集成电路课程设计报告
集成电路版图课程设计

从 版 图 设 计 到 仿 真, 进 行 了 系 统 的 学 习。 例 如, 引 入
2“线上线下”混合教学
“同步降压式单片 DC-DC 电源芯片”工程案例,学生从
为了兼顾教师的教学效果和学生的学习效果,结合 原理图设计到仿真、从版图设计到仿真,进行了系统的
大量线上教学经验,集成电路版图设计采取线上与线下 学习。将工程案例进入课程中,理论与实际相联系,利
进的教学模式。如果只采用传统的教学模式,不能实时 看回放视频和录播视频。
掌握学生对知识的掌握情况,会忽略学生对课程的兴趣,
2.3 线下教学
导致课堂效率低。如果过多依赖线上教学模式,师生间
2.3.1 课堂教学
缺乏互动,出现学生不认真听课现象。因此,教师要合
教学中学以致用,将实际工程案例引入线下课堂,
理分配线上、线下教学内容及时间。
对基础知识不解的困惑,如果不及时答疑,会阻碍学生 验的内容。在此基础上,鼓励学生积极参加各类学科竞
学习进程。教师采取线上直播的形式,以班级为单位组 赛和创新实践活动,部分同学参加全国集成电路创新创
织线上授课(钉钉直播),实现师生双向互动。线上课 业大赛、大学生课外科技活动,并获得相应奖项。通过
堂,教师讲授相应的课程内容。另外,在线上教学过程 参与竞赛活动,能够发现教学不足,促进课程的优化,
随着信息技术和互联网技术的快速发展,信息化技 术被广泛地应用于各个领域。在疫情防控期间,传统教 学已不适用目前高校教学,为保证“停课不停教,停课 不停学”[1],教育部鼓励各地高校充分利用信息技术和 互联网技术为学生提供学习支持,有序地开展高校相关 教学工作 [2]。越来越多教学工作者开始关注“线上线下” 混合式教学,对单一的传统教学进行改革。线上教学最 初源于网络上公开的教学视频,可以实现教学资源的共 享,但是缺乏师生间的互动 [3]。为了加强师生间的互动, 中国大学 MOOC 诞生了,该线上平台不仅实现教学资源 的共享,还能随时进行课堂测试,实现教师与学生间的 互动。中国大学 MOOC 的兴起,有效地推动了其他线 上教学平台发展,例如对分易平台、雨课堂平台、超星 平台、智慧树平台、腾讯课堂等。如果采取纯线上教学, 学生学习缺乏积极性,需要对学生提出较高的自我管理 要求,而大学生自我管理能力较差,因此不能采取纯线 上教学。王艳 [4] 等人通过案例结合对分易课堂传感器技 术课程进行教学改革,充分调动了学生的学习主动性, 有效地提高教学质量。申继伟 [5] 等人提出数字化教学资 源建设,将建立的数字化资源运用于模拟电子线路课程 中,进而推动移动式教学改革。边心田 [6] 等人提出基于 OBE 理念的教学模式,并运用于应用光学课程中,取得 了较好的教学成果。如何有效地将线上教学与线下教学 相结合,提高教学质量,这是每位高校教师值得认真思 考的问题。本文以集成电路版图设计课程为例,对“线
数字集成电路课程设计74hc138

目录1.目的与任务 (1)2.教学内容基要求 (1)3.设计的方法与计算分析 (1)3.1 74H C138芯片简介 (1)3.2 电路设计 (3)3.3功耗与延时计算 (6)4.电路模拟 (14)4.1直流分析 (15)4.2 瞬态分析 (17)4.3功耗分析 (19)5.版图设计 (19)5.1 输入级的设计 (19)5.2 内部反相器的设计 (19)5.3输入和输出缓冲门的设计 (22)5.4内部逻辑门的设计 (23)5.5输出级的设计 (24)5.6连接成总电路图 (24)5.3版图检查 (24)6.总图的整理 (26)7.经验与体会 (26)8.参考文献 (26)附录 A 电路原理图总图 (28)附录B总电路版图 (29)集成1. 目的与任务本课程设计是《集成电路分析与设计基础》的实践课程,其主要目的是使学生在熟悉集成电路制造技术、半导体器件原理和集成电路分析与设计基础上,训练综合运用已掌握的知识,利用相关软件,初步熟悉和掌握集成电路芯片系统设计→电路设计及模拟→版图设计→版图验证等正向设计方法。
