高中数学:随机事件的概率 (37)

合集下载

人教版高中数学必修三3.随机事件的概率PPT课件(共30)

人教版高中数学必修三3.随机事件的概率PPT课件(共30)

八、知识迁移:
例、 为了估计水库中的鱼的尾数, 先从水库中捕出2 000尾鱼,给每尾鱼作 上记号(不影响其存活),然后放回水 库.经过适当的时间,让其和水库中其 余的鱼充分混合,再从水库中捕出500尾 鱼,其中有记号的鱼有40尾,试根据上 述数据,估计这个水库里鱼的尾数.
课堂感悟
概率是一门研究现实世界中广泛存在的 随机现象的科学,正确理解概率的意义是认识 、理解现实生活中有关概率的实例的关键,学 习过程中应有意识形成概率意识,并用这种意 识来理解现实世界,主动参与对事件发生的概 率的感受和探索。
课堂小结
1.随机事件发生的不确定性及频率的稳定性. (对立统一)
2.随机事件的概率的统计定义:随机事件在相 同的条件下进行大量的试验时,呈现规律性, 且频率总是接近于常数P(A),称P(A)为事件的 概率.
3.随机事件概率的性质:0≤P(A)≤1.
作业:教材P123页T2,T3.
频率与概率的区别与联系:
√(2)明天本地下雨的机会是70%.
又例如生活中,我们经常听到这样的议论 :“天气预报说昨天降水概率为90%,结果根 本一点雨都没下,天气预报也太不准确了。” 学了概率后,你能给出解释吗?
解:天气预报的“降水”是一个随机事 件,概率为90%指明了“降水”这个随机事 件发生的概率,我们知道:在一次试验中, 概率为90%的事件也可能不出现,因此,“ 昨天没有下雨”并不说明“昨天的降水概率 为90%”的天气预报是错误的。
值. (2)频率本身是随机的,在试验前不能确定.
做同样次数的重复试验得到事件的频率会不同,比如全班每人做 了10次掷硬币的试验,但得到正面朝上的频率可以是不同的.
(3)概率是一个确定的数,是客观存在的,与 每次试验无关. 比如,如果一个硬币是质地均匀的,则掷硬币

高中数学必修2《概率》知识点讲义

高中数学必修2《概率》知识点讲义

第三章 概率一.随机事件的概率1、基本概念:⎧⎧⎪⎨⎨⎩⎪⎩不可能事件确定事件事件必然事件随机事件(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)事件:确定事件和随机事件统称为事件,一般用大写字母A ,B ,C ……表示。

2、概率与频数、频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)= A n n为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A) 稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值A n n ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率。

二.概率的基本性质1、各种事件的关系:(1)并(和)事件(2)交(积)事件(3)互斥事件(4)对立事件2、概率的基本性质:(1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;(2)P(E)=1(E 为必然事件);(3)P(F)=0(F 为必然事件);(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);(5)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);三.古典概型(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

随机事件的概率知识点高三

随机事件的概率知识点高三

随机事件的概率知识点高三随机事件的概率是高中数学中重要的概念之一。

在高三数学学习中,我们需要掌握随机事件的基本概念、计算方法以及与排列组合之间的关系。

通过学习这些知识点,我们能够更好地理解随机事件的发生规律,为我们解决实际问题提供数学的思维工具。

一、基本概念随机事件是指在一次试验中可能出现的不同结果。

在概率论中,我们把每个试验的结果称为样本点,样本空间是指所有可能的样本点的集合。

随机事件是样本空间的子集。

例如,抛一枚硬币的样本空间为{正面,反面},那么“出现正面”的事件可以表示为A={正面}。

二、概率的计算方法在概率理论中,我们用P(A)表示事件A的概率。

概率的计算方法有以下几种常见的形式:1.频率定义:当试验的次数非常多时,事件A发生的频率接近于A的概率,用频率定义计算概率的方法适用于大量试验的情况。

2.古典定义:对于一个有限样本空间的等可能试验,事件A的概率可以使用P(A)=|A|/|S|来计算,其中|A|表示事件A包含的样本点个数,|S|表示样本空间中的样本点个数。

