在抛物线上且横坐标为72,在y 轴左侧的抛物线上有一点P ,满足∠PDC =∠EDC ,求点P 的坐标.参考答案1.D 2.B 3.C 4.D 5.A 6.B 7.B 8.C 9.D 10.B 11.22y x =-12.213.m>114.615.220(1)y x =+16.43π17.4或者418.2519.x 1=1,x 2=3【分析】利用因式分解法,令两个一次因式都等于0,进而得出结果.【详解】解:2144x x -=-(1)(1)4(1)x x x +-=-(1)(14)0x x -+-=(1)(3)0x x --=(1)0x ∴-=或(3)0x -=解得11x =或23x =11x ∴=或23x =【点睛】本题考察了一元二次方程的求解.解题的关键与难点在于对多项式进行因式分解.20.103【分析】根据垂径定理的推论,可得EM 过⊙O 的圆心点O ,CM =12CD =2,然后设半径为x ,可得OM =6-x ,再由勾股定理,即可求解.【详解】解:连接OC ,∵M 是CD 的中点,EM ⊥CD ,∴EM 过⊙O 的圆心点O ,CM =12CD =2,设半径为x ,∵EM =6,∴OM =EM -OE =6-x ,在Rt △OCM 中,OM 2+CM 2=OC 2,即(6-x )2+22=x 2,解得:x =103.∴ CED所在圆的半径为103.【点睛】本题主要考查了垂径定理,勾股定理,熟练掌握垂径定理及其推论,勾股定理是解题的关键.21.13【分析】作列表,共有6种可能的结果,摸出的这两个小球标记的数字之和为5的结果有2种,再由概率公式求解即可.【详解】解:列表如下:123(1,3)(2,3)4(1,4)(2,4)5(1,5)(2,5)共有6种等可能结果,其中小明摸出的两个小球标记的数字之和为5有2种,∴P (摸出的两个小球标记的数字之和为5)=26=13【点睛】本题考查了树状图法或列表求概率,正确画出树状图或列表是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.22.(1)(40-x ),()202x +;(2)15元【分析】(1)根据利用40减去降价,可得每售出一双该鞋子获得利润,再用20加上多售出的数量,即可求解;(2)根据该品牌的鞋子每天的盈利为1250元,列出方程,即可求解.【详解】解:(1)根据题意得:每售出一双该鞋子获得利润是(40-x );平均每天售出()202x +双该鞋子;(2)由题意可列方程(40-x )(20+2x )=1250x 2-30x +225=0,(x-15)2=0,解得x 1=x 2=15,答:每双鞋子降价15元,可使该品牌的鞋子每天的盈利为1250元.【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.23.(1)见解析;(2)【分析】(1)由旋转和正方形的性质得出∠FAM =∠EAB ,再证ABE ∆≌ΔAMF 即可;(2)求出正方形对角线长,再求出MC=—4即可.【详解】(1)证明: 在正方形ABCD 中,线段AE 绕点A 逆时针旋转45°得到线段AF∴∠CAB =45°,∠EAF =45°,AE =AF ∴∠FAM =∠EAB∵FM ⊥AC∴∠FMA =∠B =90°ABE ∴∆≌ΔAMF (AAS )∴BE =FM(2)在正方形ABCD 中,边长为4∴AC =DCA =45°ABE ∆ ≌ΔAMF∴AM =AB =4∴MC =AC—AM =—4∵ΔFMC 是等腰直角三角形∴BE =MF =MC =24.(1)证明见解析;(2)证明见解析;(3)54【分析】(1)连接OC ,由题意知90ACB ACP ∠=︒=∠,OAC OCA ∠=∠,PCF OCA ∠=∠,90PCF ACF ∠+∠=︒,90OCA ACF ∠+∠=︒;可得OC CF ⊥,进而说明CF 是O 的切线.(2)连接BG ,同弧所对圆周角PAC PBG ∠∠,相等,22=+PBA PAC PBG PBG ABG ∠=∠=∠∠∠有,ABG PBG ∠=∠,进而说明AB BP =.(3)勾股定理知5AB BP ==,2PC =,有Rt PAC Rt APD ≌,知24AD PC PD AC ====、,PAC APD ∠=∠,AE PE =;在Rt AED △中用勾股定理求出DE 的长,求出EP 的长,通过角度关系得出PEC FCE ∠=∠,故有EF CF PF ==,进而求出CF 的值.【详解】解:(1)证明:如图所示,连接OC ,OC 为半径ABC 是O 的内接三角形,且AB 是直径90ACB ACP∴∠=︒=∠PD AB⊥ ∴在Rt ABC 和Rt PBD 中,有BAC BPD∠=∠OA OC=OAC OCA∴∠=∠PF CF= PFC PCF∴∠=∠PCF OCA∴∠=∠又90PCF ACF ∠+∠=︒90OCA ACF ∴∠+∠=︒即OC CF⊥OC 是半径CF ∴是O 的切线.(2)证明:如图连接BGGC GC = PAC PBG∴∠=∠22=+PBA PAC PBG PBG ABG∠=∠=∠∠∠ ABG PBG∴∠=∠AB Q 为直径90AGB PGB ∴∠=∠=︒APB PAB∴∠=∠AB BP∴=(3)在Rt ABC 中43AC BC ==、225AB AC BC ∴+=5BP AB ∴==2PC ∴=在Rt PAC △和Rt APD 中90PDA PCA APC PAD PA PA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()Rt PAC Rt APD AAS ∴ ≌2AD PC ∴==,4PD AC ==,PAC APD∠=∠AE PE∴=设DE x =,4AE PE x==-在Rt AED △中,有222AD DE AE +=,2222(4)x x +=-解得32x =542EP x ∴=-=90PEC EPC ∠=︒-∠ ,90FCE PCF∠=︒-∠PEC FCE∴∠=∠EF CF PF∴==1524CF EP ∴==∴15=24CF EP =25.(1)(2)12【分析】(1)根据等边三角形的性质,和M 是AB 的中点,通过作垂线构造直角三角形可求出点M 的坐标,进而确定k 的值,(2)求出点B 的坐标,进而求出直线OB 的关系式,在求出交点N 的坐标,即可求出三角形OMN 的面积,【详解】解:(1)作MH ⊥AO 于点H在等边三角形OAB 中,AB =8,点M 是AB 的中点∴∠MAH =60°,AM =4∴AH =2,MH=∵OA =8∴OH =8-2=6,∴点M(23,6)∴123k=(2)作NF⊥x轴于点F因∠NOF=30°,不妨设点(3,)N m m点N在反比例函数图像上∴3123m m⋅=2323m m==-,(舍)∴(623)N,,∴ON=43由等边三角形“三线合一”性质得到OM平分∠AOB再由角平分线的性质知,点M到OB的距离等于MH,即为23∴1S122OMNON MH∆=⋅⋅=26.(1)30°;(2)256π.【分析】(1)根据平行线的性质和直角三角形边的关系确定E∠的度数,然后根据同弧所对的圆周角相等即可得到答案;(2)根据已知条件确定DOF ∠的度数,根据“等底同高”确定ADF 和ODF △面积相等,最后阴影部分的面积即为扇形ODF 的面积.(1)连接EF ,如图所示,∵DF ∥AB ,CD ⊥AB ,∴∠EDF =∠ECB =90°,∴EF 是⊙O 的直径,∵C 为半径OA 的中点,∴OC =12OA =12OE ,∴∠E =30°,∴∠DAF =∠E =30°.(2)如图,连接OD ,则∠DOF =2∠E =60°,∵DF ∥AB ,∴ADF S △=DOF S ,∴S 阴影部分=ODF S 扇形,∵OD =12AB =5,∴S 阴影部分=2605360⨯π=256π.【点睛】本题考查了平行线的性质、直角三角形的性质、同弧所对的圆周角相等、扇形的面积计算,熟练掌握这些知识点是解题的关键.27.