人教版九年级数学上册导学案 23.1 旋转和旋转的性质

合集下载

人教版数学九年级上册23 第1课时 旋转的概念与性质导学案

人教版数学九年级上册23 第1课时 旋转的概念与性质导学案

第二十三章旋转投我以桃,报之以李。

《诗经·大雅·抑》原创不容易,【关注】,不迷路!23.1图形的旋转23.1.1第1课时旋转的概念与性质学习目标:1.掌握旋转的有关概念及基本性质.2.能够根据旋转的基本性质解决实际问题.重点:掌握旋转的有关概念及基本性质.难点:探索旋转的性质并能运用旋转的性质解决实际问题.一、知识链接1.将图①平移,使点A的对应点为点C,画出平移后的图形.2.如图②,已知△ABC和直线l,请画出△ABC关于直线l的对称图形.图①图②二、要点探究探究点1:旋转的概念观察与思考观察荡秋千、转动的钟表和风车,它们有什么共同的特征?思考怎样来定义上面这些图形的变换?知识要点在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心.转动的角称为旋转角.如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点.转动的方向分为顺时针与逆时针.例1下列物体的运动是旋转的有.①电梯的升降运动;②行驶中的汽车车轮;③方向盘的转动;④骑自行车的人;⑤坐在摩天轮里的小朋友.方法总结:判断一种运动是否属于旋转,先看图形是否在同一平面内运动,其次要看是否有旋转中心,旋转角,旋转方向,还要注意判断变化前后图形大小是否发生了变化.例2若叶片A绕O顺时针旋转到叶片B,则旋转中心是______,旋转角是_________,旋转角等于____度,其中的对应点有_______、_______、_______、_______、_______、_______.练习如图,三角形ABD经过旋转后到三角形ACE的位置,其中∠BAC=60°.(1)旋转中心是哪一点?(2)旋转了多少度?顺时针还是逆时针?(3)如果M是AB的中点,经过上述旋转后,点M转到什么位置?要点归纳:确定一次图形的旋转时,必须明确旋转中心、旋转角、旋转方向.旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度”称之为旋转的三要素.典例精析例3如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )A.30°B.45°C.90°D.135°方总结:一个图形由一个位置旋转到另一个位置,如果有固定不动的点,那么这个点就是旋转中心,对应点与旋转中心所连线段的夹角等于旋转角.探究点2:旋转的性质合作探究1根据图形填空旋转中心是点__________;图中对应点有;图中对应线段有_____________________________________.每对对应线段的长度有怎样的关系?________.图中旋转角等于________.合作探究2观察下图,你能得到什么结论?知识要点:旋转的性质1.对应点到旋转中心的离相等;2.两组对应点分别与旋转中心的连线所成的角相等;3.旋转中心是唯一不动的点;4.旋转不改变图形的形状和大小.想一想如图,将△ABC逆时针旋转△ADE,如何确定它们的旋转中心位置?练一练如图,在平面直角坐标系xOy中,△ABC的顶点A(1,2)、B(-2,2)、C(-1,0).若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.0,0)B.(1,0)C.(1,-1)D.(2.5,0.5)方法总结:旋转中心在对应点连线的垂直平分线上,找到旋转中心,找到两组对应点连线的垂直平分线的交点即可.例4如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D 恰好在同一直线上,求∠B的度数.变式如图,△ABC为钝角三角形,将△ABC绕点A逆时针旋转120°,得到△AB'C',连接B'.若AC'∥BB,则∠CAB'的度数为多少?例5如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,已知AF=5,AB=8,求DE的长度.方法总结:利用旋转的性质解决问题时应抓住以下几点:(1)明确旋转中的“变”与“不变”;(2)找准旋转前后的“对应关系”;(3)充分挖掘旋转过程中的相等关系.三、课堂小结旋转定义三要素:旋中心,旋转方向和旋转角度性质①旋转前后的图形全等;②对应点到旋转中心的距离相等;③对应点与旋转中心所连线段的夹角等于旋转角.1.下列现象中属于旋转的有()①地下水位逐年下降;②传送带的移动;③水龙头开关的转动;④钟摆的运动;⑤荡秋千运动.A.2个B.3个C.4个D.5个2.下列说法正确的是()A.旋转改变图形的形状和大小B.平移改变图形的位置C.图形可以沿某直线方向旋转一定距离D.由平移得到的图形也一定可由旋转得到3.△ABC绕点A旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是()A.DE=3B.AE=4C.∠CAB是旋转角D.∠CAE是旋转角第3题图第4题图第5题图4.如图,在平面直角坐标系中,有一个Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.则旋转中心的坐标是()A.(0,0)B.(-1,0)C.(1,0)D.(0,-1)5.如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3则∠BE′C=________度.拓展提高:6.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D按逆时针方向旋转90°得到△DCM.(1)求证:EF=MF;(2)当AE=1时,求EF的长.参考答案自主学习一、知识链接1.图略2.图略课堂探究二、要点探究探究点1:观察与思考思考答:把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.钟表的指针在不停地转动,从3时到5时,时针转动了60度;把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.风车风轮的每个叶片在风的吹动下转动到新的位置.例1③⑤例2O∠AOB60A与BB与CC与DD与EE与FF与A练习解:(1)旋转中心是点A.(2)旋转了60°,逆时针.(3)点M转到了AC的中点上.例3C探究点2:合作探究1C点A与点A′,点B与点B′,点M与点M′,点N与点N′线段CA与CA′、CB与CB′、AB与A′B′相等45°合作探究2解:角:∠AOA'=∠BOB'=∠COC';线:AO=A'O,BO=B'O,CO=C'O 想一想解:如图,两条对应点连线段的垂直平分线的交点O即为旋转中心.练一练C例4解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AB=AD.∴∠B=1(180°-150°)=15°.2变式解:∵将△ABC绕点A逆时针旋转120°,得到△AB'C',∴∠BAB'=∠CAC'=120°,AB=AB'.∴∠AB'B=1(180°-120°)=30°.又∵AC'∥BB',∴∠2B'AC'=∠AB'B=30°.∴∠CAB'=∠CAC'-∠B'AC'=120°-30°=90°.例5解:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=5,AD=AB=8.∴DE=AD-AE=8-5=3.当堂检测1.B2.B3.D4.A5.135拓展提高:(1)证明:∵△DAE绕点D逆时针旋转90°得到△DCM,∴DE=DM,∠EDM=90°,∵∠EDF=45°,∴∠FDM=45°,∴∠EDF=∠FDM.又∵DF=DF,DE=DM,∴△DEF ≌△DMF,∴EF=MF.(2)解:设EF=MF=x,∵AE=CM=1,AB=BC=3,∴EB=AB-AE=3-1=2,BM=BC+CM=3+1=4,∴BF=BM-MF=4-x.在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4-x)2=x2,解得x=52.则EF的长为52.【素材积累】岳飞应募参军,因战功累累不断升职,宋高宗亲手写了“精忠岳飞”四个字,制成旗后赐给他。