3.几何概率定义:对于一些几何问题,我们可以利用几何概率的定义来计算概率。

例如,投掷一个点在单位正方形中的均匀分布的事件A,可以通过计算事件A所占的面积来求得概率。

4.条件概率定义:当事件A的发生与事件B的发生有关联时,我们可以通过条件概率来计算事件A在事件B发生的条件下的概率。

条件概率的计算公式为P(A|B)=P(AB)/P(B),其中P(AB)表示事件A与事件B同时发生的概率,P(B)表示事件B的概率。

三、排列与组合与概率的关系排列与组合是高中数学中的基础知识点,它们与概率有着密切的关系。

1.排列:排列是从n个不同元素中取出m个元素,按照一定的顺序排列的方式。

表示为A(n,m)。

当考虑概率时,排列可以用来计算有序事件的概率。

2.组合:组合是从n个不同元素中取出m个元素,不考虑排列顺序的方式。

表示为C(n,m)。

当考虑概率时,组合可以用来计算无序事件的概率。

随机事件的概率

随机事件的概率

随机事件的概率导言:随机事件是指在一定条件下,由于种种因素的不确定性而发生的事件。

生活中的许多事情都是随机事件,无法预测和控制。

我们对于随机事件的发生与否往往抱有一定的期望或预测,这就引出了随机事件的概率。

一、什么是概率?概率(probability)是现代数学中研究事件发生的一种数学方法。

概率既是一种数学工具,同时也是描述随机现象出现“规律”的一种观念。

概率的大小通常用数字来表示,范围在0到1之间,概率越大,表示事件发生的可能性越大。

二、概率的计算方法1. 古典概率:古典概率也叫“理论概率”,它是指当各种结果发生的机会是等可能的时候,可以根据有限的样本空间中可能结果的数目比来计算。

例如投掷均匀的骰子,每一个面都有相同的机会出现,那么每一个面出现的概率就是1/6。

2. 频率概率:频率概率也叫“实验概率”,它是指在实际的重复试验中,事件发生的次数与总的试验次数的比例。

例如,我们可以通过多次投掷骰子的实验来计算每个面出现的概率,通过实验的结果来估计概率。

3. 主观概率:主观概率也叫“人为概率”,它是指个人根据经验、直觉和一些可能的关联性来估计事件发生的概率。

这种概率是主观的,因为它依赖于个人的判断和看法。

三、随机事件的应用随机事件的概率在现实生活中有着广泛的应用,下面举几个例子进行阐述:1. 赌场中的赌博:在赌场中,很多赌博游戏都基于随机事件的概率来决定输赢。

例如,在轮盘赌中,赌徒根据小球停在哪一个数字上来下注,而小球停留在哪个数字上是完全由随机事件决定的。

赌徒可以根据每个数字出现的概率来决定下注的策略。

2. 保险业的风险评估:在保险业中,概率是一个非常重要的概念。

保险公司需要根据客户的信息以及历史数据来评估风险,并计算出合理的保险费用。

例如,在车险中,保险公司需要根据客户的驾驶记录和车辆信息来评估客户发生车祸的概率,并根据概率来决定保险费用的高低。

3. 股票市场:在股票市场中,投资者根据股票的历史数据和一些基本面分析来预测股票的未来涨跌。

高中数学随机事件的概率 ppt

高中数学随机事件的概率 ppt

例1 下列事件中哪些是必然事件,哪些是不可能事件,哪些是 随机事件?
(1)某地2004年1月1日刮西北风;
(2)当x是实数时,x 2 0;
(3) 手电筒的电池没电,灯泡发亮;
(4)一个电影院某天的上座率超过50%。
随机事件 必然事件 不可能事件 随机事件

(5)从分别标有1,2,3,4,5,6,7,8,9,10的
如果你也想有当初 那位数学家的成就, 一定要好好 学习哟
今天,我们将要研究和探索的便是当初那位数学家所运用 的 数学知识----------随机事件的概率问题。
10.5 随机事件及其概率
思考讨论:下列事件是否发生
(1) “导体通电时,发热”
---------------必然发生
(2) “抛一石块,下落”
2、随机事件在相同的条件下进行大量的试验时,呈现规律性, 且频率 m 总是接近于常数P(A),称P(A)为事件的概率。
n 3、必然事件与不可能事件可看作随机事件的两种特殊情
况。因此,任何事件发生的概率都满足:0≤P(A)≤1。
布置作业:
1。课本P114练习1,3。
2。课外活动(分组实验:两人一组,分组进行) 将相同规格的两个白色、三个黑色的乒乓球放入 一个盒子中,每次从中摸出一球,将实验结果填 入下表,并根据频率值的变化情况估算其概率。
历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示
抛掷次数(n) 正面朝上次数(m) 频率(m/n)
2048 1061 0.518
4040 2048 0.506
12000 6019 0.501
24000 12012 0.5005
30000 14984 0.4996
频率m/n