(1)224233y x x =--;(2)(3,4);(3)(67-,1849-)【分析】(1)把A (-1,0),B (3,0)代入抛物线解析式利用待定系数法求解二次函数的解析式即可;(2)如图,先求解C (0,-2),对称轴为直线1x =,可得BH =CO =2结合旋转得BC 1=BC ,证明RT △BC 1H ≌RT △CBO (HL ),再证明旋转角∠A 1BA =∠C 1BC =90°,从而可得答案;(3)先求解D (72,32),E (2,-2),如图,过点D 作DG ⊥CE 交CE 的延长线于点G ,证明CG =DG =72,可得∠ECD =∠GDC =45°,如图,在CD 的上方作∠PDC =∠EDC 交y 轴于点Q ,交抛物线于点P ,证明△QCD ≌△ECD ,可得QC =EC =2,可得Q (0,0),再求解直线DQ 的解析式为37y x =,联立23724233y x y x x ⎧=⎪⎪⎨⎪=--⎪⎩,再解方程组可得答案.【详解】解:(1)将A (-1,0),B (3,0)代入抛物线解析式得209320a b a b --=⎧⎨+-=⎩解得2343a b ⎧=⎪⎪⎨⎪=-⎪⎩∴抛物线的解析式为224233y x x =--(2)∵抛物线的解析式为224233y x x =--,A (-1,0),B (3,0)∴C (0,-2),对称轴为直线431223x -=-=´∴BH =CO =2由旋转得BC 1=BC则RT △BC 1H ≌RT △CBO (HL )∴∠C 1BH =∠BCO∴∠C 1BC =∠C 1BH +∠OBC =∠BCO +∠OBC =90°∴旋转角∠A 1BA =∠C 1BC =90°,即A 1B ⊥x 轴A 1B =BA =4,B (3,0)∴A 1(3,4)(3)抛物线的解析式为224233y x x =--,D 的横坐标为72当x =72时,y =32,则D (72,32)∵CE x ∥轴,C (0,-2),对称轴为直线x =1∴E (2,-2)如图,过点D 作DG ⊥CE 交CE 的延长线于点G ,∴CG =DG =72,∴∠ECD =∠GDC =45°如图,在CD 的上方作∠PDC =∠EDC 交y 轴于点Q ,交抛物线于点P ∵CE x ∥轴,∴∠QCE =90°∴∠QCD =∠ECD =45°∵CD =CD ,∴△QCD ≌△ECD (ASA )∴QC =EC =2,∵C (0,-2),∴Q (0,0)∵D (72,32),设直线:,DQ y mx =∴直线DQ 的解析式为37y x=则23724233y xy x x ⎧=⎪⎪⎨⎪=--⎪⎩,消去y 得:21437420,x x --=解得:1276,,27x x ==-当172x =时,13,2y =当267x =-时,218,49y =-所以方程组的解为:7232x y ⎧=⎪⎪⎨⎪=⎪⎩或671849x y ⎧=-⎪⎪⎨⎪=-⎪⎩,。
九年级数学(上)期末考试试卷含答案

九年级数学(上)期末考试试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣37.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是米.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.14.写出一个图象位于二、四象限的反比例函数的表达式,y=.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:,你的理由是:.三、解答题(本题共30分,每小题5分)17.计算:|.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)①点(2,1)的“关联点”为;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是(填“点A”或“点B”).(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,那么点M的坐标为;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是.29.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠PAB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.【考点】比例的性质.【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案.【解答】解:两边都除以ab,得=,故A正确;B、两边都除以20,得=,故B错误;C、两边都除以4b,得=,故C错误;D、两边都除以5a,得=,故D错误.故选:A.【点评】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的余弦为邻边比斜边,可得答案.【解答】解:cosB===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定【考点】点与圆的位置关系.【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】此题主要考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.【考点】概率公式;条形统计图.【专题】计算题.【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,然后根据概率公式求解.【解答】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,所以小明抽到红色糖果的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了条形统计图.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象的增减性来比较m与n的大小.【解答】解:∵反比例函数中系数2>0,∴反比例函数的图象位于第一、三象限,且在每一象限内y随x的增大而减小.又∵点A(1,m)与点B(3,n)都位于第一象限,且1<3,∴m>n.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,解答该题时,也可以把点A、B的坐标分别代入函数解析式求得相应的m、n的值,然后比较它们的大小即可.8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】根据得A、B的坐标求出OB、AB的长,根据位似的概念得到比例式,计算求出OD、CD 的长,得到点C的坐标.【解答】解:∵A(6,3)、B(6,0),∴OB=6,AB=3,由题意得,△ODC∽△OBA,相似比为,∴==,∴OD=2,CD=1,∴点C的坐标为(2,1),故选:D.【点评】本题考查的是位似变换的概念和性质以及坐标与图形的性质,掌握位似的两个图形一定是相似形和相似三角形的性质是解题的关键.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】计算题.【分析】连结BC,如图,根据圆周角定理得到∠ACB=90°,则利用勾股定理得到BC=,再利用面积法可得到y=,CD为半径时最大,即y的最大值为2,此时x=2,由于y与x函数关系的图象不是抛物线,也不是一次函数图象,则可判断A、C错误;利用y最大时,x=2可对B、D进行判断.【解答】解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∴BC==,∵CD•AB=AC•BC,∴y=,∵y的最大值为2,此时x=2.故选B.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用圆周角定理得到∠ACB=90°.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是1:9.