初中数学求最值的几种常见方法
初中数学中的最值问题

上面例题中的两种解法虽说设法不同,但都离不开基本不等
式 a+b≥2 姨ab 的应用。 三、利用圆中弦心距的性质
经过一点的弦中,弦心距越大,弦长越小,
弓形面积越小;弦心距越小,弦长越大,弓形面
B
A'
P
B'
积越大。求弓形面积的最值。
Q
例 4:如图 7,在半径为 2 的圆中,圆内的 A
O窑
一点 P 到圆心 O 的距离为 1,过 P 点的弦 AB
形中的弦心距、一元二次方程中根的判别式等特征的认识,能让
学生开拓思维,提高分析能力,找到适当的切入点,激发他们对探
索数学的向往和追求。
(江苏省苏州市吴江区松陵第一中学校)
86 [ 2014.4 ]
分析与解法:如图 5,设 S△OAB=a,S△OCD=b,因为高相同的两个
三角形的面积之比等于底之比S△OAD S△OCD
,∴
a 25
=
9 b
,
∴ab=225,∴a+b≥2 姨ab =2 姨225 =30,∴ 凸四边形 ABCD 面积 的最小值是 9+25+30=64。
中点,点 P 是半径 ON 上的动点,若圆 O 的半径为 2,则 AP+BP 的 最小值是 ____。
窑A窑B
A
窑 O窑窑P 窑N
O
B
D
A
FD
O
E
CB
C
图4
图5
图6
分析与解:根据基本模型,先找出其中一个定点关于定直线
的对称点,然后该对称点与另一定点的连线与定直线的交点就是
所要确定的点,这样问题就解决了。由题 意知:∠AON=60O,
. A析l与l解R:根ig据h基t本s模R型e,点 seCr、点veEd是.定点,点 P 是动点,而 C 点关
初中数学最值题解法小结

初中数学最值题解法小结在中学数学题中,最值题是常见题型,围绕最大〔小〕值所出的数学题是各种各样,就其解法,主要为以下几种:一. 二次函数的最值公式二次函数y ax bx c =++2〔a 、b 、c 为常数且a ≠0〕其性质中有①假设a >0当x b a =-2时,y 有最小值。
y ac b amin =-442; ②假设a <0当x b a =-2时,y 有最大值。
y ac b amax =-442。
利用二次函数的这个性质,将具有二次函数关系的两个变量建立二次函数,再利用二次函数性质进行计算,从而到达解决实际问题之目的例1. 某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x 只玩具熊猫的成本为R 〔元〕,售价每只为P 〔元〕,且R 、P 与x 的关系式分别为R x =+50030,P x =-1702。
〔1〕当日产量为多少时,每日获得的利润为1750元;〔2〕当日产量为多少时,可获得最大利润?最大利润是多少? 解:〔1〕根据题意得 1750=-Px R()()1702500301750--+=x x x整理得x x 27011250-+=解得x 125=,x 245=〔不合题意,舍去〕〔2〕由题意知,利润为Px R x x x -=-+-=--+2140500235195022()所以当x =35时,最大利润为1950元。
二. 一次函数的增减性一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大〔小〕值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大〔小〕值。
例2. 某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别是600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时可使得每月所付的工资最少? 解:设招聘甲种工种的工人为x 人,则乙种工种的工人为()150-x 人,由题意得: 1502-≥x x 所以050≤≤x设所招聘的工人共需付月工资y 元,则有:y x x x =+-=-+6001000150400150000()〔050≤≤x 〕 因为y 随x 的增大而减小所以当x =50时,y min =130000〔元〕三. 判别式法例3. 求x x x x 2211-+++的最大值与最小值。
最大值怎么求初一

最大值怎么求初一在数学学习的旅程中,求解最大值是一个常见的问题。
特别是在初中阶段,学生开始接触到一些基本的数学概念和方法。
其中,求解最大值是一个基础而重要的技能。
本文将介绍一些方法和技巧,帮助初一学生更好地理解和应用求解最大值的方法。
定义在数学中,最大值是指一组数中的最大数。
对于一组数{a1, a2, …, an},如果存在某个数 ai,使得对于任意的 j,都有 aj <= ai,则 ai 就是这组数的最大值。
求解最大值的问题通常出现在数学、物理等领域中,对于初一学生而言,理解和掌握求解最大值的方法可以帮助他们更好地解决问题。
暴力搜索法最简单直接的方法是暴力搜索法。
即遍历所有的数,逐个比较大小。
这种方法虽然简单易懂,但对于大量数据或复杂问题并不高效。
数学方法另一种求解最大值的方法是利用数学知识。
对于一些线性的函数关系,可以通过求导数等技巧来解决最大值问题。
初一阶段,学生可能接触到一些简单的数学函数,例如一次函数、二次函数等。
通过对函数的性质和图像的理解,可以帮助学生更好地理解最大值的概念,并找到最大值点。
实际问题在解决实际问题中,求解最大值是一个常见的需求。
比如在物理学中,求最大的速度、最大的位移等问题都需要求解最大值。
通过将数学知识与实际问题相结合,可以帮助学生更好地理解数学的应用意义,提高解决实际问题的能力。
总结求解最大值是数学学习中的重要内容之一。
通过本文的介绍,希望初一学生能够更好地掌握求解最大值的方法和技巧,提高数学解题的能力和水平。
对于初一学生而言,不仅要理解最大值的概念,还要学会灵活运用各种方法,解决各种实际问题中的最大值求解。
以上就是关于最大值怎么求初一的相关内容,希會对初一同学有所帮助。
最值问题归纳