人教版九年级数学上册23.1:图形的旋转(教案)

人教版九年级数学上册23.1:图形的旋转(教案)
五、教学反思
在今天的课堂中,我们探讨了图形的旋转,这是一个既有趣又富有挑战性的课题。我发现,学生们对旋转的概念接受度很高,他们能够很快地理解旋转的基本性质和三要素。在讲授过程中,我尽量用生动的例子和实际操作来解释抽象的几何概念,这样做的效果似乎不错,学生们能够积极参与并有所收获。
让我印象深刻的是,在实践活动环节,学生们分组讨论并操作旋转实验时,他们表现出了极大的兴趣和热情。通过亲自动手,他们不仅加深了对旋转原理的理解,还学会了如何将理论知识应用到解决实际问题中。尤其是在成果展示环节,每个小组都能够清晰地表达他们的思考过程和解决方案,这让我感到很欣慰。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指将一个图形绕着某个点进行转动,这个点称为旋转中心。旋转可以是顺时针或逆时针方向,转动的角度可以是任意度数。图形旋转是几何变换的一种,它在艺术、工程等多个领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将一个三角形绕着某个点旋转一定角度,以及这个过程在建筑设计中的应用。
-创设情境,让学生运用旋转知识解决实际问题,如设计图案、计算工程量等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,门的开合、风车的转动等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(3)运用旋转解决实际问题,如计算旋转后的图形的面积、周长等。
2.教学难点
(1)旋转中心的确定:帮助学生理解旋转中心对图形旋转效果的影响,掌握如何准确找出旋转中心。

