居于马线性代数第一章答案

合集下载

居余马线性代数课后详细答案

居余马线性代数课后详细答案

1、22220aab a b ab ab abb=⋅-⋅=2、22cos sin cos cos (sin )sin cos sin 1sin cos αααααααααα-=⋅--⋅=+=3、222()()22()2a bi b a bi a bi ab a b ab a b aa bi+=+--=+-=--4、3242123*1*(3)2*(2)*5(4)*4*23*(2)*22*4*(3)(4)*1*5423--=-+-+--------- 920321224205=---+++=-5、1234561*5*92*6*73*4*81*6*82*4*93*5*7789=++--- 45849648721050=++---=6、2214112*1*1012*(1)*2021*4*1992*(1)*1992*4*1011*1*202202199101-=+-+----20240479639880820218=-++--=-7、222234322222211101(1)(1)(1)011w wwww ww w w w w w w w w www+⨯---=-=-++=-⨯--第2行第1行()第3行第1行()8、3322232121*2*3322663x xxx x x x x x x x xx=++---=-+9、143000400400431(1)0434********324321+-=-=-按第行展开10、公式: 111112111222222122112212000000000000n n nn nn nn n n nn a a a a a a a a a a a a a a a a a a ===11111,11(1)2,12,2,1212,1212,111,11100000000(1)0n n n n n n n n n n n n n n n n nnn n a a a a a a a a a a a a a a a a a a -------===-⋅解:101000010000100200002010(1)1008000080090000910+-⋅按第行展开 9(19)210(1)128910!+=⋅-⋅⋅⋅=11、3111111112111110200311*(2)8111100204111112----=-=------第行第行第行第行第行第行12、该行列式中各行元素之和均为10,所以吧第2,3,4列加到第1列,然后再把第1列后三个元素化为零,再对第1列展开,即 12341234123421113234113410113103110102223412*********114141231123111---=-=-----------第行第行第行第行 第行第行10*16160==13、50421111111121011211121021014324741204120032415311115420153-----=-=----=----------第,行交换14、先将第1行与第5行对换,第3行与第4行对换(反号两次,其值不变) 365641111111111111112545325453032750327536342254650328700012254653634203075002001111136564329722------===---根据课本20页公式(1.21),原式012112003*4120322=-=-=-()15、1200340012132*160013345151-==---()()=3216、1234512345123678910678910213567810*220000130101143100002400024011113-=-=-=-第,行对换17、根据课本20页公式(1.22) 23001121120030212(1)30212*(5)600024031241240131258⨯--=-=-=--18、1001201*2*33!123A ===,5(51)20000100020(1)(1)(2)(3)(4)(5)5!00300040005B ---==------=----所以 3*5*(1)||||3!5!0A AB B=-=-19、证:21111111112222222222233333333311111112222222223333333(1)2*1(1)(1)(1)1*2(1)a b x a x b c a b x b x c a b xa xbc x a b xb xc a b xa xbc a b xb xc a b xb c a b c x a b xb c x x a b c a b xb c a b c +++-=++-+-+++-+=-+--=+左第列第列第列第列右20、1111111121111100311111004111110xx x x x y x y yxy++----=-+-----第行第行左第行第行第行第行144401114(1)10(1)()00xx xxy y xx xxy++--+-⋅⋅-+-⋅-⋅----按第列展开 2222222(1)()x y y x xy xy x x y y x y x x y ⎡⎤=---++-=----==⎣⎦右21、33333333333111111010b ac aab c b a c ab ac aabcb ac a--==--=⋅----左()()()()()()()()()()()()()()()()2222222222b ac a c ac a c a b a b ab a b a c a c ac ab ab a b ac a c ac bab b a c a c b a b c =--++---++=--++---=--+--=---++=右22、解法1:()()()()232322332233223323223311001111a ab b b a b a b acacabaccc ac a=--=-------整理得()()()()ab bc ca b a c a c b =++---又根据范德蒙行列式有:()()()222111a ab ac a c b b b cc---=故原式得证。

