江苏省海门市东洲中学2018-2019学年八年级下学期期中考试数学试题(word无答案)

合集下载

江苏省海门市东洲国际八年级下学期期中考试数学试题(解析版)

江苏省海门市东洲国际八年级下学期期中考试数学试题(解析版)

海门市东洲国际学校第二学期期中测试八年级数学一、选择题:P 关于y轴对称点的坐标为()1.在平面直角坐标系中,点(1,3)A. (1 ,3 )B. ( -1 , -3 )C. ( -1 ,3)D. ( 1 , -3 )【答案】A【解析】【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y). 【详解】解:点P(x,y),关于y轴对称点的坐标P′(-x,y),所以点P(-1,3)关于y轴对称的点的坐标为(1,3).故答案为:A.【点睛】本题主要考查平面直角坐标系点的对称性质,解决本题的关键是要熟练掌握点关于y轴对称的特征.2. 能判定四边形ABCD为平行四边形的是().A. AB∥CD,AD=BCB. ∠A=∠B,∠C=∠DC. AB=CD,AD=BCD. AB=AD,CB=CD【答案】C【解析】选项C中,两组对边分别相等的四边形是平行四边形.3.若O是四边形ABCD对角线的交点且OA=OB=OC=OD,则四边形ABCD是()A. 平行四边形B. 矩形C. 正方形D. 菱形【答案】B【解析】试题解析:∵OA =OB =OC =OD ,∴四边形ABCD 是平行四边形,AC =BD ,∴平行四边形ABCD 是矩形.故选B.4.用配方法解方程2410x x --=,方程应变形为( ).A. 2(2)3x +=B. 2(2)5x +=C. 2(2)3x -=D. 2(2)5x -=【答案】D【解析】把常数项-5移项后,应该在左右两边同时加上一次项系数-4的一半的平方.解:由原方程移项,得x 2-4x=1,等式的两边同时加上一次项系数一半的平方,得x 2-4x+4=1+4,配方得(x-2)2=5.故选D .“点睛”本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.一元二次方程(x ﹣1)(x ﹣2)=0的解是( ) A. x=1 B. x=2 C. x 1=1,x 2=2 D. x 1=﹣1,x 2=﹣2 【答案】C【解析】【分析】利用因式分解法解方程即可.【详解】x ﹣1=0或x ﹣2=0,所以x 1=1,x 2=2.故选C .【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).6.对于函数y=2x ﹣1,下列说法正确的是( )A. 它的图象过点(1,0)B. y 值随着x 值增大而减小C. 当y >0时,x >1D. 它的图象不经过第二象限【答案】D【解析】试题解析:解:A .把x =1代入解析式得到y =1,即函数图象经过(1,1),不经过点(1,0),故本选项错误;B .函数y =2x ﹣1中,k =2>0,则该函数图象y 值随着x 值增大而增大,故本选项错误;C .当y >0时,2x ﹣1>0,则x >0.5,故本选项错误.D .函数y =2x ﹣1中,k =2>0,b =﹣1<0,则该函数图象经过第一、三、四象限,不经过第二象限,故本选项正确;故选D .点睛:本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.7.已知一组数据x 1,x 2,x 3,x 4,x 5,的方差是2,那么数据3x 1+2,3x 2+2,3x 3+2,3x 4+2,3x 5+2方差是( )A. 2B. 6C. 8D. 18 【答案】D【解析】【分析】此类题目还主要考查了方差的性质: 如果数据12n x x x ⋯⋯、、、 的方差是S,那么: (1)一组新数据12n x b x b x b ++⋯⋯+、、、 的方差仍是S (b 是常数); (2)一组新数据12n ax ax ax ⋯⋯、、、 ax 1、ax 2、……、ax n 的方差是a 2S, (a 是常数);(3)一组新数据12n ax b ax b ax b ++⋯⋯+、、、 的方差是a 2S. 