(人教版九年级上册)第二十三章《旋转》导学案

(人教版九年级上册)第二十三章《旋转》导学案

九年级下数学NO :1 主备人:银 波 审核人: 授课人: 第 周 星期 第 组 学生 预习评价: 整理评价23.1图形的旋转(1)一、学习目标:通过具体实例认识图形的旋转,理解“对应点到旋转中心的距离相等”以及“旋转前、后的图形全等”的基本性质。

二、学习重难点为:旋转及对应点的有关概念及其应用 三、学习过程 (一)、情景导入: 1、观察下列图片:(1)时钟上的秒针在不停的转动;(2)大风车的转动;(3)飞速转动的电风扇叶片;(1)这些运动有什么共同特征?(2)它们在运动过程中,形状、大小、位置是否发生变化?(二)自主学习: 1、旋转的概念:图1:在同一平面内,点A 绕着定点O 旋转某一角度得到点 ; 图2:在同一平面内,线段AB 绕着定点O 旋转某一角度得到线段 ; 图3:在同一平面内,三角形ABC 绕着定点O 旋转某一角度得到 。

把一个 绕着 内 转动一个 ,叫做图形的旋转, 叫做旋转中心, 叫做旋转角。

2、旋转的三要素:(1) ;(2) ;(3) 。

3、旋转的性质:(1)△ABO 绕点O 旋转得到△CDO ,则:点B 的对应点是________;线段OB 的对应线段是________;线段CD 的对应线段是________; ∠AOB 的对应角是________;∠B 的对应角是________; 旋转中心是________;旋转角是_________________。

(2)△ABC在旋转过程中,哪些发生了变化?AB= ;∠AOB= ;∠ABO= ;∠OAB= ;OA= ;OB= ;OC= ;∠AO C= 。

对应边:;对应角:;对应点到旋转中心的距离:;对应点与旋转中心所连线段的夹角等于。

三、例题学习:1,△ABF是△ADE的旋转图形。

四边形ABCD是边长为1的正方形,且DE=4(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?四、课堂练习:如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF. 在这个旋转过程中:(1)旋转中心是什么?(2)经过旋转,点A、B分别移动到什么位置?(3)旋转角是什么?(4)AO与DO的长有什么关系?BO与EO呢?(5)∠AOD与∠BOE有什么大小关系?五、课后练习:1、下列现象中属于旋转的有( )个①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动。

人教版九年级数学上册导学案:23.1 图形的旋转(第一课时)

人教版九年级数学上册导学案:23.1 图形的旋转(第一课时)

九级数学 课题23.1图形的旋转(第一课时) 学习目标:1、掌握旋转的定义以及相关概念2、理解旋转的基本性质3、利用性质解决相关问题。

学习重点:旋转相关概念以及性质学习难点:利用性质解决相关问题。

学习过程:一、课前展示:二、自主学习-------旋转的定义(一).自学教材P56并填空:1、把一个平面图形___着平面内某一点O _____一个角度,就叫做图形的旋转,点O 叫做_________,转动的角叫做________。

因此,旋转的决定因素....是_________和_________。

(二).自学检测:1.钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了_________度.2.如图,如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OEF ,在这个旋转过程中:(1)旋转中心是______旋转角是__________(2)经过旋转,点A 、B 分别移动______________3.如图:∆ABC 是等边三角形,D 是BC 上一点,∆ABD 经过旋转后到达∆ACE 的位置。