《线性代数复习资料》第一章习题答案与提

《线性代数复习资料》第一章习题答案与提
详细描述:本题主要考察学生对矩阵运算的掌握程度, 包括矩阵的加法、数乘、乘法等基本运算。
详细描述:本题主要考察学生对线性方程组解法的理解 ,通过给定的线性方程组,要求学生判断其解的情况, 并求解当有解时的解向量。
习题二解析
在此添加您的文本17字
总结词:向量空间
在此添加您的文本16字
详细描述:本题主要考察学生对向量空间的定义和性质的 理解,要求学生判断给定的集合是否构成向量空间,并说 明理由。
线性变换与矩阵表示
线性变换是线性代数中的重要概念,理解如何用 矩阵表示线性变换以及其性质是解决相关问题的 关键。
向量空间的维数与基底
向量空间的维数与基底的概念较为抽象,理解其 定义和性质有助于更好地解决相关问题。
04
典型例题解析
例题一解析
总结词
矩阵的乘法
详细描述
本题考查了矩阵乘法的规则和计算方法。首先,我们需要明确矩阵乘法的定义,即第一个矩阵的列数必须等于第 二个矩阵的行数。然后,我们按照矩阵乘法的步骤,逐一计算结果矩阵的元素。在计算过程中,需要注意矩阵元 素的位置和计算方法。
导致在解题时无法正确应用它们。
THANK YOU
感谢聆听
例题二解析
总结词
行列式的计算
详细描述
本题考查了行列式的计算方法和性质。首先,我们需要明确行列式的定义,即由n阶方阵的元素按照 一定排列顺序构成的二阶方阵。然后,我们根据行列式的性质,逐步展开并化简计算结果。在计算过 程中,需要注意行列式的展开顺序和符号的变化。
例题三解析
总结词
向量的线性组合
详细描述
习题三解析
总结词:行列式计算 总结词:矩阵的秩 总结词:特征值与特征向量
详细描述:本题主要考察学生对行列式的计算能力,通 过给定的矩阵,要求学生计算其行列式的值。

居余马线性代数课后详细答案(更新)

居余马线性代数课后详细答案(更新)

1、22220a aba b ab ab ab b =⋅-⋅=2、22cos sin cos cos (sin )sin cos sin 1sin cos αααααααααα-=⋅--⋅=+=3、222()()22()2a bi ba bi a bi ab a b ab a b a a bi+=+--=+-=--4、3242123*1*(3)2*(2)*5(4)*4*23*(2)*22*4*(3)(4)*1*5423--=-+-+---------920321224205=---+++=-5、1234561*5*92*6*73*4*81*6*82*4*93*5*7789=++---45849648721050=++---=6、2214112*1*1012*(1)*2021*4*1992*(1)*1992*4*1011*1*202202199101-=+-+----20240479639880820218=-++--=-7、222234322222211101(1)(1)(1)011w w w w w ww w w w w w w w w w w w +⨯---=-=-++=-⨯--第2行第1行()第3行第1行()8、3322232121*2*3322663x xxx x x x x x x x xx =++---=-+9、143000400400431(1)0434*******4324321+-=-=-按第行展开10、公式:11111211122222212211221200000000000n n nn nn nnn n nn a a a a a a a a a a a a a a a a a a ===11111,11(1)2,12,2,1212,1212,111,1110000000(1)0000n n n n n n n nn n n n n n n n nn n n a a a a a a a a a a a a a a a a a a -------===-⋅解:10100001000010020*******(1)1008000080090000910+-⋅ 按第行展开9(19)210(1)128910!+=⋅-⋅⋅⋅=11、3111111112111110200311*(2)8111100204111110002----=-=------第行第行第行第行第行第行12、该行列式中各行元素之和均为10,所以吧第2,3,4列加到第1列,然后再把第1列后三个元素化为零,再对第1列展开,即123412341234211132341134101131031101022234121412022211141412311230111---=-=-----------第行第行第行第行 第行第行10*16160==13、504211111111210112111210210143247412041200324153111150420153-----=-=----=----------第,行交换14、先将第1行与第5行对换,第3行与第4行对换(反号两次,其值不变)3656411111111111111125453254530327503275363422546503287000122546536342030750020011111365640329700022------===--- 根据课本20页公式(1.21),原式012112003*41203022=-=-=-()15、1200340012132*16001334510051-==---()()=3216、1234512345123678910678910213567810*22000013010114301000024000240101100013-=-=-=-第,行对换17、根据课本20页公式(1.22)23001121120030212(1)30212*(5)6000240312401240131258⨯--=-=-=--18、1001201*2*33!123A ===,5(51)20000100020(1)(1)(2)(3)(4)(5)5!030004000500B ---==------=----所以3*5*(1)||||3!5!0A AB B=-=-19、证:21111111112222222222233333333311111112222222223333333(1)2*1(1)(1)(1)1*2(1)a b x a x b c a b x b x c a b x a x b c x a b x b x c a b x a x b c a b x b x c a b xb c a b c x a b x b c x x a b c a b x b c a b c +++-=++-+-+++-+=-+--=+左第列第列第列第列右20、11111111211111003111110041111100x x x x x y x y y x y++----=-+-----第行第行左第行第行第行第行144401114(1)10(1)()000x x x xy y xx xxy++--+-⋅⋅-+-⋅-⋅----按第列展开2222222(1)()x y y x xy xy x x y y x y x x y ⎡⎤=---++-=----==⎣⎦右21、33333333333111111010b a c a ab c b ac a b a c a a b c b a c a --==--=⋅----左()()()()()()()()()()()()()()()()2222222222b a c a c ac a c a b a b ab a b a c a c ac a b ab a b a c a c ac b ab b a c a c b a b c =--++---++=--++---=--+--=---++=右22、解法1:()()()()232322332233223323223311001111a a b b b a b a b a c a c a b a c c c a c a =--=------- 整理得()()()()ab bc ca b a c a c b =++---又根据范德蒙行列式有:()()()222111a a b a c a c b bb cc ---= 故原式得证。