【详解】解:∵一组数据x 1,x 2,x 3,x 4,x 5,的方差是2∴数据3x 1+2,3x 2+2,3x 3+2,3x 4+2,3x 5+2方差是232=18⨯故答案为:D【点睛】本题考查了数据变化使得方差变化的知识,掌握方差变化规律是解题的关键.8.已知直线()331y m x m =--+不经过第一象限,则m 的取值范围是x ( ). A. 13m ≥ B. 13m ≤ C. 133m << D. 133m ≤≤ 【答案】D【解析】试题解析:∵直线(3)31y m x m =--+不经过第一象限,则有:30310m m -≤⎧⎨-+≤⎩解得:133m ≤≤. 故选D .9.如图,四边形ABCD 是正方形,直线l 1,l 2,l 3分别通过A ,B ,C 三点,且l 1∥l 2∥l 3,若l 1与l 2的距离为5,l 2与l 3的距离为7,则正方形ABCD 的面积等于( )A. 70B. 74C. 144D. 148【答案】B【解析】 试题分析:首先过点B 和点D 作垂线,构成大的正方形,然后利用大正方形的面积减去四个直角三角形的面积得出答案.12×12-5×7÷2×4=144-70=74. 考点:平行线的性质10.如图,在等腰△ABC 中,90ACB ︒∠=,8AC =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =,连接DE 、DF 、EF 在此运动变化的过程中,下列结论:(1)DEF 是等腰直角三角形;(2)四边形CDFE 不可能为正方形,(3)DE 长度的最小值为4;(4)连接CF ,CF 恰好把四边形CDFE 的面积分成1:2两部分,则CE =13或143其中正确的结论个数是A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】 连接CF ,证明△ADF ≌△CEF ,根据全等三角形的性质判断①,根据正方形的判定定理判断②,根据勾股定理判断③,根据面积判断④. 【详解】连接CF ,∵△ABC 等腰直角三角形,∴∠FCB=∠A=45 ,CF=AF=FB ;∵AD=CE ,∴△ADF ≌△CEF(SAS);∴EF=DF ,∠CFE=∠AFD ;∵∠AFD+∠CFD=90∘,∴∠CFE+∠CFD=∠EFD=90∘,又∵EF=DF∴△EDF是等腰直角三角形(故(1)正确).当D. E分别为AC、BC中点时,四边形CDFE是正方形(故(2)错误). 由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时142DF BC== .∴DE=(故(3)错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CDFE=S△AFC,∵CF恰好把四边形CDFE的面积分成1:2两部分∴S△CEF:S△CDF=1:2 或S△CEF:S△CDF=2:1即S△ADF:S△CDF=1:2 或S△ADF:S△CDF=2:1当S△ADF:S△CDF=1:2时,S△ADF=13S△ACF=111684323⨯⨯⨯=又∵S△ADF=1422AD AD ⨯⨯=∴2AD=16 3∴AD=83(故(4)错误).故选:A.【点睛】本题考查了全等三角形,等腰直角三角形,以及勾股定理,掌握全等三角形,等腰直角三角形,以及勾股定理是解题的关键.二、填空题11.函数1y=x2-中,自变量x的取值范围是▲ .【答案】x2≠。