【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵两个相似三角形的相似比是1:3,又∵相似三角形的面积比等于相似比的平方,∴这两个三角形面积的比是1:9.故答案为:1:9.【点评】本题考查了相似三角形的性质,注意:相似三角形的面积比等于相似比的平方.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是12米.【考点】正多边形和圆.【分析】由正六边形的半径为2,则OA=OB=2米;由∠AOB=60°,得出△AOB是等边三角形,则AB=OA=OB=2米,即可得出结果.【解答】解:如图所示:∵正六边形的半径为2米,∴OA=0B=2米,∴正六边形的中心角∠AOB==60°,∴△AOB是等边三角形,∴AB=OA=OB,∴AB=2米,∴正六边形的周长为6×2=12(米);故答案为:12.【点评】本题考查了正六边形的性质、等边三角形的判定与性质;解决正多边形的问题,常常把多边形问题转化为等腰三角形或直角三角形来解决.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.【考点】弧长的计算.【专题】应用题.【分析】首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.【解答】解:根据题意,可得,∴(m),即的长是m.故答案为:.【点评】此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.写出一个图象位于二、四象限的反比例函数的表达式,y=答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:否,你的理由是:y<﹣2.【考点】反比例函数的性质.【分析】根据反比例函数图象所经过的象限和函数的增加性解答.【解答】解:否,理由如下:∵反比例函数,且x>1,∴反比例函数的图象位于第四象限,∴y<﹣2.故答案是:否;y<﹣2.【点评】本题考查了反比例函数的性质.注意在本题中,当x>0时,y<0.三、解答题(本题共30分,每小题5分)17.计算:|.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=×﹣+﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定,由已知可证∠A=∠DCB,又因为∠ACB=∠BDC=90°,即证△ABC∽△CBD,(2)根据勾股定理得到AB=5,根据三角形的面积公式得到CD=,然后根据勾股定理即可得到结论.【解答】(1)证明:∵CD⊥AB,∴∠BDC=90°.∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠DCB+∠ACD=90°.∴∠A=∠DCB.又∵∠ACB=∠BDC=90°,∴△ABC∽△CBD;(2)解:∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴CD=,∵CD⊥AB,∴BD===.【点评】本题考查了相似三角形的判定,解直角三角形,熟练掌握相似三角形的判定定理是解题的关键.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.【考点】二次函数的三种形式;二次函数的性质.【分析】(1)运用配方法把一般式化为顶点式;(2)根据二次函数的性质解答即可;(3)根据二次函数的开口方向和对称轴解答即可.【解答】解:(1)y=x2﹣6x+5=(x﹣3)2﹣4;(2)二次函数的图象的对称轴是x=3,顶点坐标是(3,﹣4);(3)∵抛物线的开口向上,对称轴是x=3,∴当x≤3时,y随x的增大而减小.【点评】本题考查的是二次函数的三种形式和二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键,注意二次函数的性质的应用.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.【考点】作图-旋转变换.【专题】作图题.【分析】(1)在BA上截取BC′=BC,延长CB到A′使BA′=BA,然后连结A′C′,则△A′BC′满足条件;(2)先利用勾股定理计算出AB=2,再利用旋转的性质得BA=BA′,∠ABA′=90°,然后根据等腰直角三角形的性质计算AA′的长即可.【解答】解:(1)如图,△A′BC′为所作;(2)∵∠ABC=90°,B C=1,AC=,∴AB==2,∵△ABC沿逆时针方向旋转90°得到△A′BC′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=AB=2.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先把A(﹣1,n)代入y=﹣2x求出n的值,确定A点坐标为(﹣1,2),然后把A(﹣1,2)代入y=可求出k的值,从而可确定反比例函数的解析式;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,则B点坐标为(﹣1,0),C点坐标为(0,2),由于PA=OA,然后利用等腰三角形的性质易确定满足条件的P点坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,∴A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,∵点A的坐标为(﹣1,2),∴B点坐标为(﹣1,0),C点坐标为(0,2)∴当P在x轴上,其坐标为(﹣2,0);当P点在y轴上,其坐标为(0,4);∴点P的坐标为(﹣2,0)或(0,4).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了等腰三角形的性质.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得出DC=BC,进而利用tan30°=求出答案.【解答】解:由题意可得:AB=46m,∠DBC=45°,则DC=BC,故tan30°===,解得:DC=23(+1).答:永定楼的高度CD为23(+1)m.【点评】此题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.【考点】抛物线与x轴的交点.【专题】证明题.【分析】(1)令y=0,使得二次函数变为一元二次方程,然后求出方程中△的值,即可证明结论;(2)令y=0,使得二次函数变为一元二次方程,然后对方程分解因式,又因此二次函数的图象与x 轴两个交点的横坐标都是整数,从而可以求得符合要求的正整数m的值.【解答】解:(1)证明:∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2(m≠0),△=[﹣(m+2)]2﹣4×m×2=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2≥0∴0=mx2﹣(m+2)x+2(m≠0)有两个实数根,即二次函数y=mx2﹣(m+2)x+2(m≠0)的图象与x轴总有交点;(2)∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2=(mx﹣2)(x﹣1),∴,又∵此二次函数的图象与x轴两个交点的横坐标都是整数,∴正整数m的值是:1或2,即正整数m的值是1或2.【点评】本题考查抛物线与x轴的交点,解题的关键是建立二次函数与一元二次方程之间的关系,然后找出所求问题需要的条件.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.【考点】平行四边形的判定与性质.