最值问题是初中数学的重要内容,是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,无论是代数题还是几何题都有最值问题。
数形结合的思想贯穿始终。
一、代数中的最值问题1、代数求最值方法 ①利用一次函数的增减性一次函数(0)y kx b k =+≠的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;实际问题中,当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
1、某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别是600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时可使得每月所付的工资最少?②配方法,利用非负数的性质2、(1)求二次三项式223x x -+的最小值(2)设a 、b 为实数,那么222a ab b a b ++--的最小值为_______。
③判别式法3、(1)求2211x x x x -+++的最大值与最小值。
(2),x y 为实数且x y m ++=5,xy ym mx ++=3,求实数m 最大值与最小值。
④零点区间讨论法4、求函数|1||4|5y x x =--+-的最大值。
⑤基本不等式性质222()020a b a ab b -≥∴-+≥即222a b ab +≥,仅当a b =时,等号成立由此可推出222a b ab +≤(0,0)2a ba b +≤≥≥⑥夹逼法通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为夹逼法。
5、不等边三角形的两边上的高分别为4和12且第三边上的高h 为整数,那么此高h 的最大值可能为________。
⑦二次函数模型(中考第23题,应用题)该题基本来自课本3个探究例题不断的变化、加深:探究1:商品定价 探究2:磁盘计算(含圆) 探究3:拱桥问题 变化趋势:前几年武汉中考主要考查经济类问题,求最经济、最节约和最高效率等这种类型的考题(探究1的演变);近2年变化为建立函数模型解决实际问题(探究2、3的演变),即利用二次函数的对称性及增减性,确定某范围内函数的最大或最小值。
初中数学中求极值的几种常见的方法

初中数学中求最值的几种常见方法仪陇县实验学校 李洪泉在生活实践中,人们经常面对求最值的问题:如在一定方案中,往往会讨论什么情况下花费最低、消耗最少、产值最高、获利最大等;在解数学题时也常常求某个变量的最大值或最小值。
同时,探求最值也是中考或一些高中学校自主招生考试中的一个热点内容,是初高中知识衔接的重要内容。
这类问题涉及变量多,综合性强,技巧性强,要求学生要有较强的数学转化思想和创新意识。
下面从不同的角度讨论如何求一些问题的最值。
一 、根据绝对值的几何意义求最值 实数的绝对值具有非负性,0a ≥,即a 的最小值为0,但根据绝对值的代数意义求一些复杂问题的最值就要采用分类讨论法,比较麻烦。
若根据绝对值的几何意义求最值就能够把一些复杂的问题简单化。
例1:已知13M x x =-++,则M 的最小值是 。
【思路点拨】用分类讨论法求出13x x -++的最小值是4,此时31x -≤≤。
如果我们从绝对值的几何意义来看此题,就是在数轴上求一点,使它到点1和点3-的距离之和为最短。
显然,若3x <-,距离之和为[1(3)]2(3)4x --+-->;若31x -≤≤,距离之和为1(3)4--=;若1x >,距离之和为[1(3)]2(1)4x --+->。
所以, 当31x -≤≤时,距离之和最短,最小值为4。
故M 的最小值为4。
二、利用配方法求最值完全平方式具有非负性,即2()0a b +≥。
一个代数式若能配方成2()m a b k ++的形式,则这个代数式的最小值就为k 。
例2:设,a b 为实数,求222a ab b a b ++--的最小值。
【思路点拨】一是将原式直接配方成与,a b 的完全平方式有关的式子可以求出最小值。
二是引入参数设222a ab b a b t ++--=,将等式整理成关于a 的二次方程,运用配方法利用判别式求最值。
解:(方法一) 配方得:当10,10,2b a b -+=-=即0,1a b ==时,上式中不等号的等式成立,故所求的最小值222222222(1)21331()242413()(1)1124a ab b a b a b a b b b a b b b a b ++--=+-+--=++---=++--≥-为1-。
中考数学最值问题