2018-2019学年度下学期八年级期中质量检测数学试题及答案.docx

2018-2019学年度下学期八年级期中质量检测数学试题及答案.docx

2018-2019学年度下学期八年级期中质量检测数学试题( 满分 120 分,考试用时 120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷为选择题,36 分;第Ⅱ卷为非选择题,84 分;共 120分。

2.答卷前务必将自己的姓名、座号和准考证号按要求填写在答题卡上的相应位置。

3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。

4. 第Ⅱ卷必需用0.5 毫米黑色签字笔书写到答题卡题号所指示的答题区域,不得超出预留范围。

5.在草稿纸、试卷上答题均无效。

第Ⅰ卷(选择题36 分)一、选择题(本大题共12 小题,每小题 3 分,满分 36 分.请将正确选项的字母代号填涂在答题卡相应位置上)1.用两个全等的等边三角形可以拼成下列哪种图形().A. 矩形 B .菱形C.正方形D.等腰梯形2.在□ABCD 中,∠ A: ∠B=7: 2,则∠ C、∠ D 的度数分别为().A . 70°和 20°B . 280 °和 80°C. 140 °和 40°D. 105 °和 30°3.函数y=2x5的图象经过().﹣A .第一、三、四象限;B.第一、二、四象限;C.第二、三、四象限;D.第一、二、三象限.4.1112x 2,2x-1 图象上的两个点,且x 1x 2点 P (x,y),点 P (y )是一次函数 y =4< 0<,则 y 1与 y 2的大小关系是().A .y1>y2B .y1>y2> 0C.y1<y2 D .y1=y25 . 在一次射击训练中,甲、乙两人各射击10 次,两人10 次射击成绩的平均数均是9.1 环,方差分别是S2=1.2, S2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定描述正确的是().A .甲比乙 定;B .乙比甲 定 ;C .甲和乙一 定;D .甲、乙 定性没法 比.6. 一次函数 y= 2x+4 的 象是由 y= 2x-2 的 象平移得到的, 移 方法 ( ) .A .向右平移 4 个 位;B .向左平移 4 个 位;C .向上平移 6 个 位;D .向下平移 6 个 位.7. 次 接矩形的各 中点,所得的四 形一定是 () .A .正方形B .菱形C .矩形D .无法判断8.若 数 a 、 b 、 c 足 a + b + c = 0,且 a < b < c , 函数 y =ax + c 的 象可能是 ( ) .9.如 , D 、 E 、 F 分 是△ ABC 各 的中点, AH 是高,如果 ED =5cm ,那么 HF 的 ( ).A . 6cmB .5cmC . 4cmD .不能确定 10. 已知菱形的周 40,一条 角12, 个菱形的面( ) .9A . 24B . 47C . 48D . 9611. 如 ,直 y=kx+b 点 A ( 3, 1)和点 B ( 6,0), 不等 式 0< kx+b < 1x 的解集 ().3A . x < 0B . 0<x < 3C . x > 6D . 3< x <61112.如 ,矩形 ABCD 的面 20cm 2, 角 交于点 O ,以 AB 、 AO 做平行四 形AOC 1B , 角 交于点 O 1,以 AB 、 AO 1做 平 行 四 形 AO 1C 2B ⋯⋯ 依 此 推 , 平 行 四 形AO 2019C 2020B 的面 () cm 2.5555A .22016B.2 2017C.22018D.2 2019第Ⅱ卷(非选择题84 分)二、填空题(本大题共 4 小题;每小题 4 分,共 16 分.把答案写在题中横线上)13. 一组数据35106x的众数是5,则这组数据的中位数是.,,,,14. 若已知方程组2x y bx1的解是y,则直线 y=- 2x+ b 与直线 y= x-a 的交点坐标x y a3是 __________.15. 已知直线y3x3与x轴、y轴分别交于点A B,在坐标轴上找点P,使△ABP为、等腰三角形,则点P 的个数为个.16.如图,在△ABC 中, AB=6, AC=8, BC=10 , P 为边 BC上一动点 (且点 P 不与点 B、 C 重合 ), PE ⊥AB 于 E, PF⊥AC于 F .