2. 教学内容基本要求2.1课程设计题目及要求器件名称:3-8译码器的74HC138芯片 要求电路性能指标:⑴可驱动10个LSTTL 电路(相当于15pF 电容负载); ⑵输出高电平时,OH I ≤20uA,min,OH V =4.4V; ⑶输出低电平时,OLI ≤4mA ,manOL V , =0.4V⑷输出级充放电时间r t =ft ,pdt <25ns ;⑸工作电源5V ,常温工作,工作频率workf =30MHZ ,总功耗maxP =15mW 。
2.2课程设计的内容 1. 功能分析及逻辑设计; 2. 电路设计及器件参数计算;3. 估算功耗与延时;4. 电路模拟与仿真;5. 版图设计;6. 版图检查:DRC 与LVS ;7. 后仿真(选做);8. 版图数据提交。
2.3课程设计的要求与数据1. 独立完成设计74HC138芯片的全过程;2. 设计时使用的工艺及设计规则: MOSIS:mhp_ns5;3. 根据所用的工艺,选取合理的模型库;4. 选用以lambda(λ)为单位的设计规则;3. 设计的方法与计算分析3.1 74HC138芯片简介74HC138是一款高速CMOS器件,74HC138引脚兼容低功耗肖特基TTL 系列图3-1 74HC138管脚图表3-1 74HC138真值表由于74HC138芯片是由两个2-4译码器组成,两个译码器是独立的,所以,这里只分析其中一个译码器。
数字集成电路-电路系统与设计第二版课程设计

数字集成电路-电路系统与设计第二版课程设计
一、课程设计介绍
数字集成电路是现代电路设计中的重要组成部分,也是计算机科学与工程的重要分支。
本课程设计旨在通过对数字集成电路的系统与设计进行探究,并结合具体的案例来设计和实现数字集成电路,使学生能够熟悉数字集成电路的基本原理、设计方法和实现技术。
本课程设计主要包含以下内容:
1.数值系统和编码
2.逻辑功能设计:组合逻辑电路和时序逻辑电路
3.集成电路设计方法和流程
4.VHDL和FPGA实现数字逻辑电路
5.数字信号处理器
通过本次课程设计,学生将掌握数字集成电路的系统性设计思路和实现方法,具备数字电路设计的基本能力和实际操作技术,能够针对具体应用场景提出解决方案,实现数字电路的设计、验证和调试。
二、课程设计要求
1. 课程设计题目
本次课程设计的题目为“4位计数器设计”。
2. 软件工具
VHDL编程软件和EDA工具
1。
数字集成电路课程设计报告-4bits超前进位加法器全定制设计

第1章概述1.1 课程设计目的•综合应用已掌握的知识•熟悉集成电路设计流程•熟悉集成电路设计主流工具•强化学生的实际动手能力•培养学生的工程意识和系统观念•培养学生的团队协作能力1.2 课程设计的主要内容1.2.1 设计题目4bits超前进位加法器全定制设计1.2.2 设计要求整个电路的延时小于2ns整个电路的总功耗小于20pw总电路的版图面积小于60*60um1.2.3 设计内容功能分析及逻辑分析估算功耗与延时电路模拟与仿真版图设计版图数据提交及考核,课程设计总结第2章功能分析及逻辑分析2.1 功能分析74283为4位超前进位加法器,不同于普通串行进位加法器由低到高逐级进位,超前进位加法器所有位数的进位大多数情况下同时产生,运算速度快,电路结构复杂。