【分析】(1)由平行四边形的定义即可得出四边形AECD为平行四边形;(2)作FM⊥CD于M,由平行四边形的性质得出DF=EF=2,由已知条件得出△DFM是等腰直角三角形,DM=FM=DF=2,由含30°角的直角三角形的性质和勾股定理得出CF=2FM=4,CM=2,得出DC=DM+CM=2+2即可.【解答】(1)证明:∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形;(2)解:作FM⊥CD于M,如图所示:则∠FND=∠FMC=90°,∵四边形AECD为平行四边形,∴D F=EF=2,∵∠FCD=30°,∠FDC=45°,∴△DFM是等腰直角三角形,∴DM=FM=DF=2,CF=2FM=4,∴CM=2,∴DC=DM+CM=2+2.【点评】本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的判定与性质,通过作辅助线构造直角三角形是解决问题(2)的关键.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.【考点】抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)由二次函数的图象与x轴有两个交点得出判别式△>0,得出不等式,解不等式即可;(2)二次函数y1=x2+2x+m﹣5的图象经过把点B坐标代入二次函数解析式求出m的值,即可得出结果;点B(1,0);(3)由图象可知:当y2<y1时,比较两个函数图象的位置,即可得出结果.【解答】解:(1)∵二次函数y1=x2+2x+m﹣5的图象与x轴有两个交点,∴△>0,∴22﹣4(m﹣5)>0,解得:m<6;(2)∵二次函数y1=x2+2x+m﹣5的图象经过点(1,0),∴1+2+m﹣5=0,解得:m=2,∴它的表达式是y1=x2+2x﹣3,∵当x=0时,y=﹣3,∴C(0,﹣3);(3)由图象可知:当y2<y1时,x的取值范围是x<﹣3或x>0.【点评】本题考查了二次函数图象上点的坐标特征、抛物线与x轴的交点;由题意求出二次函数的解析式是解决问题的关键.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.【考点】切线的判定.【分析】(1)要证AD是⊙O的切线,连接OA,只证∠DAO=90°即可.(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的直径.【解答】(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O的直径为5.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了三角函数的知识.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2+,则抛物线的对称轴为直线x=1,利用点C与点A关于直线x=1对称得到C点坐标为(2,2);然后利用二次函数图象上点的坐标特征求D点坐标;(3)画出抛物线,如图,先利用待定系数法求出直线BC的解析式为y=x+1,再利用平移的性质得到图象G向下平移1个单位时,点A在直线BC上;图象G向下平移3个单位时,点D在直线BC上,由于图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,所以1<t≤3.【解答】解:(1)把A(0,2)和B(1,)代入得,解得,所以抛物线解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴抛物线的对称轴为直线x=1,∵点C与点A关于此抛物线的对称轴对称,∴C点坐标为(2,2);当x=4时,y=x2﹣x+2=8﹣4+2=6,∴D点坐标为(4,6);(3)如图,。
九年级数学上册期末考试题及答案【免费】

九年级数学上册期末考试题及答案【免费】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. ﹣3的绝对值是()A. ﹣3B. 3C. -D.2.已知x+ =6, 则x2+ =()A. 38B. 36C. 34D. 323. 抛物线y=3(x﹣2)2+5的顶点坐标是()A. (﹣2, 5)B. (﹣2, ﹣5)C. (2, 5)D. (2, ﹣5)4.当1<a<2时, 代数式|a-2|+|1-a|的值是()A. -1B. 1C. 3D. -35. 下列各组数中, 能作为一个三角形三边边长的是()A. 1, 1, 2B. 1, 2, 4C. 2, 3, 4D. 2, 3, 56.一个等腰三角形的两条边长分别是方程的两根, 则该等腰三角形的周长是()A. 12B. 9C. 13D. 12或97.如图, 某小区计划在一块长为32m, 宽为20m的矩形空地上修建三条同样宽的道路, 剩余的空地上种植草坪, 使草坪的面积为570m2.若设道路的宽为xm, 则下面所列方程正确的是()A. (32﹣2x)(20﹣x)=570B. 32x+2×20x=32×20﹣570C. (32﹣x)(20﹣x)=32×20﹣570D. 32x+2×20x﹣2x2=5708.如图, 是函数上两点, 为一动点, 作轴, 轴, 下列说法正确的是( )①;②;③若, 则平分;④若, 则A. ①③B. ②③C. ②④D. ③④9.根据圆规作图的痕迹, 可用直尺成功找到三角形外心的是()A. B.C. D.10.如图, 在矩形纸片ABCD中, AB=3, 点E在边BC上, 将△ABE沿直线AE折叠, 点B恰好落在对角线AC上的点F处, 若∠EAC=∠ECA, 则AC的长是()A. B. 6 C. 4 D. 5二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: __________.2. 分解因式: __________.3. 已知二次函数y=x2, 当x>0时, y随x的增大而_____(填“增大”或“减小”).4.如图, 中, 为的中点, 是上一点, 连接并延长交于, , 且, , 那么的长度为__________.5. 如图, M、N是正方形ABCD的边CD上的两个动点, 满足, 连接AC交BN于点E, 连接DE交AM于点F, 连接CF, 若正方形的边长为6, 则线段CF的最小值是__________.6. PM2.5是指大气中直径小于或等于0.0000025m的颗粒物, 将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 先化简, 再求值: , 其中满足.3. 如图, 在平面直角坐标系中, 抛物线y=ax2+2x+c与x轴交于A(﹣1, 0)B (3, 0)两点, 与y轴交于点C, 点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M, 使△BDM的周长最小, 求出点M的坐标;(3)试探究:在拋物线上是否存在点P, 使以点A, P, C为顶点, AC为直角边的三角形是直角三角形?若存在, 请求出符合条件的点P的坐标;若不存在, 请说明理由.4. 如图, AD是△ABC的外接圆⊙O的直径, 点P在BC延长线上, 且满足∠PAC=∠B.(1)求证: PA是⊙O的切线;(2)弦CE⊥AD交AB于点F, 若AF•AB=12 , 求AC的长.5. 某初中学校举行毛笔书法大赛, 对各年级同学的获奖情况进行了统计, 并绘制了如下两幅不完整的统计图, 请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有来自七年级, 有来自八年级, 其他同学均来自九年级, 现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛, 请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.6. 东东玩具商店用500元购进一批悠悠球, 很受中小学生欢迎, 悠悠球很快售完, 接着又用900元购进第二批这种悠悠球, 所购数量是第一批数量的1.5倍, 但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同, 且全部售完后总利润不低于25%, 那么每套悠悠球的售价至少是多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、C3、C4、B5、C6、A7、A8、B9、C10、B二、填空题(本大题共6小题, 每小题3分, 共18分)12. ;3、增大.4、3 2;5、36.2.5×10-6三、解答题(本大题共6小题, 共72分)1、32 x=2、3.3.(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M 的坐标为(0, 3);(3)符合条件的点P的坐标为(, )或(, ﹣),4.(1)略;(2)AC=2 .5.(1)答案见解析;(2).6、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是35元.。