线性代数第一章习题参考答案

线性代数第一章习题参考答案

解:4234231142342311)1342(4432231144322311)1324()1()1(a a a a a a a a a a a a a a a a =--=-ττ4.计算abcdef abcdef abcdef abcdef efcf bfde cd bdae ac ab r r r r c c c r f r d r a c ec c c b 420020111111111111111111111)1(12133213213211,1,11,1,1-=--=--=---=-----++5.求解下列方程10132301311113230121111112121)1(12322+-++-++=+-++-+=+-+-+++x x x x x x x x x x x x c c r r 1132104201)3(113210111)3(21+-+--++=+-+-++=-x x x x x x x x x r r 3,3,30)3)(3(11421)3(3212-==-==-+=+---++=x x x x x x x x x 得二列展开cx b x a x b c a c a b x c x b x a c b a x c b a x c b a x ====------=32133332222,,0))()()()()((1111)2(得四阶范得蒙行列式6.证明322)(11122)1(b a b b a a b ab a -=+右左证明三行展开先后=-=-=-----=----=+=+--323322222)(11)()()()1(100211122)1(:2132b a b a b a ba ba b a b b a a b b a b a b b ab ab a b b a ab ab ac c c c1432222222222222222222222222(1)(2)(3)(1)2369(1)(2)(3)(1)2369(3))(1)(2)(3)(1)2369(1)(2)(3)(1)2369c c c ca a a a a a a ab b b b b b b b cc c c cc c cd d d d d d d d --++++++++++++==++++++++++++二三列成比例))()()()()()((1111)4(44442222d c b a d c d b c b d a c a b a d c b a dcbad c b a D +++------==44444333332222211111)(x d c b a xdcbax d c b a x d c b a x f 五阶范得蒙行列式解考虑函数=(5)))()()()()()(())()()()()()(()()())()()()()()()()()((454545453453d c d b c b d a c a b a d c b a A M D d c d b c b d a c a b a d c b a A ,A x x f ,Mx x f D a b b c a b c d b d a d d x c x b x a x ------+++-==------+++-=----------=于是的系数是中而对应的余子式中是(5)n n a a a a a xx x x 12101000000000100001----解:nn n n n n n n n n nn x a x a a x a x a a a a a a a xx x x D +++=-++--+--=---=+++-++++-10)1()1(1211110121)1()1()1()1()1(1000000000100001按最后一行展开7、设n 阶行列式)det(ij a D =把D 的上下翻转、或逆时针旋转090、或依副对角线翻转、依次得111131111211111,,a a a a D a a a a D a a a a D n n nn n nn n nnnn=== 证明D D D D D n n =-==-32)1(21,)1(证明:将D 上下翻转,相当于将对D 的行进行)1(21-n n 相邻对换得1D ,故D D n nn 2)1(1)1(--=将D 逆时针旋转090相当于将T D 上下翻转,故D n n D n n D T 2)1(2)1(2-=-=D 依副对角线翻转相当于将D 逆时针旋转090变为2D , 然后再2D 左右翻转变为3D ,故D D D D n n n n n n =--=-=---2)1(2)1(22)1(3)1()1()1(8、计算下列行列式(k D 为k 阶行列式)(1)aa D n 11=,其中对角线上元素都是a ,未写出的元素都是0;解:)1()1(0100)1(1122211111-=-+=-+==--++-+a a a a a aa a a D n n n n n n n n n n 列展开按行展开按(2)x a a a x a a a x D n=解:xaa x a a a n x x a aa x a a a x D nc c c n111])1([21-+==+++12)]()1([0001])1([1--≥--+=---+=n r r k a x a n x ax a x a a a n x k(3)111111)()1()1()()1()1(11111n a n a a a n a n a a a n a n a a a D n n n n n nnm n -+---+---+--=----+解:11111(1)(1)22111111(1)(1)()(1)(1)()111111111111()()()((1)(1)()(1)(1)()n nnn n n n n n n n n n n j i n n n n mnnna a a n a n a a a n a n D a a a n a n a a a n a n j i a a a n a n a a a n a n ----++++≥>≥------+---+-=--+---+-=-=--=--+---+-∏上下翻11)n j i i j +≥>≥-∏(4)n n nnn d c d c b a b a D11112=(未写出的均为0)解:)1(2)1(211112)(02232--↔↔-===n n n n n n n nnn r r c c nnnnn D c b d a D d c b a d c d c b a b a D mn得递推公式)1(22)(--=n n n n n n D c b d a D ,而11112c b d a D -=递归得∏=-=ni i i i i n c b d a D 12)((5)det(),||n ij ij D a a i j ==-解111,2,,1120121111110121111210311111230123010001200(1)(1)211201231i i j r r n i n c c n n n n D n n n n n n n n n n n n +-=-+-------==-------------==---------解:11211*222,3,,1111111(6)1111111111101111000111100:01111i n nr r n i n nna a D a a a a a D D a a -=+++=++-+-===+-解111211121,2,,12111(1)1110001(1)0000i inc c na n i ni ina a a a a a a a a a ++==++++==+∑9.设3351110232152113-----=D ,D 的),(j i 元的代数余子式为ij A ,求44333231223A A A A +-+解:24335122313215211322344333231=-----=+-+A A A A。