其管脚如图2-1所示:图2-1 74283管脚图2.2推荐工作条件(根据SMIC 0.18工艺进行修改)表2-1 SMIC 0.18工艺的工作条件2.3直流特性(根据SMIC 0.18工艺进行修改)表2-2 SMIC 0.18直流特性2.4交流(开关)特性(根据SMIC 0.18工艺进行修改)表2-3SMIC 0.18工艺交流(开关)特性2.5真值表表2-4 4位超前进位加法器真值表2.6表达式定义两个中间变量Gi和Pi:所以:进而可得各位进位信号的罗辑表达如下2.7电路原理图超前进位加法器原理:对于一个N位的超前进位组,它的晶体管实现具有N+1个并行分支且最多有N+1个晶体管堆叠在一起。
由于门的分支和晶体管的堆叠较多使性能较差,所以超前进位计算在实际中至多智能限制于2或4位。
为了建立非常快速的加法器,需要把进位传播和进位产生组织成递推的树形结构,如图2-2所示。
一个比较有效的实现方法是把进位传播层次化地分解成N位的子组合:Co,0=GO+POCi,0Co,1=G1+P1G0+P1P0 Ci,0=( G1+P1G0)+(P1P0) Ci,0=G1:0+P1:0 Ci,0Co,2=G2+P2G1+P2P1G0+P2P1P0Ci,0=G2+P2Co,1 2-1 Co,3=G3+P3 G2+P3P2G1+P3P2P1G0+P3P2P1P0Ci,0=(G3+P3G2)+(P3P2)Co,1=G3:2+P3:2Co,1 在公式2-1中,进位传播过程被分解成两位的子组合。
sopc课程设计

SoPC课程设计(报告)题目:液晶控制显示器学院:电子工程学院系部:微电子学系专业:集成电路设计与集成系统班级: 1002 学生姓名:曹松松指导教师:曾泽沧起止时间: 2013年6月17日——2013年6月28日目录1 课程设计要求 (2)基本要求 (2)2 实验使用平台 (2)3 题目:选题2 (2)4 课程设计总结 (5)5 附件 (5)1课程设计要求基本要求课程设计要求所有题目采用Quartus II 工具提供的图形输入或者VerilogHDL语言输入方式作为电路设计工具,在NiosII上采用C语言实现编程,自定向下正向设计方法,先设计硬件系统,再进行软件编程,能够生成正确的FPGA下载代码和NiosII执行的软件代码。
硬件功能仿真和时序仿真采用第三方工具(建议为:modelsim),综合与布局布线工具为:Quartus II,SOPC Builder建立软件运行环境,具体要求为:1)根据课设题目,进行总体设计方案(10分);2)硬件电路顶层设计、模块划分、引脚定义(10分);3)电路设计及NiosII设计,提交电路设计源代码或电路图(10分);4)综合与布局布线,提交综合与布局布线报告(10分);5)FPGA下载代码和引脚分布(10分);6)软件总体设计及画出流程图(10分);7)程序设计,提交程序代码(10分);8)程序编译下载及仿真调试(10分)。
2实验使用平台实验平台使用Altera的DE2开发板,开发工具使用Altera的Quartus II和Nios II IDE。
3 题目:选题2在字符型液晶显示器上移动显示“XIAN UNIVERSITY POST AND TELECOMMUNICATIONS YOUR NAME 2013-6”,要求FPGA 设计硬件,内嵌NiosII,液晶显示采用软件实现。
1)根据课设题目,进行总体设计方案;(10分)此次sopc课程设计选题2,题目相对比较简单。
集成电路课程设计报告三输入异或门电路

4.3a
Select Edge to ActC nt
1.000
4.4a
Select Mi nimum Width
2.000
4.4c
Select to Select Spac ing