人教版九年级上册数学期末考试试卷及答案解析

人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.已知关于x 的一元二次方程(k -2)2x 2+(2k +1)x +1=0有两个不相等的实数根,则k 的取值范围是()A .k >43B .k >34C .k >43且k≠2D .k >34且k≠22.如图,AB 为O 的直径,弦CD AB ⊥于点E ,25C ∠= ,6AB =,则劣弧 CD的长为A .10πB .52πC .53πD .56π3.小明用瓶盖设计了一个游戏:任意掷一个瓶盖;如果盖底着地,则甲胜;如果盖口着地,则乙胜.你认为这个游戏()A .不公平B .公平C .对甲有利D .对乙有利4.方程()2330x x -+=的二次项系数、一次项系数及常数项的和是()A .3B .2C .1-D .3-5.如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;②9a+3b+c <0;③c >﹣1;④关于x 的方程ax 2+bx+c=0(a≠0)有一个根为1a-,其中正确结论的个数为()A .1B .2C .3D .46.若α、β是方程2220090x x +-=的两个根,则:23ααβ++的值为()A .2010B .2009C .2009-D .20077.圆中有两条等弦AB=AE ,夹角∠A=88°,延长AE 到C ,使EC=BE ,连接BC ,如图.则∠ABC 的度数是()A .90°B .80°C .69°D .65°8.如图,在Rt △ABC 中,∠BAC=90°.如果将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处.那么旋转的角度等于()A .55°B .60°C .65°D .80°9.在ABC 中,1AB AC cm ==,D 是BC 边的中点,以A 为圆心,1cm 长为半径作A ,则A 、B 、C 、D 四点中,在圆内的有()A .4个B .3个C .2个D .1个10.如图,AB 是O 的直径,弦CD AB ⊥,40CAB ∠= ,连接BD 、OD ,则AOD ABD ∠+∠的度数为()A .100°B .110°C .120°D .150°二、填空题11.指令(),s θ的意义:以原地原方向为基准,沿逆时针方向旋转θ角,再沿旋转后的方向行进s 米,现有一位于A 点处的机器人,面朝正东方向,按指令()5,60运动至B 点,再按指令()5,120运动至C 点,则AC =________米.12.四边形ABCD 中,//AD BC ,E 是CD 的中点,连结AE 并延长交BC 的延长线于点F ,连结BE .则,点C 与点________关于点E 对称,ADE 与FCE 成________对称;若AB AD BC =+,则ABF 是________三角形,BE 是ABF 的________(将你认为正确的结论填上一个就行)13.小明把80个除了颜色以外其余都相同的黄、蓝、红三种球放进一个袋内,经多次摸球后,得到它们的概率分别为14、720和25,试估计黄、蓝、红三种球的个数分别是________.14.已知平面直角坐标系上的三个点()0,0D ,()1,1A -,()1,0B -.将ABD 绕点D 旋转180 ,则点A 、B 的对应点A 、B 的坐标分别是1A ________,1B ________15.点(),A a b 和B 关于x 轴对称,而点B 与点()2,3C 关于y 轴对称,那么,a =________,b =________,点A 和C 的位置关系是________.16.抛物线2235y x x =--与y 轴交于点________,与x 轴交于点________.17.原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为________.18.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.三、解答题19.解方程:()2121x x +=()()22(3)230x x -+-=()2x--=()23(2)270x+=431.20.甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.21.制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.(1)求将材料加热时,y与x的函数关系式;(2)求停止加热进行操作时,y与x的函数关系式;(3)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么操作时间是多少?22.如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD 延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD 的长.23.如图,抛物线y 1=﹣12x 2+bx+c 经过点A (4,0)和B (1,0),与y 轴交于点C .(1)求出抛物线的解析式;(2)求点C 的坐标及抛物线的顶点坐标;(3)设直线AC 的解析式为y 2=mx+n ,请直接写出当y 1<y 2时,x 的取值范围.24.已知,如图,⊙O 是ABC ∆的外接圆,»»AB AC =,点D 在边BC 上,AE ∥BC ,AE BD =.(1)求证:AD CE =;(2)如果点G 在线段上(不与点D 重合),且,求证:四边形是平行四边形.25.已知二次函数y=ax 2﹣2ax+c (a <0)的最大值为4,且抛物线过点(72,﹣94),点P (t ,0)是x 轴上的动点,抛物线与y 轴交点为C ,顶点为D .(1)求该二次函数的解析式,及顶点D 的坐标;(2)求|PC ﹣PD|的最大值及对应的点P 的坐标;(3)设Q (0,2t )是y 轴上的动点,若线段PQ 与函数y=a|x|2﹣2a|x|+c 的图象只有一个公共点,求t 的取值.26.如图,△ABC 内接与⊙O ,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC 交AC 于AC 点E ,交PC 于点F ,连接AF(1)判断AF 与⊙O 的位置关系并说明理由;(2)若⊙O 的半径为4,AF=3,求AC 的长.参考答案1.D 【解析】a=(k -2)2,b=2k +1,c=1,()221k =+ -4()22k ->0,k-20≠,解得k >34且k≠22.C【解析】如图,连结OC ,OD ,根据圆周角定理得到∠AOD =2∠C =50°,再根据垂径定理得到 AC AD =,则∠AOC =∠AOD =50°,即∠COD =100°,然后根据弧长公式计算劣弧 CD的长.