则 EF 的最小值为 _________.16 题图三、解答题 : 本大题共 6 小题,满分68 分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分 10 分)已知 y k 3 x k28是关于x的正比例函数,(1)写出 y 与 x 之间的函数解析式;(2)求当 x= - 4 时, y 的值.18.(本题满分 8 分)在□ABCD 中,点 E、F 分别在 BC、AD 上,且 BE = DF .求证:四边形 AECF 是平行四边形.19.(本题满分12 分)某中学举行“中国梦?校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的 5 名选手的决赛成绩如图所示.( 1)根据图示填空:19 题图项目平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.20.(本题满分 12 分)如图,直线 l1的解析式为y3x 3 ,且 l1与 x 轴交于点 D,直线l2经过点 A、B,直线l1、l2交于点C.(1)求直线l2的解析表达式;(2)求△ ADC 的面积;(3)在直线l2上存在异于点 C 的另一点 P,使得△ADC 与△ ADP 的面积相等,请直接写出点P的坐标...y yl1l2O D 3x 3A( 4,0)B2C20题图21.(本题满分 12 分)材料阅读:小明偶然发现线段 AB 的端点 A 的坐标为( 1 , 2),端点 B 的坐标为( 3 ,4),则线段AB 中点的坐标为( 2 , 3),通过进一步的探究发现在平面直角坐标系中,以任意两点P( x1,y1)、 Q(x2, y2)为端点的线段中点坐标为知识运用:如图 , 矩形 ONEF 的对角线相交于点分别在 x 轴和 y 轴上,O 为坐标原点,点3) ,则点 M 的坐标为 _________.x1x2,y1y2.22M, ON、OFE 的坐标为 (4,能力拓展:21 题图在直角坐标系中,有A(-1, 2)、B(3,1)、 C(1 , 4)三点,另有一点 D 与点 A、 B、 C 构成平行四边形的顶点,求点D的坐标 .22.(本题满分14 分)现有正方形ABCD 和一个以O 为直角顶点的三角板,移动三角板,使三角板两直角边所....在直线分别与直线BC、 CD 交于点 M、N.( 1)如图 1,若点 O 与点 A 重合,则OM 与 ON 的数量关系是 ___________;( 2)如图 2,若点 O 在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;( 3)如图 3,若点 O 在正方形的内部(含边界),当OM=ON 时,请探究点 O 在移动过程中可形成什么图形?( 4)如图 4 是点 O 在正方形外部的一种情况.当OM =ON 时,请你就 “点 O 的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论(不必说理).NA(O)D ADA DODOANO NMN MM BC BCBC图 1图 2图 3BMC图 422 题图2018-2019 学年度下学期八年期中量数学试题评分标准(分 120分,考用 120 分)一、 ( 本大共12 小,每小 3 分,分36 分.在每小所出的四个中,只有一是符合目要求的,将正确的字母代号填涂在答卡相位置上)1~5 BCACA;6~10 CBABD ;11~12 DC.二、填空 ( 本大共 4 小,每小 4 分,分16 分.不需写出解答程,将答案直接写在答卡相位置上.)13. 5 ;14.(-1,3);15.6个;16. 4.8.三、解答( 本大共6 小,分68 分.在答卡指定区域内作答,解答写出必要的文字明、明程或演算步.)17.(本分10 分)解:( 1)∵y是x的正比例函数.∴ k 2-8=1,且k-3≠0,⋯⋯⋯⋯⋯⋯⋯ 3 分∴解得 k=-3∴ y=-6 x.⋯⋯⋯⋯⋯⋯⋯ 6 分( 2)当 x=-4 , y=-6 ×( -4) =24 .⋯⋯⋯⋯⋯10分18.(本分8 分)明 :∵ ABCD是平行四形,∴ AD = BC ,AD∥ BC.⋯⋯⋯⋯⋯⋯⋯ 2 分又∵ BE = DF ,∴ AD-DF = BC- BE,即AF = CE,注意到AF∥ CE,⋯⋯⋯⋯⋯⋯⋯ 6 分因此四形AECF 是平行四形.⋯⋯⋯⋯⋯⋯⋯8 分或通明AE = CF (由△ ABE≌△ CDF )而得或其他方法也可。