线性代数第一章课后习题答案

线性代数第一章课后习题答案

习题1.11、写出下列随机试验的样本空间.(1)生产产品直到有4件正品为正,记录生产产品的总件数.(2)在单位园中任取一点记录其坐标.(3)同时掷三颗骰子,记录出现的点数之和. 解:(1)}8,7,6,5,4{ =Ω(2)}1).{(22<+=Ωy x y x(3)}18,,10,9,8,7,6,5,4,3{ =Ω2、同时掷两颗骰子,x、y分别表示第一、二两颗骰子出现的点数,设事件A表示“两颗骰子出现点数之和为奇数”,B表示“点数之差为零”,C表示“点数之积不超过20”,用样本的集合表示事件AB-,BC,CB .解:)}6.6(),5.5(),4.4(),3.3(),2.2(),1.1{(=-A B{(=2.2(),1.1BC3.3(),)}4.4(),2.2(),1.13.3(),{(CB4.4(),=5.5(),6.6(),)}6.5(),5.6(),6.4(),4.6(),3、设某人向靶子射击3次,用i A表示“第i次射击击中靶子”(3,2,1=i),试用语言描述下列事件.(1)21A A (2)321)(A A A (3)2121A A A A解:(1)第1,2次都没有中靶(2)第三次中靶且第1,2中至少有一次中靶(3)第二次中靶4.设某人向一把子射击三次,用i A 表示“第i 次射击击中靶子”(i =1,2,3),使用符号及其运算的形式表示以下事件:(1)“至少有一次击中靶子”可表示为 ;(2)“恰有一次击中靶子”可表示为 ;(3)“至少有两次击中靶子”可表示为 ;(4)“三次全部击中靶子”可表示为 ;(5)“三次均未击中靶子”可表示为 ;(6)“只在最后一次击中靶子”可表示为 .解:(1)321A A A ; (2) 321321321A A A A A A A A A ;(3)323121A A A A A A ; (4) 321A A A ; (5) 321A A A (6) 321A A A5.证明下列各题(1)B A B A =- (2))()()(A B AB B A B A --=证明:(1)右边=AB A B A -=-Ω)(={A ∈ωω且}B A B -=∉ω=左边(2)右边=)(A B AB B A ()() ={}B A B A =∈∈ωωω或习题1.21.设A 、B 、C 三事件,41)()()(===C P B P A P , 0)(,81)()(===AB P BC P AC P ,求A 、B 、C 至少有一个发生的概率.解:0)(0)(=∴=ABC P AB P).(C B A P )()()()()()()(ABC P AC P BC P AB P C P B P A P +---++= =21812413=⨯-⨯2.已知5.0)(=A p ,2.0)(=B A P , 4.0)(=B P ,求 (1))(AB P ,(2))(B A P -, (3))(B A P , (4))(B A P .解:(1)1.0)()(,==∴=∴⊂A P AB P AAB B A(2)5.0)()(,==∴=∴⊂B P B A P BB A B A3.设)(A P =0.2 )(B A P =0.6 A .B 互斥,求)(B P .解:B A , 互斥,)()()(B P A P B A P +=故4.02.06.0)()()(=-=-=A P B A P B P4.设A 、B 是两事件且)(A P =0.4,8.0)(=B P(1)在什么条件下)(AB P 取到最大值,最大值是多少?(2)在什么条件下)(AB P 取到最小值,最小值是多少?解:由加法公式)()()()(B A P B P A P AB P -+==)(2.1B A P -(1)由于当B A ⊂时B B A = ,)(B A P 达到最小, 即8.0)()(==B P B A P ,则此时)(AB P 取到最大值,最大值为0.4(2)当)(B A P 达到最大, 即1)()(=Ω=P B A P ,则此时)(AB P 取到最小值,最小值为0.25.