高二数学人教版必修三第三章知识点梳理:随机事件的概率

高二数学人教版必修三第三章知识点梳理:随机事件的概率

高二数学人教版必修三第三章知识点梳理:随机事件的概率在中国古代把数学叫算术,又称算学,最后才改为数学。

小编准备了高二数学人教版必修三第三章知识点,具体请看以下内容。

1.随机事件的概念在一定的条件下所出现的某种结果叫做事件。

(1)随机事件:在一定条件下可能发生也可能不发生的事件;(2)必然事件:在一定条件下必然要发生的事件;(3)不可能事件:在一定条件下不可能发生的事件。

2.随机事件的概率事件A的概率:在大量重复进行同一试验时,事件A发生的频率总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。

由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0。

3.事件间的关系(1)互斥事件:不能同时发生的两个事件叫做互斥事件;(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件;(3)包含:事件A发生时事件B一定发生,称事件A包含于事件B(或事件B包含事件A);4.事件间的运算(1)并事件(和事件)若某事件的发生是事件A发生或事件B发生,则此事件称为事件A与事件B的并事件。

注:当A和B互斥时,事件A+B的概率满足加法公式:P(A+B)=P(A)+P(B)(A、B互斥);且有P(A+)=P(A)+P()=1。

(2)交事件(积事件)若某事件的发生是事件A发生和事件B同时发生,则此事件称为事件A与事件B的交事件。

5.古典概型(1)古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)古典概型的概率计算公式:P(A)=;一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成.如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是。

如果某个事件A包含的结果有m个,那么事件A的概率P(A)=。

高中是人生中的关键阶段,大家一定要好好把握高中,小编为大家整理的高二数学人教版必修三第三章知识点,希望大家喜欢。

2024届新高考一轮总复习人教版 第十章 第4节 随机事件的概率与古典概型 课件(37张)

2024届新高考一轮总复习人教版 第十章 第4节 随机事件的概率与古典概型 课件(37张)

图形表示
如果事件 B 包含事件 A,事件 A 也包含事件 B,即 B⊇A 且 A⊇B,则称事件 特殊情形
A 与事件 B 相等,记作 A=B
(2)并事件与交事件
并事件(和事件)
交事件(积事件)
一般地,事件 A 与事件 B_至__少__有__一___ 一般地,事件 A 与事件 B_同__时__发__生___,
1.事件的相关概念
备考第 1 步——梳理教材基础,落实必备知识
发生
不发生
ቤተ መጻሕፍቲ ባይዱ
2.事件的关系和运算
(1)包含关系与相等关系
定义
一般地,若事件 A 发生,则事件 B_一__定__发__生___,我们就称事件 B 包含事件 A(或事件 A 包含于事件 B)
含义
A 发生导致 B 发生
符号表示
B__⊇__A(或 A__⊆__B)
【小题热身】 1.思考辨析(在括号内打“√”或“×”) (1)事件发生的频率与概率是相同的.( ) (2)在大量重复试验中,概率是频率的稳定值.( ) (3)两个事件的和事件是指两个事件都得发生.( ) (4)若 A∪B 是必然事件,则 A 与 B 是对立事件.( ) 答案:(1)× (2)√ (3)× (4)×
(2)古典概型的概率公式 一般地,设试验 E 是古典概型,样本空间 Ω 包含 n 个样本点,事件 A 包含其中的 k 个样本点,则定义事件 A 的概率 P(A)=____n_k____=nn((ΩA)). 其中,n(A)和 n(Ω)分别表示事件 A 和样本空间 Ω 包含的样本点个数.
[必记结论] 1.从集合的角度理解互斥事件和对立事件. (1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集. (2)事件 A 的对立事件-A 所含的结果组成的集合,是全集中由事件 A 所含的结果组成 的集合的补集. 2.概率加法公式的推广 当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即 P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).