2.000
异或门的应用范围广,在实际应用中可以用来实现奇偶发生器或模2加法器,
还可以用作加法器、异或密码、异或校检、异或门倍频器、可控反相器等等。虽
然异或不是开关代数的基本运算之一,但是在实际运用中我们依然会相当普遍地 使用到分立的异或门。因此,我们为了熟练了解、掌握异或门这一基本逻辑电路, 对异或门电路进行了这次课程设计。
2.1
Active Mi nimum Width
3.000
2.2
Active to Active Spac ing
3.000
2.3a
Source/Drain Active to Well Edge
5.000
2.3b
Source/Drain Active to Well Space
5.000
2.4a
WellCo ntact(Active) to Well Edge
异或门(英语:Exclusive-OR gate,简称XOF^ate,又称EOF^ate、ExOF^ate)是数字逻辑中实现逻辑异或的逻辑门。有多个输入端、1个输出端,多输入异或
门可由2输入异或门构成。
三输入异或门在数字集成逻辑电路中主要用来实现逻辑异或的功能。对于三 输入异或门来说,若输入为偶数(此处包括0)个高电平1,则输出为低电平0; 否则输出为高电平1。
异或门的逻辑表达式:
进一步可得到一位比较器的真值表:
A
B
功率集成电路技术理论与设计课程设计

功率集成电路技术理论与设计课程设计概述功率集成电路技术是电力电子技术的核心之一。
它将集成电路制造技术与功率电子技术相结合,实现了电路小型化、集成化、高效化、智能化。
本文档将介绍关于功率集成电路技术的理论和设计。
理论部分1. 功率半导体器件功率半导体器件是功率电子器件的核心,如晶闸管、场效应管、IGBT等。
功率集成电路的制造过程就是将这些器件集成到同一片晶圆上,再增加驱动和保护电路等其他元件,形成了集成电路。
2. 功率集成电路功率集成电路是指将功率半导体器件、驱动电路、控制电路、保护电路等集成在一起的电路。
功率集成电路可实现电源、电控、信号处理、检测等多种功能。
3. 基础电路功率集成电路的设计需要基础电路的支持,如逆变器、整流器、升压降压变换器等。
其中,逆变器是功率集成电路最主要的应用领域之一,它可以将直流电能转换为交流电能,广泛应用于电力系统中,如UPS系统、家用电力系统和工业控制系统等。
4. 控制策略功率集成电路的控制策略有很多种,如开关控制、PWM控制、谐振控制等。
其中,PWM控制是功率集成电路最常用的控制策略之一,它可以实现功率半导体器件的精确控制,提高功率转换效率,降低功率损耗。
设计部分1. 设计流程功率集成电路的设计流程包括选型、电路设计、印制电路板设计、元器件焊接等多个步骤。
要完成一个完整的功率集成电路设计,需要在每个步骤中认真分析问题,制定合理的解决方案,最终形成一个完整的产品。
2. 电路设计电路设计是功率集成电路设计的核心。
在这一步骤中,需要选取合适的功率半导体器件和控制策略,设计合理的驱动电路、保护电路和控制电路等。
同时,需要对电路进行仿真和分析,确保电路的工作稳定性和效率。
3. 印制电路板设计印制电路板设计是将电路板图形化,并在板上制作出具有特定功能的电路元件的过程。
它是内部连接、布局、强度、EMI/EMC以及适配和装配等部分的实现。
在印制电路板设计中,需要充分考虑电路板的大小、受力情况、线路绕线等因素。
数字集成电路设计课程设计

数字集成电路设计课程设计一、课程设计的背景随着信息技术的快速发展,数字集成电路已成为数字系统设计的基础。
数字集成电路的设计是数字电路设计中的重要内容,其设计水平直接影响了整个数字系统设计的性能和可靠性。