2018-2019学年八年级(下)期中数学试卷 解析版

2018-2019学年八年级(下)期中数学试卷  解析版

2018-2019学年江苏省八年级(下)期中数学试卷含解析一、选择题(每题3分,共18分)1.(3分)为了了解某县七年级9800名学生的视力情况,从中抽查了100名学生的视力情况,就这个问题来说,下面说法正确的是()A.9800名学生是总体B.每个学生是个体C.100名学生是所抽取的一个样本D.样本容量是1002.(3分)下列图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)下列各式:其中分式共有()个.A.1B.2C.3D.44.(3分)如果与最简二次根式是同类二次根式,那么a的值是()A.﹣2B.﹣1C.1D.25.(3分)如果把分式中的x和y都扩大为原来的5倍,那么分式的值()A.扩大为原来的5倍B.扩大为原来的10倍C.不变D.缩小为原来的6.(3分)如图,P为边长为2的正方形ABCD的对角线BD上任一点,过点P作PE⊥BC 于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①AP=EF;②AP⊥EF;③EF最短长度为;④若∠BAP=30°时,则EF的长度为2.其中结论正确的有()A.①②③B.①②④C.②③④D.①③④二、填空题(每空3分,共30分)7.(3分)某口袋中有红色、黄色、黑色的小球共50个,这些小球除颜色外都相同,通过多次试验后发现摸到红色球的频率稳定在20%,则袋中红色球是个.8.(3分)若分式的值为零,则x=.9.(3分)如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是.10.(3分)计算:1﹣=.11.(3分)若分式方程+1=有增根,则a的值是.12.(3分)已知△ABC的3条中位线分别为3cm、4cm、5 cm,则△ABC的周长为cm.13.(3分)如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小为.14.(3分)在△ABC中a,b,c为三角形的三边,则=.15.(3分)关于x的方程的解是大于1的数,则a的取值范围是.16.(3分)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是线段BO上的一个动点(包括点B和点O),但F为射线DC上一点,若∠ABC=60°,∠AEF=120°,AB=5,则EF的取值范围是.三、解答题(共102分)17.(10分)计算:(1)×﹣(﹣1)0+|﹣3|(2)(3+﹣4)÷18.(10分)化简:(1)1﹣÷(2)﹣x+119.(10分)解方程:(1)﹣=0(2)﹣1=.20.(10分)先化简再求值:化简÷(﹣),并在0,﹣1,1,2四个数中,取一个合适的数作为m的值代入求值.21.(8分)吸烟有害健康.你知道吗,被动吸烟也大大危害着人类的健康.为此,联合国规定每年的5月31日为世界无烟日.为配合今年的“世界无烟日”宣传活动,小明和同学们在学校所在地区展开了以“我支持的戒烟方式”为主题的问卷调查活动,征求市民的意见,并将调查结果分析整理后,制成下列统计图:(1)求小明和同学们一共随机调查了多少人?(2)根据以上信息,请你把统计图补充完整;(3)如果该地区有2万人,那么请你根据以上调查结果,估计该地区大约有多少人支持“强制戒烟”这种戒烟方式?。

海门初二数学期中试卷

海门初二数学期中试卷

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √9B. √16C. √-9D. √02. 已知a,b是方程x²-5x+6=0的两根,则a+b的值为()A. 5B. 6C. 2D. 33. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)4. 已知一个长方形的长是5cm,宽是3cm,则它的对角线长是()A. 8cmB. 9cmC. 10cmD. 12cm5. 如果sinα=0.6,那么cosα的值是()A. 0.8B. 0.6C. -0.8D. -0.66. 在△ABC中,若∠A=45°,∠B=60°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°7. 已知函数y=2x-3,当x=2时,y的值为()A. 1B. 3C. 5D. 78. 一个正方形的对角线长为10cm,则它的面积是()A. 50cm²B. 100cm²C. 150cm²D. 200cm²9. 下列命题中,正确的是()A. 平行四边形的对边相等B. 等腰三角形的底角相等C. 直角三角形的两个锐角互余D. 对顶角相等是()A. 26cmB. 28cmC. 30cmD. 32cm二、填空题(每题5分,共25分)11. 若a=3,b=-2,则a²+b²的值为______。