设,1615)(,81)()()(,41)()()(=======C B A P AC P BC P AB P C P B P A P 求).(C B A P 解:)(1)(ABC P ABC P -=,16116151)(1=-=-=C B A P ).(C B A P )()()()()()()(ABC P AC P BC P AB P C P B P A P +---++= =167161813413=+⨯-⨯ 习题1.31.从一副扑克牌(52张)中任取3张(不重复)求取出的3张牌中至少有2张花色相同的概率.解:设事件A ={3张中至少有2张花色相同} 则A ={3张中花色各不相同}602.01)(1)(35211311311334≈-=-=C C C C C A P A P 2.50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱,每个部件用3只铆钉,若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率.解法一 随机试验是从50只铆钉随机地取3个,共有350C 种取法,而发生“某一个部件强度太弱”这一事件只有33C 这一种取法,其概率为19600135033=C C ,而10个部件发生“强度太弱”这一事件是等可能的,故所求的概率为196011960010101===∑=i i p p 解法二 样本空间的样本点的总数为350C ,而发生“一个部件强度太弱”这一事件必须将3只强度太弱的铆钉同时取来,并都装在一个部件上,共有33110C C 种情况,故发生“一个部件强度太弱”的概率为1960135033110==C C C p 3.从1至9的9个整数中有放回地随机取3次,每次取一个数,求取出的3个数之积能被10整除的概率.解法一 设A 表示“取出的3个数之积能被10整除”,1A 表示“取出的3个数中含有数字5”, 2A 表示“取出的3个数中含有数字偶数”, 214.0786.019495981)(()(1)(1)(1)()(3332121212121=-=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=+--=-=-==A A P A P A P A A P A A P A A P A P )解法二设”次取得数字为“第5k A k ,3,2,1=k k B k 次取得偶数”,为“第。

线性代数练习册第一章部分答案(本)

线性代数练习册第一章部分答案(本)
AAT AA A2 E
1 .AAT E; 3 . A2 E 2. AT A
AAT E A1 AT ; A2 E A1 A AT A1 A
或 或
AAT E AAAT AE AT A
AAT E, A2 E A( AT A) 0, A可逆 A1 A( AT A) A1 0 AT A
2 −3 1 r2 − 2 r1 0 0 1 3 0 2r2 0 −1 −3 r − 2r 0 4 1
2 0 0
−3 1 10
2 −3 1 r1 + 3r2 0 1 0 1 3 0 r1 0 0 0 0 2 −4 −4 −2 −2 3 5 3 4 3 1 0 −1 −4 3 −4 1 −2 0 −2 −1
而 B11 所以,
(1)11 0 1 0 1 0 , 11 211 0 2 0 2 0
11
1 4 1 0 1 1 4 A11 PB11 P 1 11 1 1 0 2 3 1 1 4 213 1 1 213 1 4 1 1 213 3 1 211 1 1 3 1 211 4 211 2731 2732 683 684
1 0 0
0 5 1 3 0 0
1 (2)B = 3 2 3 解:
−1 −3 −2 −3
3 5 3 4 −1 −3 −2 −3
1 B= 3 2 3 r2 − 3r1 r3 − 2r1 r4 − 3r1
1 0 0 0
3 −1 3 − 4 −8 0 −4 8 0 −3 6 −6 0 −5 10 −10 3 1 0 0 0 1 0 0 −4 −2 0 0 2 −2 0 0 3 2 0 0 −3 2 0 0