随机事件的概率计算

随机事件的概率计算

gllllfe 知识内容版块一:事件及样本空间1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现彖;随机现象是在相同条件下,很难预料哪一种结果会出现的现彖.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.一次试验是指事件的条件实现一次.在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件;在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为随机事件.通常用大写英文字母A, C,…来表示随机事件,简称为事件.3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件・它包含所有可能发生的基本结果.所有基本事件构成的集合称为基本事件空间,常用G表示.版块二:随机事件的概率计算1.如果事件同时发生,我们记作AC1B,简记为初;2.一般地,对于两个事件A, B,如果有P(AB) = P{A)P(B),就称事件A与B相互独立,简称A 与B独立.当事件A与B独立时,事件刁与B, A与鸟,刁与万都是相互独立的.3.概率的统计定义一般地,在“次重复进行的试验中,事件A发生的频率冬,当"很人时,总是在某个常数附n近摆动,随着"的增加,摆动幅度越来越小,这时就把这个常数叫做事件A的概率,记为P(A)・从概率的定义中,我们可以看出随机事件的概率P(A)满足:OWP(A)WI.当A是必然事件时,P(A) = 1,当A是不可能事件时,P(A) = O.4.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件.由事件4和事件B至少有一个发生(即A发生,或B发生,或都发生)所构成的事件C,称为事件A与B的并(或和),记作C = AUB.若C = AUB,则若C发生,则A、B中至少有一个发生,事件AUB是由事件A或B所包含的基本事件组成的集合.5.互斥事件的概率加法公式:若A、B是互斥事件,有P(AUB) = P(A) + P(B)若事件人,4,…,人两两互斥(彼此互斥),有p(人u比u…u A)=P( A)+戸(比)+…+ P(九).事件%U4 U…发生是指审件人,人人中至少有一个发生・全国名校高中数学优质课时训练汇编(优品质)6. 互为对立事件不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 有 P(A) = 1-P(A).<教师备案〉1. 概率中的“事件”是指咂机试验的结果=与通常所说的事件不同.基本事件空间是指一 次试验中所有可能发生的基本结果.有时我们提到爭件或随机爭件,也包含不可能事件和必 然事件,将其作为随机事件的特例,需要根据情况作出判断.2. 概率可以通过频率来“测量=或者说是频率的一个近似,此处概率的定义叫做概率的统 计定义.在实践中,很多时候采用这种方法求事件的概率.随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总是在某 个常数附近摆,且随着试验次数的增加,摆动的幅度越来越小,这个常数叫做这个随机事件 的概率•概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的 大小,频率在大量重复试验的前提下可近似地看作这个事件的概率.3. 基本事件一定是两两互斥的,它是互斥事件的特殊情形.相乘事件.等可能事件:P(A)=- n 第三步,运用公式|互斥事件:P(A+B)=P(A)+P(B)独立事件:P(A B) = P(A)・P(B)〃次独立重复试验:P n (k) = C" (1-p )>J 'k第四步,答,即给提出的问题有一个明确的答复・ 解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4).(5)两种概率): (1)随机事件的概率,等可能性事件的概率; ⑵互斥事件有一个发生的概率; ⑶相互独立事件同时发生的概率;⑷川次独立重复试验中恰好发生R 次的概率;⑸川次独立重复试验中在第R 次才首次发生的概率; ⑹对立事件的概率.另外:要注意区分这样的语句:“至少有一个发生〃,"至多有一个发生S 〃恰好有一个发生", “都发生”,“不都发生S “都不发生〃,"第R 次才发生〃等.gm 医 典例分析题型一概率与频率求概率的步骤是:■等可能事件 第一步,确定事件性质<互斥事件,即所给的问题归结为四类事件中的某一种.