12. 在△ABC中,若∠A=90°,AB=6cm,AC=8cm,则BC的长度是______cm。

13. 函数y=3x+2的图象经过点______。

14. 若sinα=0.8,那么cosα的值是______。

15. 在直角坐标系中,点P(-4,5)关于原点的对称点坐标是______。

三、解答题(共135分)16. (15分)解方程:x²-5x+6=0。

江苏省2018-2019年八年级下期中数学试卷含答案解析

江苏省2018-2019年八年级下期中数学试卷含答案解析

八年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.下列各式,,,,中,分式共有()个.A.2 B.3 C.4 D.52.若把分式中的x和y都扩大3倍,那么分式的值()A.为原来的3倍B.不变C.为原来的D.为原来的3.在平面直角坐标系中,点(4,﹣3)关于y轴对称的点的坐标是()A.(﹣4,﹣3)B.(4,3) C.(﹣4,3)D.(4,﹣3)4.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,那么0.000037毫克可用科学记数法表示为()A.3.7×10﹣5毫克B.3.7×10﹣6毫克C.37×10﹣7毫克D.3.7×10﹣8毫克5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15分钟B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.自行车发生故障时离家距离为1000米6.考察反比例函数y=﹣,下列结论中不正确的是()A.图象必经过(﹣3,2)B.当x>0时,y随x的增大而增大C.图象在第二、四象限内D.图象与直线y=x有两个交点7.一次函数y=kx+b,当k>0,b<0时,它的图象是()A.B.C.D.8.已知平行四边形ABCD中,∠B=5∠A,则∠C=()A.30°B.60°C.120° D.150°9.在平面直角坐标系中,▱ABCD的顶点A(0,0),B(5,0),D(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)10.若反比例函数y=(k<0)的图象经过点(﹣2,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y2>y111.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.12.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2的值为()A.2 B.3 C.4 D.﹣4二、填空题(本大题共8小题,每小题4分,共32分)13.在函数y=中,自变量x的取值范围是.14.当x=时,分式的值为零.15.化简:=.16.计算:(﹣m3n﹣2)﹣2=.(结果不含负整数指数幂)17.一次函数y=kx+5的图象可由正比例函数y=2x的图象向上平移5个单位长度得到,则k=.18.一次函数y=(2m﹣6)x+4中,y随x的增大而减小,则m的取值范围是.19.如图,在平行四边形ABCD中,BC=8cm,AB=6cm,BE平分∠ABC交AD边于点E,则线段DE的长度为.20.如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E,若平行四边形ABCD的周长为20,则△CDE的周长为.三、解答题(本大题共7小题,共82分)21.计算:(1)(﹣)﹣2+﹣(﹣1)0(2)(1+)÷.22.解方程:.23.已知一次函数y=kx+b,当x=2时y的值是﹣1,当x=﹣1时y的值是5.(1)求此一次函数的解析式;(2)若点P(m,n)是此函数图象上的一点,﹣3≤m≤2,求n的最大值.24.如图,▱ABCD中,对角线AC与BD相交于O,EF是过点O的任一直线交AD于点E,交BC于点F,猜想OE和OF的数量关系,并说明理由.25.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造10%,结果提前3天完成了任务,求原计划每天改造道路多少米?26.如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.(1)直接写出m=,n=;(2)根据图象直接写出使kx+b<成立的x的取值范围;(3)在x轴上找一点P使PA+PB的值最小,求出P点的坐标.27.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲16分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.下列各式,,,,中,分式共有()个.A.2 B.3 C.4 D.5【考点】61:分式的定义.【分析】根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式.,,的分母中含有字母,因此是分式.故选B.2.若把分式中的x和y都扩大3倍,那么分式的值()A.为原来的3倍B.不变C.为原来的D.为原来的【考点】65:分式的基本性质.【分析】根据分式的性质,可得答案.【解答】解:分式中的x和y都扩大3倍,得==,故选:C.3.在平面直角坐标系中,点(4,﹣3)关于y轴对称的点的坐标是()A.(﹣4,﹣3)B.(4,3) C.(﹣4,3)D.(4,﹣3)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x,y)关于y轴的对称点的坐标是(﹣x,y)即可得到点(4,﹣3)关于y轴对称的点的坐标.