线性代数第一章习题及解答

线性代数第一章习题及解答
T
n(n−1) 2
D. a11 . . . a1n ··· ··· ··· D an1 . . . ann
因为 D = D , 而 D =
T
对 DT 作上述行交换得, 于是
D2 = (−1)
n(n−1) 2
D = (−1)
T
n(n−1) 2
5
对 D2 依次进行相邻列交换, 然后转置得
D2 = (−1)
4
a+b 1 Dk = 0 ··· 0 0
ab a+b 1 ··· 0 0 1
0 ab a+b ··· 0 0 a+b 0 ··· 0 0 a+b 1 0 ··· 0 0
··· ··· ··· ··· ··· ··· ab a+b 1 ··· 0 0 ab a+b 1 ··· 0 0
0 0 0 ··· a+b 1 0 ab a+b ··· 0 0 0 ab a+b ··· 0 0
··· ··· ··· ···
(a − n)n (a − n)n−1 . . . a−n
1 1 ··· 1 解:将 Dn 一次进相邻行交换, 然后进行相邻列交换得 1 1 ··· 1 a−n a−n+1 ··· a 2 2 (a − n + 1) · · · a2 (xj = a − j, j = 0, 1, . . . , n) Dn = ( a − n ) . . . . . . . . ··· . (a − n)n (a − n + 1)n ∏ = (xj − xi ) 0≤i<j ≤n ∏ = (i − j )
a a . . . x ··· a 0 . . . x−a (rj − r1 , j = 1, 2, . . . , n)