独『事件n 次独立重复试验 主要方法:解决概率问题要注意“四个步骤,一个结合”: 第二步,判断事件的运算 ,即是至少有一个发生,还是同时发生,分别运用相加或和事件枳事件求解【例1】下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性的大小;②做“次随机试验,事件A发生的频率仪就是事件的概率;n③百分率是频率,但不是概率;④频率是不能脱离具体的…次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值.其中正确的是()A.①④©B.②④⑤C.①③④D.①③⑤【例2】对某工厂所生产的产品质量进行调查,数据如下:根据上表所提供的数据,估计合格品的概率约为多少?若要从该厂生产的此种产品中抽到950件合格品,大约需要抽查多少件产品?【例3】某篮球运动员在最近几场大赛中罚球投篮的结果如下:(1)在表中直接填写进球的频率;(2)这位运动员投篮一次,进球的概率为多少?【例4】下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性的大小;②做〃次随机试验,事件A发生加次,则事件A发生的概率为仝;n③频率是不能脱离…次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确命题的序号为___________ ・【例5】盒中装有4只相同的白球与6只相同的黄球.从中任取一只球.试指出下列事件分别属于什么事件?它们的概率是多少?⑴A = 〃取岀的球是白球〃;⑵B = 〃取岀的球是蓝球〃;〃取岀的球是黄球〃;⑷£) = 〃取出的球是白球或黄球〃•题型二独立与互斥【例6】(2010辽宁高考)两个实习生每人加工•个零件•加工为•等品的概率分别为-^11 --两个零件是否 3 4加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为A.丄B. —C. -D.-2 12 4 6【例7】掷两枚均匀的骰子,记人=“点数不同笃3 = “至少有一个是6点笃判断A与B是否为独立事件.【例8】设M和N是两个随机事件,表示事件M和事件N都不发生的是()A. M + NB.莎帀C. M-N + M-ND.【例9】判断下列各对事件是否是相互独立事件(1)甲组3名男生、2名女生;乙组2名男生、3名女生,今从甲、乙两组中各选1名同学参加演讲比赛,”从甲组中选岀1名男生〃与"从乙组中选岀1名女生〃•⑵容器内盛有5个白乒乓球和3个黄乒乓球,〃从8个球中任意取岀1个,取出的是白球〃与〃从剩下的7个球中任意取出1个,取岀的还是白球〃.【例10】⑴某县城有两种报纸甲、乙供居民订阅,记事件A为“只订甲报冷事件B为“至少订一种报",事件C为“至多订一种报”,事件D为“不订甲报”,事件E为“一种报也不订”.判断下列每对事件是不是互斥事件,再判断它们是不是对立事件.①A与C;②B与E;③B与D;④B与C;⑤C与【例11】抛掷一枚骰子,记事件A为“落地时向上的数是奇数=事件B为嚅地时向上的数是偶数”,事件C为“落地时向上的数是3的倍数”,事件D为“落地时向上的数是6或4”,则下列每对事件是互斥事件但不是对立事件的是()A. A 与B B・B 与C C. A 与£> D. C 与D【例12】每道选择题都有4个选择支,其中只有1个选择支是正确的.某次考试共有12道选择题,某人说:“每个选择支正确的概率是丄,我每题都选择第一个选择支,4则一定有3题选择结果正确”.对该人的话进行判断,其结论是()A.正确的B.错误的C.模棱两可的D.有歧义的题型三随机事件的概率计算【例13】(2010丰台二模)一个正三角形的外接圆的半径为1,向该圆内随机投一点P,点P恰好落在正三角形外的概率是__________ ・【例14】(2010崇文一模)从52张扑克牌(没仃人小王)屮随机的抽•张牌,这张牌是八戈0或K的概率为【例15】(2010朝阳一模)一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行・若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不人于10.则就有可能撞到玻 璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行 是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置町能性相同,那么蜜蜂飞 j •是安全的概率是( ,.丄B.