【解答】解:点(4,﹣3)关于y轴的对称点的坐标是(﹣4,﹣3),故选:A.4.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,那么0.000037毫克可用科学记数法表示为()A.3.7×10﹣5毫克B.3.7×10﹣6毫克C.37×10﹣7毫克D.3.7×10﹣8毫克【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000037毫克=3.7×10﹣5毫克;故选:A.5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15分钟B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.自行车发生故障时离家距离为1000米【考点】E6:函数的图象;E9:分段函数.【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断.【解答】解:由图可知,修车时间为15﹣10=5分钟,可知A错误;B、C、D三种说法都符合题意.故选A.6.考察反比例函数y=﹣,下列结论中不正确的是()A.图象必经过(﹣3,2)B.当x>0时,y随x的增大而增大C.图象在第二、四象限内D.图象与直线y=x有两个交点【考点】G8:反比例函数与一次函数的交点问题.【分析】根据反比例函数的图象和性质逐一判断可得.【解答】解:A、当x=﹣3时,y=﹣=2,即图象必经过(﹣3,2),此结论正确;B、∵﹣6<0,∴反比例函数在x>0或x<0时,y随x的增大而增大,此结论正确;C、由k=﹣6<0知函数图象在第二、四象限内,此结论正确;D、由反比例函数图象位于第二、四象限,而直线y=x经过第一、三象限,∴图象与直线y=x没有交点,此结论错误;故选:D.7.一次函数y=kx+b,当k>0,b<0时,它的图象是()A.B.C.D.【考点】F7:一次函数图象与系数的关系.【分析】根据一次函数图象在坐标平面内的位置与k、b的关系,可以判断出其图象过的象限,进而可得答案.【解答】解:根据题意,有k>0,b<0,则其图象过一、二、四象限;故选C.8.已知平行四边形ABCD中,∠B=5∠A,则∠C=()A.30°B.60°C.120° D.150°【考点】L5:平行四边形的性质.【分析】首先根据平行四边形的性质可得∠A=∠C,∠A+∠B=180°,再由已知条件计算出∠A的度数,即可得出∠C的度数.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∠A=∠C,∴∠A+∠B=180°,∵∠B=5∠A,∴∠A+5∠A=180°,解得:∠A=30°,∴∠C=30°,故选:A.9.在平面直角坐标系中,▱ABCD的顶点A(0,0),B(5,0),D(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)【考点】L5:平行四边形的性质;D5:坐标与图形性质.【分析】根据题意画出图形,进而得出C点横纵坐标得出答案即可.【解答】解:如图所示:∵▱ABCD的顶点A(0,0),B(5,0),D(2,3),∴AB=CD=5,C点纵坐标与D点纵坐标相同,∴顶点C的坐标是;(7,3).故选:C.10.若反比例函数y=(k<0)的图象经过点(﹣2,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y2>y1【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.【解答】解:∵反比例函数y=(k<0),∴此函数图象的两个分支分别位于二、四象限,并且在每一象限内,y随x的增大而增大.∵(﹣2,y1),(﹣1,y2),(2,y3)三点都在反比例函数y=(k<0)的图象上,∴(﹣2,y1),(﹣1,y2)在第二象限,点(2,y3)在第四象限,∴y2>y1>y3.故选C.11.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A.B.C.D.【考点】FE:一次函数与二元一次方程(组).【分析】首先将点A的横坐标代入y=x+3求得其纵坐标,然后即可确定方程组的解.【解答】解:∵直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),∴当x=﹣1时,b=﹣1+3=2,∴点A的坐标为(﹣1,2),∴关于x、y的方程组的解是,故选C.12.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2的值为()A.2 B.3 C.4 D.﹣4【考点】G5:反比例函数系数k的几何意义.【分析】根据反比例函数k的几何意义可知:△AOP的面积为,△BOP的面积为,由题意可知△AOB的面积为.【解答】解:根据反比例函数k的几何意义可知:△AOP的面积为,△BOP的面积为,∴△AOB的面积为,∴=2,∴k1﹣k2=4,故选(C)二、填空题(本大题共8小题,每小题4分,共32分)13.在函数y=中,自变量x的取值范围是x≠3.【考点】E4:函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣3≠0,解得:x≠3.故答案为x≠3.14.当x=2时,分式的值为零.【考点】63:分式的值为零的条件.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0⇒x=±2;而x=2时,分母x+2=2+2=4≠0,x=﹣2时分母x+2=0,分式没有意义.所以x=2.故答案为:2.15.化简:=1.【考点】6B:分式的加减法.