为了培养学生的数字系统设计能力,提高他们的综合技能,数字集成电路设计课程必须设置课程设计环节,让学生通过自主设计电路和实现电路的过程,来了解数字系统设计和数字集成电路的实际运用。
二、课程设计的目标本课程设计主要旨在让学生了解数字集成电路和数字系统设计方面的知识,并培养他们的创新能力和实践操作能力,使其能够熟练地使用EDA工具来设计数字集成电路。
具体目标如下:1.掌握数字系统设计的基本方法和流程;2.熟悉EDA工具的使用;3.实践基本的数字集成电路设计;4.培养创新思维和实践操作能力。
三、课程设计的任务本课程设计分为两个任务,分别是:任务一:基于FPGA实现数字电路设计在这个任务中,学生需要使用FPGA实现一个简单的数字电路设计,具体步骤如下:1.学习FPGA芯片的软件开发环境,并了解开发工具的基本使用方法。
2.根据实际需求,设计一个数字电路电路图,并使用EDA工具进行仿真验证。
3.将设计好的电路烧录到FPGA芯片中,并通过实验验证电路的可行性和正确性。
4.编写实验报告,记录设计过程、结果和分析等内容。
通过这个任务的完成,学生可以深入了解数字电路设计的流程和方法,同时掌握基本的EDA工具使用方法,提高了实践操作能力。
任务二:基于Verilog语言设计数字集成电路这个任务是在前一个任务的基础上,进一步实践和提高数字集成电路设计的能力。
具体步骤如下:1.学生需要掌握Verilog语言的基本语法和使用方法。
2.选定一个实际需要的数字电路任务,并进行详细的设计和仿真验证。
3.将设计好的Verilog代码综合成网表文件,并使用EDA工具进行布局和布线。
4.将布线后的电路设计烧录到FPGA芯片中,并进行实验验证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计
班级:
姓名:
学号:
成绩:
电子与信息工程学院
电子科学系
CMOS二输入与非门的设计
一、概要
随着微电子技术的快速发展,人们生活水平不断提高,使得科学技术已融入到社会生活中每一个方面。
而对于现代信息产业和信息社会的基础来讲,集成电路是改造和提升传统产业的核心技术。
随着全球信息化、网络化和知识经济浪潮的到来,集成电路产业的地位越来越重要,它已成为事关国民经济、国防建设、人民生活和信息安全的基础性、战略性产业。
集成电路有两种。
一种是模拟集成电路。
另一种是数字集成电路。
本论文讲的是数字集成电路版图设计的基本知识。
然而在数字集成电路中CMOS与非门的制作是非常重要的。
二、CMOS二输入与非门的设计准备工作
1.CMOS二输入与非门的基本构成电路
使用S-Edit绘制的CMOS与非门电路如图1。
图1 基本的CMOS二输入与非门电路
2.计算相关参数
所谓与非门的等效反相器设计,实际上就是根据晶体管的串并联关系,再根据等效反相器中的相应晶体管的尺寸,直接获得与非门中各晶体管的尺寸的设计方法。
具体方法是:将与非门中的VT3和VT4的串联结构等效为反相器中的NMOS 晶体管,将并联的VT 1、VT 2等效PMOS 的宽长比(W/L)n 和(W/L)p 以后,考虑到VT3和VT4是串联结构,为保持下降时间不变,VT 3和VT 4的等线电阻必须减小为一半,即他们的宽长比必须为反相器中的NMOS 的宽长比增加一倍,由此得到(W/L)VT3,VT4=2(W/L)N 。
因为考虑到二输入与非门的输入端IN A 和IN B 只要有一个为低电平,与非门输出就为高电平的实际情况,为保证在这种情况下仍能获得所需的上升时间,要求VT 1和VT 2的宽长比与反相其中的PMOS 相同,即(W/L)VT1,VT2=(W/L)P 。