《线性代数》第1章习题详解

《线性代数》第1章习题详解

一、习题1参考答案1. 求下列排列的逆序数,并说明它们的奇偶性.(1)41253; (2)3712456; (3)57681234; (4)796815432 解(1)()4125330014τ=+++= 偶排列(2)()37124562500007τ=+++++= 奇排列(3)()576812344544000017τ=+++++++= 奇排列 (4)()7968154326755032129τ=+++++++= 奇排列 2. 确定i 和j 的值,使得9级排列.(1)1274569i j 成偶排列; (2)3972154i j 成奇排列. 解 (1) 8,3i j == (2) 8,6i j == 3.计算下列行列式.(1) 412-3- (2) 2211a a a a ++-1 (3) cos sin sin cos x xx x -(5)2322a a bab (6) 1log log 3b aab (7) 000xy x z y z--- 解(1)131523125=⨯-⨯=- (2)4(3)2(1)4212=-⨯--⨯=--3- (3)()22322211(1)11a a a a a a a a a a =-++-=--++-1 (4)22cos sin cos sin 1sin cos x x x x x x -=+= (5)233232220a a a b a b bab =-=(6)1log 3log log 2log 3b b aa ab a b=-=(7) 0000000xyxz xyz xyz y z -=+----=--4. 当x 取何值时3140010xx x≠ ? 解 因为314010xx x2242(2)x x x x =-=-所以当0x ≠且2x ≠时,恒有3140010xx x ≠5. 下列各项,哪些是五阶行列式ij a 中的一项;若是,确定该项的符号.1225324154(1);a a a a a 3112435224(2);a a a a a 4221351254(3)a a a a a解 (1)不是 (2)不是 (3)不是6. 已知行列式11121314212223243132333441424344a a a a a a a a a a a a a a a a ,写出同时含21a 和21a 的那些项,并确定它们的正负号.解 12213443a a a a (2143)2τ= 符号为正; 14213243a a a a (2134)1τ= 符号为负. 7. 用行列式定义计算下列行列式.(1) 11121314152122232425313241425152000000a a a a a a a a a a a a a a a a (2)020200002200(3) 01000200001000n n-解 (1)行列式的一般项为12345()1122334455(1)j j j j j j j j j j a a a a a τ-若345,,j j j 中有两个取1,2列,则必有一个取自3,4,5列中之一的零元素,故该行列式的值为零,即原式0=(2)行列式中只有一项(3241)13223441(1)16a a a a τ-=不为零,所以原式16= (3)行列式的展开项中只有(2,3,4)11223341,1(1)(1)!n n n n n a a a a a n τ---=- 一项不为零,所以原式1(1)!n n -=-8. 用行列式性质计算下列行列式.(1) 111314895(2)1234234134124123(3)41241202105200117⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(4)2141312112325062⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦(5)ab ac aebd cd debf cf ef---(6)a b aa a bb a aa b a解 (1) 111314895321331r rr r--111021013--232r r-111005013--23r r↔111013005---5=(2)12342341341241232341c c c c+++10234103411041210123123413411014121123=121314r rr rr r-+-+-+123401131002220111------34222r rr r-+123401131000440004---160=(3)4124120210520011712r r↔12024124105200117-2131410r rr r--120207240152200117-----24r r↔120201170152200724----3242157r rr r++1202011700178500945342r r-12020117001500945=--(4) 2141312112325062-13r r↔1232312121415062--213141325r rr rr r---12320775032301098----------232r r -12320131032301098-3242310r r r r --123201310076002118----0=(5) abac ae bdcd de bfcfef---每列都提取公因式bc eadf bc e b c e ---每列都提取公因式111111111adfbce --- 1213r r r r ++11102020abcdef -23r r ↔11120002abcdef --4abcdef = (6)0000a b a a a b b a a a b a 4321r r r r +++2222000a b a b a b a ba a bb a a a b a ++++()11110200aa b a b b a a a ba =+121314ar r br r ar r -+-+-+()1111002000a b aa b a b b a b b a a --+----- 3232r r r r +-()11110020000a b aa b b b b b --+---=()2111100201100101a b a b a b --+--- 3424r r r ar ++()211110002200110101b a b a b -+---24c c ↔()211110101200110002b a b b a-+---()()2422224b a b b a b a b =+-=-9. 证明下列等式.(1) 111222222222111333333333a b c bc a c ab a bc a b c b c a c a b a b c =-+(2)11122122111211121112111221222122212221220000a a a a a a b b c c b b a a b b c c b b = (3) ax byay bzaz bxay bzaz bx ax by az bxax by ay bz +++++++++=33()xy z a b y z x zxy+(4) 222244441111a b c da b c d a b c d ()()()()()a b a c a d b c b d =-----()()c d a b c d ⋅-+++ 证明 (1)左式123123123321213132a b c b c a c a b a b c a b c a b c =++--- 133321233212332()()()a b c b c b a c a c c a b a b =---+-=222222111333333b c a c a b a b c b c a c a b -+=右式(2)1112212211121112212221220000a a a a c c b b c c b b 按第一行展开222111121112121111122221222121220000a a a c b b a c b b c b b c b b - 111211121122122121222122b b b b a a a a b b b b =-1112111221222122a ab b a a b b =(3) ax byay bzaz bxay bzaz bx