【详解】如图,连结OC ,OD ,∵∠C =25°,∴∠AOD =2∠C =50°,∵CD ⊥AB ,∴ AC AD =,∴∠AOC =∠AOD =50°,∴∠COD =100°,而OD =12AB =3,∴劣弧 CD的长=100··351803ππ=.故选C.【点睛】本题考查了弧长的计算:弧长公式180n Rl =π(弧长为l ,圆心角度数为n ,圆的半径为R ).也考查了圆周角定理和垂径定理.3.A 【解析】【分析】两人获胜概率相同,则游戏公平;反之,游戏不公平.【详解】因为瓶盖质地不均匀,可能盖底着地,也可能盖口着地,但两种情况出现的可能性不同,故两人获胜概率不同,所以这个游戏不公平.故选A.【点睛】本题主要考查概率与公平性,分析甲乙两人获胜概率是否相同是解答本题的关键.4.C 【详解】原方程去括号整理得:2x 2﹣6x+3=0,则二次项系数、一次项系数及常数项的和是2+(﹣6)+3=﹣1.故选C.5.C 【解析】【分析】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由图象可知当x=3时,y>0,可判断②;由OA=OC ,且OA<1,可判断③;把1a-代入方程整理可得ac 2-bc+c=0,结合③可判断④;从而可得出答案.【详解】解:由图象开口向下,可知a<0,与y 轴的交点在x 轴的下方,可知c<0,又对称轴方程为x=2,所以02ba->,所以b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>0,故②错误;由图象可知OA<1,∵OA=OC ,∴OC<1,即-c<1,c>-1,故③正确:假设方程的一个根为x=1a -,把x=1a -代入方程可得10bc a a-+=,整理可得ac-b+1=0,两边同时乘c 可得ac 2-bc+c=0,即方程有一个根为x=-c ,由②可知-c=OA ,而x=OA 是方程的根,∴x=-c 是方程的根,即假设成立,故④正确;综上可知正确的结论有三个;故答案为C.【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC ,是解题的关键.6.D【分析】根据一元二次方程根的定义和根与系数的关系求解则可.设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=-ba,x1x2=ca,而α2+3α+β=α2+2α+(α+β),据此进行求解即可得.【详解】α,β是方程x2+2x-2009=0的两个实数根,则有α+β=-2,α是方程x2+2x-2009=0的根,得α2+2α-2009=0,即:α2+2α=2009.所以α2+3α+β=α2+2α+(α+β)=α2+2α-2=2009-2=2007,故选D.【点睛】本题考查了一元二次方程的解、一元二次方程的根与系数的关系,熟练掌握相关知识并能将根与系数的关系、方程根的定义与代数式变形相结合是解题的关键.7.C【分析】根据题意可得出△ABE、△BEC是等腰三角形,在等腰三角形中先求出∠AEB的度数,然后利用外角的性质可求出∠EBC的度数,继而可得出答案.【详解】解:∵AB=AE,EC=BE,∴∠ABE=∠AEB,∠EBC=∠ACB,又∵∠A=88°,∴∠ABE=∠AEB=46°,∠EBC=∠ACB=12∠AEB=23°,∴∠ABC=∠ABE+∠EBC=69°.故选C.点评:此题考查了等腰三角形的性质及三角形外角的性质,解答本题的关键是求出∠ABE 及∠EBC的度数,难度一般.8.B【详解】试题分析:利用直角三角形斜边上的中线等于斜边的一半,进而得出△ABB1是等边三角形,即可得出旋转角度.解:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=12BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.故选B.9.C【解析】【分析】AB=AC=1cm,即B、C到圆心A的距离等于半径,因而B、C在圆上;而D是BC边的中点,则D到圆心的距离小于半径,因而D在圆内,所以在圆内的点有两个,即A和D.【详解】如图所示,连结AD,AD⊥BC,∵以A为圆心,1cm长为半径作⊙A,AB=AC=1cm,即B、C到圆心A的距离等于半径,∴B、C在圆上,又∵△ABD中,∠ADB=90°,∴AD<AB,∴点D在⊙A内,∴在圆内的点有两个,即A和D.故选C.【点睛】本题考查了对点与圆位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R时,点在圆外;当d<R时,点在圆内.10.D【解析】【分析】先根据圆周角定理求出∠BDC的度数,再由直角三角形的性质得出∠ABD的度数,进而可得出∠AOD的度数,据此可得出结论.【详解】∵∠CAB=40°,∴∠BDC=40°.∵CD⊥AB,∴∠ABD=90°-40°=50°,∴∠AOD=2∠ABD=100°,∴∠AOD+∠ABD=100°+50°=150°.故选D.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.11.15【解析】【分析】根据旋转角求出AC在同一直线上,然后列式计算即可得解.【详解】∵A按照指令(5,60°)运动至B点,再按指令(5,120°)运动至C点,60°+120°=180°,∴AC在同一条直线上,∴AC=5+(5+5)=15米.故答案为15.【点睛】本题考查了坐标与图形变化-旋转,读懂题目信息,理解指令的意义并求出AC在同一条直线上是解题的关键.12.D中心等腰高【解析】【分析】根据中心对称的性质和等腰三角形三线合一的性质分别填空即可.【详解】四边形ABCD中,AD∥BC,E是CD中点,连结AE并延长BC的延长线于点F,连结BE.则点C与点D关于点E对称,△ADE和△FCE成中心对称;若AB=AD+BC,则△ABF 是等腰三角形,BE是△ABF的高.故答案为D,中心,等腰,高.【点睛】本题考查了中心对称,等腰三角形的判定与性质,事迹性质并准确识图是解题的关键.13.20、28、32【解析】【分析】根据得到各小球的概率以及小球的总个数,分别求出晓求得个数即可.【详解】∵小明把80个除了颜色以外其余都相同的黄、蓝、红三种球放进一个袋内,经多次摸球后,得到它们的概率分别为17240205、、,∴黄、蓝、红三种球的个数分别是:80×12=40(个),80×720=28(个),80×25=32(个).故答案为20、28、32.【点睛】此题主要考查了利用频率估计概率,根据概率的意义求出小球的个数是解题关键.14.()1,1-()1,0【解析】【分析】根据旋转的性质,旋转不改变图形大小和形状.【详解】旋转180°后,各对应点将关于原点对称,∴A 1(1,-1),B 1(1,0).故答案为:()1,1-;()1,0【点睛】本题考查旋转的性质,解答本题关键要理解旋转180°即成了中心对称.15.-2-3关于原点对称【解析】【分析】根据坐标中点的对称关系进行解答即可.【详解】∵B 与点C (2,3)关于y 轴对称,∴B 点的坐标是(﹣2,3),又∵A (a ,b )与点B 关于x 轴对称,∴点A 的坐标是(﹣2,﹣3),∴a =﹣2,b =﹣3,点A 与点C 的位置关系是关于原点对称.【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,平面直角坐标系中任意一点P (x ,y ),关于x 轴的对称点的坐标是(x ,﹣y ),关于y 轴的对称点是(﹣x ,y ),关于原点的对称点是(﹣x ,﹣y ).16.()0,5-()1,0-,(52,0)【解析】【分析】抛物线与x 轴的交点的纵坐标等于0,抛物线与y 轴交点的横坐标等于0.【详解】令x =0,则y =﹣5,即抛物线y =2x 2-3x -5与y 轴交于点(0,﹣5);令y =0,则2x 2-3x -5=0,解得x =52或﹣1,∴抛物线y =2x 2-3x -5与y 轴交于点(﹣1,0)和(52,0).故答案是(0,﹣5);(﹣1,0)、(52,0)【点睛】本题考查了抛物线与x 轴的交点.