丄8 16【例16】(2010东城二模)在直角坐标系xOy lb 设集合C = {(x,刃|0WxWl,0WyWl},在区域G 内任取… 点P (x,y ),则满足x+ y W1的概率等于 ___________________ ・【例17】(2010朝阳一模)在区间[-兀,兀|内随机取两个数分别记为a,b ,则使得函数f (x ) = x 2+2ax-b 2+ n (i 零点的概率为()【例18】(2010东城一模)某人向 个半径为6的圆形标靶射击,假设他每次射击必定会中靶,且射中靶内各 点是随机的,则此人射击中靶点与靶心的距离小于2的概率为( ) A. -L B ・丄 C ・丄 D ・丄 13942【例19】(2010西城一模)在边长为1的」F 方形ABCD 内任取•点、P 为) C.—271 - 4D.1 - 2C3 -4 B.7 - 8A.P A 订的全国名校高中数学优质课时训练汇编(优品质)【例20】(2010丰台二模)已知Q = {(x , y)|x+y W6 , xMO , y MO} , A = {(x,y)|x W 4 , y M 0 , x-2y M 0}.若向区域C I:随机投•点P 则点P落入区域A的概率是 _______________ ・【例21】(2010朝阳一模)袋子中装有编号为a上的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个坪.⑴写出所有不同的结果;⑵求恰好摸出1个照球和1个红球的概率;⑶求至少摸出1个照球的概率.【例22】(2010崇文二模)在平面直角坐标系xOy中,平面区域W屮的点的坐标(x,y)满足疋+ b W5 ,从区域W中随机取点M(x,y).(1)若xwZ, yeZ,求点M位「•第四象限的概率:⑵已知直线/:y = _x+b(b>0)与圆O:x2 + r =5相交所截得的弦长为JTT,求y^-x+b的概率.全国名校高中数学优质课时训练汇编(优品质)【例23】(2010西城一模)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4 .现从盒子中随机抽取卡片.⑴若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;⑵若第一次抽1张k片•放回后再抓収1张卡片,求两次抽取屮至少一次抽到数字3 的概率.【例24】(2010海淀一模)某商场为吸引顾客消费推If, -JW优忠活动.活动规则如下:消费每满WO兀町以转动如图所示的圆盘一次,其屮O为閲心,且标有20元、10兀、0兀的一部分区域面积相等.假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券.(例如:某顾客消费了218兀・第一次转动获得了20元,第二次获得了10兀,则其共获得了30元.优惠券.)顾客甲和乙都到商场进行了消费,并按照规则参与了活动.⑴若顾客甲消费了128兀,求他获得优惠券面额人于0元的概率?⑵若顾客乙消费了280元•求他总■获得优惠券金额不低F2(H的概率?【例25】(2010石景山一模〉为援助汶川灾厉反建,対某项I卫M行竟标,共仃6家企业参号竞标.”中4企业來口辽宁省,B、C两家企业来自福建省,D、E、F[家企业來自河南省.此项工程需要两家企业联合施工,假设每家企业中标的概率相同.⑴企业E卩标的概率是多少?⑵在中标的企业中,至少有一家来自河南省的概率是多少?【例26】(2010湖北高考)投掷一枚均匀硕币和一枚均匀骰子各一次,记"硬币正面向上"为爭件A “骰于向上的点数是3”为Mff B,则M件A , B中至少有•件发生的概率是A. 2B. -C. —D.-12 2 12 4【例27】盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是___________________【例28】(2010江西高考)一位国王的铸币人臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑人臣作弊, 他用两种方法来检测.方法一:在100箱中各任意检查一枚:方法二:在5箱中各—'「吗枚•国「13;.「、旌发现至◊刁币的槪.「别为刃,必.则()A. I" =B・p x < p2C・> p2D・以上二种情况都右川•能【例29】(2010陕西卷高考)铁矿石A和B的含f a‘ ;• '如每丿j吨铁矿右的CO2的排放量b及每万吨恢矿石的价格C如卜表:某冶炼厂至少要T产1・9 (万吨)铁,若要求C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)计算Fra biblioteknA n