ax by az bxax by ay bz +++++++++ 按第一列分开x ay bzaz bxa y az bx ax by z ax by ay bz ++++++ y ay bzaz bxb z az bx ax by x ax by ay bz +++++++2(0)xay bz z ay az bx x z ax by y +++++分别再分(0)yz az bxb z x ax by x y ay bz++++33x y z y z x a y z x b z x y zxy x yz +分别再分332(1)x y z x y za yz x b yz x z xy zxy=+-=右边 (4) 222244441111a b c d a b c d a b c d 213141c c c c c c --- 222222244444441000a b a c a d aa b a c a d a a b a c a d a --------- 按第一列展开222222222222222()()()b ac ad ab ac ad a b b a c c a d d a --------- 每列都提取公因式222111()()()()()()b ac ad a b a c a d a b b a c c a d d a ---++++++ 1213c c c c -+-+()()()b ac ad a ---222221()()()()()b ac bd bb b ac c a b b ad d a b b a +--++-++-+ 按第一列展开()()()()()b ac ad a c b d b -----222211()()()()c bc b a c bd bd b a d b ++++++++()()()()()a b a c a d b c b d =-----()()c d a b c d -+++10.设行列式30453221--,求含有元素2的代数余子式的和. 解 含有元素2的代数余子式是12222313A A A A +++()()()()345453343050111121212222--=-+-+-+---11161026=---=- 11. 设行列式3040222207005322=--D ,求第四行各元素余子式之和的值是多少? 解 解法一:第四行各元素余子式之和的值为41424344M M M M +++040340300304222222222222700000070070=+++---780314(7)(1)(2)28=-⨯++⨯+-⨯-⨯-=-解法二:第四行各元素余子式之和的值为4142434441424344M M M M A A A A +++=-+-+3040222207001111=---按第3行展开32340(7)(1)222111+----232r r +340704111--按第2行展开34282811-=---12.已知 1012110311101254-=-D ,试求: (1) 12223242A A A A -+- (2) 41424344A A A A +++ 解 (1)方法一:虽然可以先计算处每个代数余子式,然后再求和,但是这很烦琐.利用引理知道,第一列每个元素乘以第二列的代数余子式的和等于零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、2222
0a ab a b ab ab ab b
=⋅-⋅= 2、
22cos sin cos cos (sin )sin cos sin 1sin cos αααααααααα-=⋅--⋅=+=
3、
222()()22()2a bi b a bi a bi ab a b ab a b a
a bi
+=+--=+-=--
4、3
24
2
123*1*(3)2*(2)*5(4)*4*23*(2)*22*4*(3)(4)*1*5423--=-+-+---------
5、123
4
561*5*92*6*73*4*81*6*82*4*93*5*7789=++---
6、2
21
4
1
12*1*1012*(1)*2021*4*1992*(1)*1992*4*1011*1*202202199101-=+-+----
7、22
22
343222222
11101(1)(1)(1)01001w w w w
w w
w w w w w w w w w w w w +⨯---=-=-++=-⨯--第2行第1行()第3行第1行()
8、33222321
21*2*3322663
x x
x
x x x x x x x x x
x =++---=-+ 9、
1430004
004
00431(1)04342560432432
4321
+-=-=-按第行展开
10、公式:
解:
10100
00
10
010
02000020
10(1)10
080000
800900009
10
+-⋅按第行展开
11、
31
111111*********
00311*(2)811110020411
1
1
1
2
----=-=------第行第行第行第行第行第行
12、该行列式中各行元素之和均为10,所以吧第2,3,4列加到第1列,然后再把第1列后三个元素化为零,再对第1列展开,即
13、
5
04211111111210
1121112102
1
143247412041200324153
1
1
11
5
42
0153
-----
=-
=----=----------第,行交换
14、先将第1行与第5行对换,第3行与第4行对换(反号两次,其值不变)
根据课本20页公式(1.21),原式012
11
2003*41203
022
=
-=-=-() 15、
12
00340012132*160013
345
1
00
5
1-=
=---()()=32
16、1234512345
123678910678910
21
3567810*220000*********
0100002400024
01011
00013
-=-=-=-第,行对换
17、根据课本20页公式(1.22)
18、100
12
01*2*33!123
A ===,
所以 3*5*(1)||||3!5!0
A A
B B
=-=-
19、证:
20、111111112111110
031111100
411
1
1
10
0x
x x x x y x y
y
x
y
++----=
-+-----第行第行左第行第行第行第行
21、3333
33
3
3333
1
111110
10b a c a
a
b
c b a
c a b a c a
a b c b a c a --==--=⋅----左 22、解法1:()()()()2
32
32233223322332
3
22
33
1100
1111a a b
b b a b a b a
c a c a b a c c c a c a =--=------- 整理得()()()()ab bc ca b a c a c b =++---
又根据范德蒙行列式有:()()()2
2
2
111a a b a c a c b b b c c ---=
故原式得证。

解法2:分析:观察到右端的行列式是一个3阶范德蒙行列式 解答:构建新的4阶范德蒙行列式:
()f x 按第4行展开得:2341424344()f x M M x M x M x =-+⋅-⋅+⋅ (1)
其中,232342
2
3111a a M b b c c =,22442
111a a M b b c c = 按范德蒙行列式结论得:
32
()()()()()x a b c x ab bc ca x abc c a c b b a ⎡⎤=-+++++----⎣⎦ (2)
式子(1)和(2)对比,可得
可以看出,4244()M ab bc ca M =++,即2
32
2
322
32
111()111a a a a b
b ab b
c ca b b c c c c =++,得证.
23、
102021021
200140022354302
34554300250000000000a a a b b c a b ac bd abcd c c b c d d d d
-==⋅=第,列第,行对换对换 24、
2110010100
1101
1(1)(1)0
1011
1010
1a
b b a c
c
c
d d
d
+-=-+------()1a bcd d b cd ++++。

相关文档
最新文档