掌握坐标轴上的点的坐标特征和二次函数图像上点的坐标特征是解题的关键.17.10%.【解析】试题解析:设这两次的百分率是x ,根据题意列方程得100×(1﹣x )2=81,解得x 1=0.1=10%,x 2=1.9(不符合题意,舍去).答:这两次的百分率是10%.考点:一元二次方程的应用.18.3【详解】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.19.()()12121212x x ==,;1231x x ,==;(3)x 1=332,x 2=332-;(4)1233x x ==.【分析】(1)方程整理为一般形式,找出a ,b ,c 的值,代入求根公式即可求出解.(2)方程利用因式分解法求出解即可.(3)利用开平方的定义解方程.(4)方程移项,则左边是完全平方式,右边是常数,再利用直接开平方法即可求解.【详解】解:(1)方程整理得:x 2+2x ﹣1=0,这里a=1,b=2,c=﹣1.∵△=4+4=8,∴2222-±x 121,x 2=21--;(2)分解因式得:(x ﹣3)(x ﹣3+2)=0,可得x ﹣3=0或x ﹣1=0,解得:x 1=3,x 2=1.(3)移项得:(x ﹣2)2=27开平方得:x ﹣3移项得:x 1=332,x 2=332-+.(4)∵3x 23,∴3x 2﹣33﹣1)2=0,∴x 1=x 2=33.【点睛】本题考查了解一元二次方程的应用,熟练掌握解一元二次方程的方法是解答本题的关键.20.(1)13;(2)这个游戏不公平,理由见解析.【分析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:13;(2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P (甲胜)=59,P (乙胜)=49.∴P (甲胜)≠P (乙胜),故这个游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.21.(1)y=9x+15;(2)y=300x;(3)15分钟【分析】(1)根据题意判断材料加热时成正比例函数关系式,通过待定系数法即可求出函数解析式;(2)根据题意可得停止加热时y 与x 成反比例函数关系式,用待定系数法求得函数的解析式即可;(3)分别令两个函数的函数值为15,解得两个x 的值相减即可得到答案.【详解】解:(1)设加热过程中一次函数表达式为y=kx+b (k≠0),该函数图象经过点(0,15),(5,60),56015k b b +⎧⎨⎩==解得915 kb⎧⎨⎩==,∴一次函数的表达式为y=9x+15(0≤x≤5),(2)设加热停止后反比例函数表达式为ayx=(a≠0),该函数图象经过点(5,60),即a=5×60=300,所以反比例函数表达式为300yx=(x≥5);(3)当y=15时,代入y=9x+15有x=0当y=15时,代入300 yx =得x=20∴20-5=15(分钟).答:该材料进行特殊处理所用时间为15分钟.【点睛】本题考查了反比例函数的应用,解题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.22.(1)证明见解析;(2)PD【分析】(1)连接OA,由∠B=60°,利用圆周角定理,即可求得∠AOC的度数,又由OA=OC,即可求得∠OAC与∠OCA的度数,利用三角形外角的性质,求得∠AOP的度数,又由AP=AC,利用等边对等角,求得∠P,则可求得∠PAO=90°,则可证得AP是⊙O的切线.(2)由CD是⊙O的直径,即可得∠DAC=90°,然后利用三角函数与等腰三角形的判定定理,即可求得PD的长.【详解】(1)证明:连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠ACP=∠CAO=30°.∴∠AOP=60°.∵AP=AC,∴∠P=∠ACP=30°.∴∠OAP=90°.∴OA⊥AP.∴AP是⊙O的切线.(2)解:连接AD.∵CD是⊙O的直径,∴∠CAD=90°.33∴∵∠ADC=∠B=60°,∴∠PAD=∠ADC﹣∠P=60°﹣30°.∴∠P=∠PAD.∴323.(1)抛物线的解析式是y=﹣12x2+52x﹣2;(2)顶点坐标是(52,98);(3)x<0或x>4.【解析】【分析】(1)代入A和B点并联立方程求解即可;(2)令x=0求解c点坐标,再运用配方法将一般式化为顶点式即可;(3)由图像可知,C点左侧以及A点右侧部分均符合问题要求.【详解】(1)根据题意得:−12×16+4b+c=0−12+b+c=0,解得b=52c=−2则抛物线的解析式是y=﹣12x2+52x﹣2;(2)在y=−12x2+52x﹣2中令x=0,则y=﹣2,则C的坐标是(0,﹣2).y=﹣12x2+52x﹣2=﹣12(x﹣52)2+98,则抛物线的顶点坐标是(52,98);(3)由图像可知,C点左侧以及A点右侧部分均符合问题要求,故当x<0或x>4时均满足y1<y2.24.(1)证明见解析;(2)证明见解析.【分析】(1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【详解】(1)在⊙O中,∵»»AB AC=,∴AB AC=,∴B ACB∠=∠.∵AE∥BC,∴EAC ACB∠=∠,∴B EAC∠=∠.又∵BD AE=,∴ABD∆≌CAE∆,∴AD CE=;(2)联结AO并延长,交边BC于点H,∵»»AB AC =,OA 是半径,∴AH BC ⊥,∴BH CH =.∵AD AG =,∴DH HG =,∴BH DH CH GH -=-,即BD CG =.∵BD AE =,∴CG AE =.又∵CG ∥AE ,∴四边形AGCE 是平行四边形.25.(1)2y x 2x 3=-++,D (1,4);(2)2,P (﹣3,0);(3)t 的取值是32≤t <3或t=72或t≤﹣3.【解析】试题分析:(1)先利用对称轴公式x=2b a -计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC ﹣PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标;(3)先把函数中的绝对值化去,可知2223(0)23(0)x x x y x x x ⎧-++≥=⎨--+<⎩,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ 过点(0,3),即点Q 与点C 重合时,两图象有一个公共点,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,两函数有两个公共点,写出t 的取值;②线段PQ 与当函数22y a x a x c =-+(x≥0)时有一个公共点时,求t 的值;③当线段PQ 过点(﹣3,0),即点P 与点(﹣3,0)重合时,线段PQ 与当函数22y a x a x c =-+(x <0)时也有一个公共点,则当t≤﹣3时,都满足条件;综合以上结论,得出t 的取值.