(1)旋转中心是_______(2)旋转了_______度.(3)如果M 是AB 的中点,那么经过上述旋转后,点M 转到了________________.三、合作交流-----旋转的性质同组学生讨论探究,总结归纳旋转地性质。

①_______________________________________________________②__________________________________________________________③_______________________________________________________ E D C B A M四、应用提高1、已知△ABC 是直角三角形,∠ACB=90°,AB=5㎝,BC=3厘米,△ABC 绕点C 逆时针方向旋转90°后得到△DEC ,则∠D=______,∠B=______,DE=_______㎝,EC=______㎝,AE=_______㎝,DE 与AB 的位置关系为_________________.2、正方形ABCD 中有一点P ,把△ABP 绕点点B 旋转到△CQB,连结PQ ,则△PBQ 的形状是____1 等边三角形至少旋转__________度才能与自身重合。

人教版九年级数学上册导学案:23.1旋转

人教版九年级数学上册导学案:23.1旋转

一、自主预习1、平移是指在同一平面内,将一个图形整体按照某个 方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称2、性质:图形平移前后的形状和大小 变,只是 发生变化;图形平移后,对应点连成的线段 且 (或在同一直线上) 3、思考探究(1)钟表的指针不停地转动(2)大风车的转动给人们带来快乐(3)电风扇飞速旋转的叶片给人们带来丝丝乐意 这些现象有什么共同特点?4、相关概念总结把一个图形绕着某一定点O 转动一个角度的图形变换叫做旋转.这个定点O 叫 ,转动的角叫做 5、自学检测(1)已知:把△ABC 绕着点B 顺时针旋转 60º后能与△A ´B ´C ´重合。

求:(1)找出旋转中心(2)指出对应点、旋转角(2)如图,四边形ABCD 是长方形,四边形AEFG也是长方形,E 在AD 上,如果长方形ABCD 旋转后能与长方形AEFG 重合,那么:①旋转中心是哪一点?②旋转角是多少度? ③点C 与点D 的对应点分别是什么?(3)课本56页练习2、3(课本上完成) 二、合作探究如图,在 硬纸板上,挖一个三角形的洞,在挖一个小洞O作为旋转中心,硬纸板下面放一张白纸,先在这个纸上描出这个挖掉的△ABC,然后围绕旋转中心转动硬纸片,在描出这个挖掉的三角形(△A 'B 'C ')移动硬纸板思考:1. 线段OA 与OA '有什么关系? 2.∠AOA '与∠BOB '有什么关系 ?3. △ABC 和△A 'B 'C '的形状和大小有什么关系?归纳总结:旋转的性质1、对应点到旋转中心的距离 2、对应点与旋转中心所连线段的夹角等于 角 3、旋转前后的图形 三、展示交流如图E 是正方形ABCD 中CD 上任意一点,以A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形。

科目 数学班级学生姓名 课题 23.1图形的旋转 课型新授 课时1课时主备教师备课组长签字学习目标:1.通过具体实例认识图形旋转的变换2.探索图形旋转的性质 3.会作一个图形经过旋转变换后的图形4.利用图形旋转的变换进行设计 学习重点 图形旋转变换的性质及作一个图形经过这种图形变换后的图形 学习难点 图形旋转变换的性质及作一个图形经过这种图形变换后的图形ADC EB四、当堂检测1.如图,把△ABC绕点C顺时针旋转35°,得到△A'B'C',交AC于点D,若∠A'DC=90°,则∠A的度数为()A、45° B、55° C、65° D、75°2.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()4.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,•其中BD=_________.5.(选做题)如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,•AG•⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE全等吗?如果全等给予证明,如果不全等请说明理由?。