0.810 ,
0.792,0.800,0.810,0.793,0.794,0.807. (2)由于这些频率非常地接近 0.800,且在它附近摆动,所以运动
员击中飞碟的概率约为 0.800.
2.(变结论)本例条件不变,记 C 为事件“一续保人本年度的保 费高于基本保费的 150%”,求 P(C)的估计值.
三个数字的和大于 6”这一事件是( )
A.必然事件
B.不可能事件
C.随机事件
D.以上选项均不正确
(1)C (2)C [(1)①②③可能发生,也可能不发生,是随机事件, ④一定不发生,是不可能事件,故选 C.
(2)从 1,2,3,…,10 这 10 个数字中任取 3 个数字,这三个数字 的和可能等于 6,也可能大于 6,∴数字之和大于 6,可能发生也可 能不发生,∴“这三个数字的和大于 6”是随机事件,故选 C.]
1.(变条件)某射击运动员进行飞碟射击训练,七次训练的成绩 记录如下:
射击次数 n 100 120 150 100 150 160 150 击中飞碟数 nA 81 95 120 81 119 127 121
(1)求各次击中飞碟的频率;(保留三位小数) (2)该射击运动员击中飞碟的概率约为多少?
[解]
联如下:
上年度出险次数 0
1
2
3
4
≥5
保费
0.85a a 1.25a 1.5a 1.75a 2a
随机调查了该险种的 200 名续保人在一年内的出险情况,得到如
下统计表:
出险次数 0
1
2
3
4
≥5
频数
60
50
30
30
20
10
(1)记 A 为事件“一续保人本年度的保费不高于基本保费”.求 P(A)的估计值;
合作 探究 释疑 难
事件类型的判断
【例 1】 (1)下列事件:①抛一枚硬币,出现正面朝上;②某人
买彩票中奖;③大年初一太原下雪;④标准大气压下,水加热到 90 ℃
时会沸腾.其中随机事件的个数是( )
A.1
B.2
C.3
D.4
(2)在 1,2,3,…,10 这 10 个数字中,任取 3 个数字,那么“这
C [由频率与概率的有关概念知,C 正确.]
3.“同时抛掷两枚质地均匀的硬币,记录正面向上的枚数”, 该试验的结果共有________种.
3 [正面向上的枚数可能为 0,1,2,共 3 种结果.]
4.某人射击 10 次,恰有 8 次击中靶子,则该人击中靶子的频率 是________.
0.8 [180=0.8.]
(1)“a+b=5”包含以下 4 个基本事件: (1,4),(2,3),(3,2),(4,1). (2)“a=b”这一事件包含以下 4 个基本事件: (1,1),(2,2),(3,3),(4,4).
(3)直线 ax+by=0 的斜率 k=-ab>-1,所以ab<1.所以 a<b. 所以包含以下 6 个基本事件:(1,2),(1,3),(1,4),(2,3),(2,4), (3,4).
不重不漏地列举试验的所有可能结果的方法 1结果是相对于条件而言的,要弄清试验的结果,必须首先明 确试验中的条件. 2根据日常生活经验,按照一定的顺序列举出所有可能的结果, 可应用画树状图、列表等方法解决.
[跟进训练] 2.下列随机事件中,一次试验各指什么?试写出试验的所有结 果. (1)抛掷两枚质地均匀的硬币; (2)从集合 A={a,b,c,d}中任取 3 个元素组成集合 A 的子集.
(2)记 B 为事件“一续保人本年度的保费高于基本保费但不高于 基本保费的 160%”.求 P(B)的估计值.
思路点拨:(1)由已知可得续保人本年度的保费不高于基本保费 的频数(一年内出险次数小于 2 的频数),进而可得 P(A)的估计值;(2) 由已知可得续保人本年度的保费高于基本保费但不高于基本保费的 160%的频数(一年内出险次数大于 1 且小于 4 的频数),进而可得 P(B) 的估计值.
使 x2<0”是不可能事件;③“每年的国庆节都是晴天”是必然事件;
④“从 100 个灯泡(有 10 个是次品)中取出 5 个,5 个都是次品”是随
机事件.其中正确命题的个数是( )
A.4
B.3
C.2
D.1
B [③“每年的国庆节都是晴天”是随机事件,故错误;①②④ 的判断均正确.]
试验结果的列举
【例 2】 设集合 M={1,2,3,4},a∈M,b∈M,(a,b)是一个基 本事件.
3.写试验结果时,要按顺序写,特别要注意题目中的有关字眼, 如“先后”“依次”“顺序”“放回”“不放回”等.
1.判断下列结论的正误(正确的打“√”,错误的打“×”)
(1)“抛掷硬币五次,均正面向上”是不可能事件. ( )
(2)在平面图形中,三角形的内角和是 180°是必然事件.
(3)频率与概率可以相等.
课堂 小结 提素 养