(1)∵22y ax ax c =-+的对称轴为:x=1,∴抛物线过(1,4)和(72,94-)两点,代入解析式得:24499744a a c a a c -+=⎧⎪⎨-+=-⎪⎩,解得:a=﹣1,c=3,∴二次函数的解析式为:2y x 2x 3=-++,∴顶点D 的坐标为(1,4);(2)∵C 、D 两点的坐标为(0,3)、(1,4);由三角形两边之差小于第三边可知:|PC ﹣PD|≤|CD|,∴P 、C 、D 三点共线时|PC ﹣PD|取得最大值,此时最大值为,由于CD 所在的直线解析式为y=x+3,将P (t ,0)代入得t=﹣3,∴此时对应的点P 为(﹣3,0);(3)22y a x a x c =-+的解析式可化为:2223(0)23(0)x x x y x x x ⎧-++≥=⎨--+<⎩设线段PQ 所在的直线解析式为y=kx+b ,将P (t ,0),Q (0,2t )代入得:线段PQ 所在的直线解析式:y=﹣2x+2t ,分三种情况讨论:①当线段PQ 过点(0,3),即点Q 与点C 重合时,线段PQ 与函数2223(0)23(0)x x x y x x x ⎧-++≥=⎨--+<⎩有一个公共点,此时t=32,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,t=3,此时线段PQ 与2223(0)23(0)x x x y x x x ⎧-++≥=⎨--+<⎩有两个公共点,所以当32≤t <3时,线段PQ 与2223(0)23(0)x x x y x x x ⎧-++≥=⎨--+<⎩有一个公共点;②将y=﹣2x+2t 代入2y x 2x 3=-++(x≥0)得:22322x x x t -++=-+,24320x x t -++-=,令△=16﹣4(﹣1)(3﹣2t )=0,t=72>0,所以当t=72时,线段PQ 与2223(0)23(0)x x x y x x x ⎧-++≥=⎨--+<⎩也有一个公共点;③当线段PQ 过点(﹣3,0),即点P 与点(﹣3,0)重合时,线段PQ 只与223y x x =--+(x<0)有一个公共点,此时t=﹣3,所以当t≤﹣3时,线段PQ与2223(0)23(0)x x xyx x x⎧-++≥=⎨--+<⎩也有一个公共点,综上所述,t的取值是32≤t<3或t=72或t≤﹣3.点睛:本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.26.解:(1)AF与圆O的相切.理由为:如图,连接OC,∵PC为圆O切线,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF 为圆O 的切线,即AF 与⊙O 的位置关系是相切.(2)∵△AOF ≌△COF ,∴∠AOF=∠COF .∵OA=OC ,∴E 为AC 中点,即AE=CE=12AC ,OE ⊥AC .∵OA ⊥AF ,∴在Rt △AOF 中,OA=4,AF=3,根据勾股定理得:OF=5.∵S △AOF =12•OA•AF=12•OF•AE ,∴AE=245.∴AC=2AE=.【详解】试题分析:(1)连接OC ,先证出∠3=∠2,由SAS 证明△OAF ≌△OCF ,得对应角相等∠OAF=∠OCF ,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;(2)先由勾股定理求出OF ,再由三角形的面积求出AE ,根据垂径定理得出AC=2AE .试题解析:(1)连接OC,如图所示:∵AB 是⊙O 直径,∴∠BCA=90°,∵OF ∥BC ,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF ⊥AC ,∵OC=OA ,∴∠B=∠1,∴∠3=∠2,在△OAF 和△OCF 中,{32OA OCOF OF=∠=∠=,∴△OAF ≌△OCF (SAS ),∴∠OAF=∠OCF ,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切线;(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴=∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面积=12AF•OA=12OF•AE,∴3×4=5×AE,解得:AE=12 5,∴AC=2AE=24 5.考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册期末考试试卷附答案
一、选择题(每小题3分,共36分)
1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )
A. (x-3)²-15
B. (x-3)²-3
C. (x+3)²-15
D. (x+3)²-3
2.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )
A.(3,4)
B. (-3, 4)
C. (3, -4)
D. (2, 4)
3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )
A. 2
B.2√2C,2√3D.4
4.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )
A.√154
B.14
C.√1515
D.4√1717 5.(3分) 下列命题为真命题的是( )
A.三点确定一个圆
B.度数相等的弧是等弧
C.直径是圆中最长的弦
D.相等的圆心角所对的弧相等,所对的弦也相等
6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)
A. 136
B. 137
C. 138
D. 139
7.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )
A. y ₁<y ₂<y ₂
B. y ₂<y ₁<y ₂
C. y ₂<y ₂<y ₁
D. y ₁<y ₂<y ₂
8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )
A.有两个不相等的实数根
B. 有两个异号实数根
C.有两个相等实数根
D.无实数根
9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
A.y −3x
B.y −4x
C.y −5x
D.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:
①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3
A.(4,176)
B. (4. 3)
C.(5,176
)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )
11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x
(k ≠0)的图象过点C ,则该反比例函数的表达式为( )
其中正确的有( )个.
A. 1
B. 2
C. 3
D. 4
二、填空题(每小题4分,共24分)
13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .
14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.
15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k
(x<
x
0)的图象经过顶点B,则k的值为 .
16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .
17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .
(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.
(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?
(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?
25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.
(1)求此抛物线的解析式:
(2)求C、D两点坐标及△BCD的面积:
(3)若点P在x轴上方的抛物线上,满足求点P的坐标。
参考答案
1-10. AADAC BDCAA 11-12、AB
13、m>9
14,√10
15、-32
16、y=2(x-1)²+1
17、15°。