人教版九年级数学上册《23.1图形的旋转》导学案

人教版九年级数学上册《23.1图形的旋转》导学案

九年级数学“23.1图形的旋转”导学案一、学习目标:掌握旋转的有关概念,经历探索图形旋转特征的过程,体验和感受图形旋转的主要特征,理解图形旋转的基本性质二、教学重点:旋转的有关概念和旋转的基本性质教学难点:探索旋转的基本性质学习方法:观察、操作、交流、归纳1.请同学们认真观察我县大厦楼顶的钟表或家里的钟表,有什么在不停地转动?旋绕什么点呢?•从1点到2点时针转了_____ __度,分针转了___ ____度,秒针转了____ __度.2.一般的,把一个图形绕着某一点O转动一个角度的图形变换叫,点O叫做,叫旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的.3.如右图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中,旋转中心是。

旋转角是。

经过旋转,点A、B分别移动到位置。

4.如图可以看到,点A旋转到点,OA旋转到,∠AOB旋转到,此时点B的对应点是点,线段OB的对应线段是。

线段AB的对应线段是。

∠A的对应角是,∠B的对应角是,∠AOB的对应角是,旋转中心是点,旋转的角度是。

5. 图形的旋转由和决定。

6. 结合教材总结旋转的特征:(1)(2)(3)四、走进新课例1:如图,四边形ABCD是正方形,ΔADE旋转后能与ΔABF重合。

(1)旋转中心是哪点?(2)旋转了多少度?(3)如果连结EF,则ΔAEF是什么三角形?为什么?尝试练习一:1.如图,ΔABC是等边三角形,D是BC上一点,ΔABD经旋转后到达ΔACE的位置(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?2.如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(注意:图形的旋转由什么决定)例2如图,Rt△ABC中,∠C=90°,∠ABC=60°,△ABC以点C 为中心旋转到△A′B′C的位置,使B在斜边A′B′上,A′C与AB相交于D,试确定∠BDC的度数.(提示:抓住旋转前后两个三角形的对应边相等、对应角相等等性质)尝试练习二:1.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.2.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=1AB.2(1)可以通过平行移动、翻折、旋转中的哪一种方法,•使△ABE 移到△ADF的位置?(2)指出如图7所示中的线段BE与DF之间的关系.五.成果检测1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为_____ ___,转动的角为___ _____.2.如图1,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,•点E•在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.3.如图2,△ABC为等边三角形,D为△ABC•内一点,•△ABD•经过旋转后到达△ACP的位置,则,(1)旋转中心是___ _;(2)旋转角度是__ ___;(•3)△ADP是_____三角形.(1) (2) (3)4、图形:线段、角、圆、梯形、正方形、菱形中绕一定点转动一定角度(小于360°)能与原图形重合的图形有()A、2个B、3个C、4个D、5个5.在26个英文大写字母中,通过旋转180°后能与原字母重合的有().A.6个 B.7个 C.8个 D.9个6.从5点15分到5点20分,分针旋转的度数为().A.20° B.26° C.30° D.36°7.如图3,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C 为旋转中心,•将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于().A.70° B.80° C.60° D.50°8. 画出图中ΔADC以D为旋转中心,顺时针旋转90°后的三角形。

人教版-数学-九年级上册23.1 图形的旋转(第1课时) 导学案

人教版-数学-九年级上册23.1 图形的旋转(第1课时) 导学案

一、基础知识(一)旋转的概念:把一个图形绕着平面内某一点O转动一个角度,就叫作图形的旋转,点O叫做旋转中心,转动的角叫做旋转角旋转的三要素:旋转中心、旋转方向、旋转角度(二)旋转的性质:1.对应点到旋转中心的距离相等2.对应点与旋转中心所连线段的夹角等于旋转角3.旋转前、后的图形全等二、重难点分析本课教学重点:旋转的性质①对应点到旋转中心的距离相等②对应点与旋转中心所连线段的夹角等于旋转角③旋转前、后的图形全等旋转角的确定--------每一对对应点与旋转中心的连线之间的夹角都是这个旋转的旋转角,一个旋转中有多个旋转角。

本课教学难点:对图形进行旋转变换。

和实际相联系的图形变换。

通过设置数学实验让学生进行独立的探究学习,促使学生主动参与数学知识的“再发现”,培养学生动手实践能力,观察、分析、比较、抽象、概括的思维能力。

三、典例精析:例1:如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°【答案】C【考点】旋转的性质。

例2.如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.=30°,从而得到∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PD′C=30°,然后利用“角边角”证明△BDD′与△CPD′全等.四、感悟中考1、(2013年衡阳)如图,在Rt△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °。