1.辨析随机事件、必然事件、不可能事件时要注意看清条件, 在给定的条件下判断是一定发生(必然事件),还是不一定发生(随机事 件),还是一定不发生(不可能事件).
2.随机事件在一次试验中是否发生虽然不能事先确定,但是在 大量重复试验的情况下,随机事件的发生呈现一定的规律性,因而, 可以从统计的角度,通过计算事件发生的频率去估算概率.
4.做试验“从一个装有标号为 1,2,3,4 的小球的盒子中,不放回 地取两次小球,每次取一个,构成有序数对(x,y),x 为第一次取到 的小球上的数字,y 为第二次取到的小球上的数字”.
(1)求这个试验结果的个数; (2)写出“第一次取出的小球上的数字是 2”这一事件.
[解] (1)当 x=1 时,y=2,3,4;当 x=2 时,y=1,3,4;同理当 x =3,4 时,也各有 3 个不同的有序数对,所以共有 12 个不同的有序数 对.故这个试验结果的个数为 12.
[提示] 不是.随着试验次数的增多(足够多),频率稳定于概率 的可能性在增大.在事件的概率未知的情况下,我们常用频率作为概 率的估计值.即概率是频率的稳定值,频率是概率的估计值.
【例 3】 某险种的基本保费为 a(单位:元),继续购买该险种
的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关
随机事件的频率与概率 [探究问题] 1.随机事件的频率与试验次数有关吗? [提示] 频率是事件 A 发生的次数与试验总次数的比值,当然与 试验次数有关. 2.随机事件的概率与试验次数有关吗? [提示] 概率是客观存在的一个确定的数,与试验做不做,做多 少次完全无关.
3.试验次数越多,频率就越接近概率吗?
[解] (1)一次试验是指“抛掷两枚质地均匀的硬币一次”,试验 的可能结果有 4 个:(正,反),(正,正),(反,反),(反,正).
(2)一次试验是指“从集合 A 中一次选取 3 个元素组成集合 A 的 一个子集”,试验的结果共有 4 个:{a,b,c},{a,b,d},{a,c, d},{b,c,d}.
判断事件类型的思路 判断一个事件是随机事件、必然事件还是不可能事件,首先一定 要看条件,其次是看在该条件下所研究的事件是一定发生必然事件 、不一定发生随机事件,还是一定不会发生不可能事件.
[跟进训练]
1.给出下列四个命题:①“三个球全部放入两个盒子,其中必
有一个盒子有一个以上的球”是必然事件;②当“x 为某一实数时可
[解] 事件 C 发生当且仅当一年内出险次数大于或等于 4,由表 中数据知,一年内出险次数大于或等于 4 的频率为202+0010=0.15,
故 P(C)的估计值为 0.15.
随机事件概率的理解及求法 1理解:概率可看作频率理论上的期望值,它从数量上反映了随 机事件发生的可能性的大小.当试验的次数越来越多时,频率越来越趋 近于概率.当次数足够多时,所得频率就近似地看作随机事件的概率. 2求法:通过公式 fnA=nnA= mn 计算出频率,再由频率估算概率.
(1)“a+b=5”这一事件包含哪几个基本事件? (2)“a=b”这一事件包含哪几个基本事件? (3)“直线 ax+by=0 的斜率 k>-1”这一事件包含哪几个基本事 件?
[解] 这个试验的基本事件构成集合 Ω={(1,1),(1,2),(1,3), (1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2), (4,3),(4,4)}.
计 概率P(A) ,即 P(A)≈nnA.
思考:两位同学在相同的条件下,都抛掷一枚硬币 100 次,得到 正面向上的频率一定相同吗?
[提示] 不一定.
1.事件“经过有信号灯的路口,遇上红灯”是( )
A.必然事件
B.不可能事件
C.随机事件
D.以上均不正确
[答案] C
2.下列说法正确的是( ) A.任何事件的概率总是在(0,1]之间 B.频率是客观存在的,与试验次数无关 C.随着试验次数的增加,事件发生的频率一般会稳定于概率 D.概率是随机的,在试验前不能确定
3.一个地区从某年起 4 年之内的新生婴儿数及其中的男婴数如
下表所示:
时间范围 1 年内
2 年内
3 年内
4 年内
新生婴儿数 n 5 544
9 607
13 520
17 190
男婴数 m
2 883
4 970
6 994
8 892
这一地区男婴出生的概率约是________.(保留 4 位小数)
0.517 3 [计算mn 即得男婴出生的频率依次约为 0.520 0,0.517 3, 0.517 3,0.517 3.由于这些频率非常 0.5173,因此,这 地区男婴出生的 概率为 0.5173.]
相关文档
最新文档