至此,根据得到的等效反向器的晶体管尺寸,就可以直接获得与非门中各晶体管的尺寸。
如下图所示为t PHL 和t PLH ,分别为从高到低和从低到高的传输延时,通过反相器的输入和输出电压波形如图所示。
给其一个阶跃输入,并在电压值50%这一点测量传输延迟时间,为了使延迟时间的计算简单,假设反相器可以等效成一个有效的导通电阻R eff ,所驱动的负载电容是C L 。
图2 反相器尺寸确定中的简单时序模型
对于上升和下降的情况,50%的电都发生在:
L eff C R 69.0=τ
这两个Reff 的值分别定义成上拉和下拉情况的平均导通电阻。
如果测量t PHL 和t PLH ,可以提取相等的导通电阻。
由于不知道确定的t PHL 和t PLH ,所以与非门中的NMOS 宽长比取L-Edit 软件中设计规则文件MOSIS/ORBIT 2.0U SCNA Design Rules 的最小宽长比及最小长度值。
3.分析电路性质 根据数字电路知识可得二输入与非门输出AB F =。
使用W-Edit 对电路进行仿真后得到的结果如图4和图5所示。
图3 图4 基本的CMOS二输入与非门仿真结果(inA是inB相位提前100ns波形)可以看到,仿真结果与理论基本符合。
三、使用L-Edit绘制基本CMOS二输入与非门版图
在设计中采用Tanner Pro 软件中的L-Edit组件设计CMOS二输入与非门的版图,进而掌握L-Edit的基本功能和使用方法。
操作流程如下:进入L-Edit—>建立新文件—>环境设定—>编辑组件—>绘制多种图层形状—>设计规则检查—>修改对象—>设计规则检查—>电路转化—>电路仿真。
1.CMOS二输入与非门设计的规则与布局布线
使芯片尺寸在尽可能小的前提下,避免线条宽度的偏差和不同层版套准偏差可能带来的问题,尽可能地提高电路制备的成品率。
设计的规则应考虑器件在正常工作的条件下,根据实际工艺水平(包括光刻特性、刻蚀能力、对准容差等)和成品率要求,给出的一组同一工艺层及不同工艺层之间几何尺寸的限制,主要包括线宽、间距、覆盖、露头、凹口、面积等规则,分别给出它们的最小值,以防止掩膜图形的断裂、连接和一些不良
物理效应的出现。
2.CMOS二输入与非门的版图绘制与实现
为了便于版图设计,将图1所示电路修改如下图:
图5 修改布局后的CMOS二输入与非门电路
接下来按照电路图进行版图布线,布线时应注意设计规则,完成版图如下图:
图6 完成的基本CMOS二输入与非门版图
四、总结
1)如果对版图设计的基本规则不熟悉,可以打开DRC Setup,这里列出了所有的设计规则,可学习和记忆其中的一些主要和常用的版图设计规则。
2)在进行版图设计规则检查时,应选择输出检查文件一项,版图设计中出现的所有错误,都可以在该输出文件中列出,并标明出错的原因,与哪条规则相违背,可打开规则进行对照,并在版图上进行相应的修改。
3)通过此次设计,我也认识到了自己所学知识的片面,不熟悉CMOS工艺流程等等问题。
尤其是对于重要参数宽长比的问题上求解了两天半的时间未能解决,最终通过寻求指导老师的帮助才解决了问题。
4)一些保险设计比如共态导通保护电路,反向保护电路及吸收电容,负载电容等,因为并非完整的芯片设计而省略,实际制作中针对这些问题必须对核心器件进行保护。
五、参考文献:
《模拟CMOS集成电路设计》毕查德·拉扎维著,西安交通大学出版社,2003年
《CMOS模拟集成电路设计》Phillip·E·AllenS 著,电子工业出版社,2005年
《集成电路设计》王志功等编著,电子工业出版社,2011年
《数字集成电路分析与设计-深亚微米工艺》David A.Hodges等著,电子工业出版社,2005年。