人教版九年级数学上册23.1《旋转的概念及性质》教学设计

人教版九年级数学上册23.1《旋转的概念及性质》教学设计

人教版九年级数学上册23.1《旋转的概念及性质》教学设计一. 教材分析人教版九年级数学上册23.1《旋转的概念及性质》是整个初中数学的重要内容,它不仅巩固了之前所学的几何知识,还为高中数学打下基础。

本节内容通过旋转的定义、性质和变换,使学生了解旋转在实际中的应用,提高其空间想象能力和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的变换有一定的了解。

但旋转作为一种特殊的图形变换,其概念和性质较为抽象,需要通过具体实例和实际操作来引导学生理解和掌握。

三. 教学目标1.了解旋转的概念,理解旋转的性质。

2.学会用旋转的观点分析和解决问题。

3.培养学生的空间想象能力和解决问题的能力。

四. 教学重难点1.旋转的概念和性质。

2.旋转在实际中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究旋转的性质。

2.利用多媒体和实物模型,直观展示旋转过程,增强学生的空间想象力。

3.注重实践操作,让学生通过动手实践来理解和掌握旋转的概念和性质。

六. 教学准备1.多媒体教学设备。

2.实物模型和图片。

3.旋转相关的练习题和作业。

七. 教学过程1. 导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生思考这些现象与数学有什么联系。

学生可以发现这些现象都是通过旋转来实现的,从而引出本节课的主题——旋转的概念及性质。

2. 呈现(10分钟)教师通过多媒体展示旋转的定义和性质,同时结合实物模型进行讲解,让学生直观地理解旋转的概念。

教师引导学生发现旋转并不改变图形的大小和形状,只是改变图形的位置。

3. 操练(10分钟)学生分组进行实践操作,利用准备好的实物模型和图片进行旋转,观察旋转前后的变化,验证旋转的性质。

教师巡回指导,解答学生的疑问。

4. 巩固(10分钟)教师出示一些有关旋转的练习题,让学生独立完成。

题目可以包括判断题、选择题和应用题,以巩固学生对旋转概念和性质的理解。

5. 拓展(10分钟)教师引导学生思考旋转在实际中的应用,如地图上的方向表示、机械零件的安装等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.
例题:
练习1 :如图,∆ABC 是等边三角形,D 是BC 上一点,
∆ABD 经过旋转后到达∆ACE 的位置。

(1)旋转中心是哪一点?(2)旋转了多少度?
(3)如果M 是AB 的中点,那么经过上述旋
转后,点M 转到了什么位置?







随堂训练
1.如图a ,△AOB 旋转到△A′OB′的位置.若∠AOA′=90°,则旋转中心是点______.旋转角是______.点A 的对应点是______.线段AB 的对应线段是______.∠B 的对应角是______ ∠BOB′=______.
图 a 图b
2.如图b ,已知△ABC 是直角三角形,∠
ACB=90°,AB=5㎝,BC=3厘米,△ABC 绕点C 逆时针方向旋转90°后得到△
DEC,则∠D=______,∠B=______,DE=_______㎝,EC=______㎝,AE=_______㎝三.归纳总结
(总结本节课所学的内容和掌握情况)
四.拓展提升:
1.如图1.正方形ABCD中有一点P,把△ABP绕点点B旋转到△CQB,连结PQ,则△PBQ的形状是____________.
2.如图2. P是等边△ABC内一点,△AQC是由△APB旋转所得,则∠PAQ=
_______
中考链接
(2016.深圳)如图边长为1的正方形EFOG绕与之边长相等的正方形ABCD的对角线交点O旋转任意角度,求图中重叠部分的面积。

(让学生思考、讨论,充分想象,寻求不同的解法)
G
E
F
O
C
A
B
D。

相关文档
最新文档