在中考的解答题中,还常常结合其他知识,把最值问题与 其他问题综合在一起,增加了难度。
【例】(2016·温州)有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各 种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.
甲种糖果
乙种糖果
丙种糖果
单价(元/千克)
15
25
30
千克数
40
40
20
【点∴评A】E最本小题值经可过求推得导为,最6 5后5 变,为∴求M连N接的点最A小与值线为段B6 5D10 上.各点的线段中的最短线段 的问题(即垂线段最短问题)。
【例】(2016•安徽)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC 内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为
【例5】(2016·湖南湘西)如图,长方形OABC的OA边在x轴的正半轴上,OC 在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.
(1)求抛物线的解析式;
(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;
(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最 小,并求△BDM周长的最小值及此时点M的坐标;
(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使 得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐 标;若不存在,请说明理由.
初中数学中求极值的几种常见的方法

初中数学中求最值的几种常见方法仪陇县实验学校李洪泉在生活实践中,人们经常面对求最值的问题:如在一定方案中,往往会讨论什么情况下花费最低、消耗最少、产值最高、获利最大等;在解数学题时也常常求某个变量的最大值或最小值。
同时,探求最值也是中考或一些高中学校自主招生考试中的一个热点内容,是初高中知识衔接的重要内容。
这类问题涉及变量多,综合性强,技巧性强,要求学生要有较强的数学转化思想和创新意识。
下面从不同的角度讨论如何求一些问题的最值。
一、根据绝对值的几何意义求最值实数的绝对值具有非负性,0a,即a 的最小值为0,但根据绝对值的代数意义求一些复杂问题的最值就要采用分类讨论法,比较麻烦。
若根据绝对值的几何意义求最值就能够把一些复杂的问题简单化。
例1:已知13Mxx,则M 的最小值是。
【思路点拨】用分类讨论法求出13xx的最小值是4,此时31x。
如果我们从绝对值的几何意义来看此题,就是在数轴上求一点,使它到点1和点3的距离之和为最短。
显然,若3x ,距离之和为[1(3)]2(3)4x ;若31x,距离之和为1(3)4;若1x,距离之和为[1(3)]2(1)4x 。
所以,当31x 时,距离之和最短,最小值为4。
故M 的最小值为4。
二、利用配方法求最值完全平方式具有非负性,即2()0ab 。
一个代数式若能配方成2()m a b k 的形式,则这个代数式的最小值就为k 。
例2:设,a b 为实数,求222aab ba b 的最小值。
【思路点拨】一是将原式直接配方成与,a b 的完全平方式有关的式子可以求出最小值。
二是引入参数设222a ab b a bt ,将等式整理成关于a 的二次方程,运用配方法利用判别式求最值。
解:(方法一) 配方得:当10,10,2b ab 即0,1a b时,上式中不等号的等式成立,故所求的最小值222222222(1)21331()242413()(1)1124aabba ba b a b bb a bbb ab为1。
初中几何最值问题类型

初中几何最值问题类型
初中几何中的最值问题类型有以下几种:
1.最大值最小值问题:
求某个几何图形的最大面积或最小周长,如矩形、三角形等。
求抛物线的最高点或最低点,即顶点的坐标。
2.极值问题:
求函数图像与坐标轴的交点。
求函数在某个区间内的最大值或最小值,如求二次函数的最
值等。
3.最优化问题:
求物体从一个点到另一个点的路径问题,如两点之间的最短
路径、最快速度等。
4.最长边最短边问题:
求三角形的最长边或最短边,如用三根木棍构成三角形,求
最长边的长度。
5.相等问题:
求两个几何形状中的某个参数,使得它们的某个关系成立,
如求两个相似三角形的边长比、两个等腰三角形的底角角度等。
这些问题类型都需要通过合理的分析和运用相关的几何定理
来解决。
对于初中学生来说,熟练掌握基本的几何概念和定理,灵活运用数学思维和方法,可以较好地解决这些最值问题。
通
过多做练习和思考,培养几何思维和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学求最值的几种常见方法
1.列方程法。
通过列出符合条件的方程,从中推导出最值。
例如,求两个数之和为100,那么设其中一个数为x,另一个数为100-x,得到方程x+(100-
x)=100,解得x=50,最大值为50。
2.寻找规律法。
通过观察数字间的规律,找出最大值的情况。
例如,求一串数列中最大的数,可以通过观察找到依次排列的数中最后一个数为最大值。
3.求导法。
对函数求导,找到函数极值,从而得出最值。
例如,对于一元二次方程y=ax²+bx+c,求y的最小值,可以通过求导得到y'=2ax+b=0,解得
x=-b/2a,从而得到最小值y=-Δ/4a。
4.分类讨论法。
通过对不同情况的讨论,找出最值。
例如,求一个三位数的各位数之和的最大值,可以通过分类讨论得到,若各位数之和为27,则最大值为999;若各位数之和为18,则最大值为990;若各位数之和为9,则最大值为900。