【分析】首先把分式通分,然后进行同分母的分式的加减,最后把结果进行化简即可求解.【解答】解:原式=﹣===1.故答案是:1.16.计算:(﹣m3n﹣2)﹣2=.(结果不含负整数指数幂)【考点】47:幂的乘方与积的乘方;6F:负整数指数幂.【分析】直接利用积的乘方运算法则结合负指数幂的性质计算得出答案.【解答】解:(﹣m3n﹣2)﹣2=m﹣6n4=.故答案为:.17.一次函数y=kx+5的图象可由正比例函数y=2x的图象向上平移5个单位长度得到,则k=2.【考点】F9:一次函数图象与几何变换.【分析】直线y=2x平移时,系数k=2不会改变.【解答】解:因为一次函数y=kx+5的图象可由正比例函数y=2x的图象向上平移5个单位长度得到,所以k=2.故答案是:2.18.一次函数y=(2m﹣6)x+4中,y随x的增大而减小,则m的取值范围是m<3.【考点】F7:一次函数图象与系数的关系.【分析】利用一次函数图象与系数的关系列出关于m的不等式2m﹣6<0,然后解不等式即可.【解答】解:∵一次函数y=(2m﹣6)x+4中,y随x的增大而减小,∴2m﹣6<0,解得,m<3;故答案是:m<3.19.如图,在平行四边形ABCD中,BC=8cm,AB=6cm,BE平分∠ABC交AD边于点E,则线段DE的长度为2cm.【考点】L5:平行四边形的性质.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC=8cm,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=6cm,∴DE=AD﹣AE=8﹣6=2(cm);故答案为:2cm.20.如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E,若平行四边形ABCD的周长为20,则△CDE的周长为10.【考点】L5:平行四边形的性质;KG:线段垂直平分线的性质.【分析】由平行四边形ABCD的对角线相交于点O,OE⊥BD,根据线段垂直平分线的性质,可得BE=DE,又由平行四边形ABCD的周长为20,可得BC+CD的长,继而可得△CDE的周长等于BC+CD.【解答】解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵平行四边形ABCD的周长为20,∴BC+CD=10,∵OE⊥BD,∴BE=DE,∴△CDE的周长为:CD+CE+DE=CD+CE+BE=CD+BC=10.故答案为:10.三、解答题(本大题共7小题,共82分)21.计算:(1)(﹣)﹣2+﹣(﹣1)0(2)(1+)÷.【考点】6C:分式的混合运算;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)根据负整数指数幂、零指数幂可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)(﹣)﹣2+﹣(﹣1)0=4+3﹣1=6;(2)(1+)÷==x+1.22.解方程:.【考点】B3:解分式方程.【分析】先去分母把分式方程化为整式方程,求出整式方程中x的值,代入公分母进行检验即可.【解答】解:方程两边同时乘以2(3x﹣1),得4﹣2(3x﹣1)=3,化简,﹣6x=﹣3,解得x=.检验:x=时,2(3x﹣1)=2×(3×﹣1)≠0所以,x=是原方程的解.23.已知一次函数y=kx+b,当x=2时y的值是﹣1,当x=﹣1时y的值是5.(1)求此一次函数的解析式;(2)若点P(m,n)是此函数图象上的一点,﹣3≤m≤2,求n的最大值.【考点】FA:待定系数法求一次函数解析式;F5:一次函数的性质.【分析】(1)把x=2,y=﹣1代入函数y=kx+b,得出方程组,求出方程组的解即可;(2)把P点的坐标代入函数y=﹣2x+3,求出m的值,根据已知得出不等式组,求出不等式组的解集即可.【解答】解:(1)依题意得:,解得:,所以一次函数的解析式是y=﹣2x+3;(2)由(1)可得,y=﹣2x+3.∵点P (m,n )是此函数图象上的一点,∴n=﹣2m+3即,又∵﹣3≤m≤2,∴,解得,﹣1≤n≤9,∴n的最大值是9.24.如图,▱ABCD中,对角线AC与BD相交于O,EF是过点O的任一直线交AD于点E,交BC于点F,猜想OE和OF的数量关系,并说明理由.【考点】L5:平行四边形的性质.【分析】结论:OE=OF,欲证明OE=OF,只要证明△AOE≌△COF即可.【解答】解:结论:OE=OF.理由∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF,∴OE=OF.25.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造10%,结果提前3天完成了任务,求原计划每天改造道路多少米?【考点】B7:分式方程的应用.【分析】设原计划每天改造道路x米,实际每天改造(1+10%)x米,根据比原计划每天多改造10%,结果提前3天完成了任务,列出方程,再进行求解即可.【解答】解:设原计划每天改造道路x米,实际每天改造(1+10%)x米,根据题意得:=+3,解得:x=100,经检验x=100是原方程的解,且符合题意.答:原计划每天改造道路100米.26.如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.(1)直接写出m=1,n=2;(2)根据图象直接写出使kx+b<成立的x的取值范围0<x<1或x>3;(3)在x轴上找一点P使PA+PB的值最小,求出P点的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)将点A、B坐标代入即可得;(2)由函数图象即可得;(3)作点A关于x轴的对称点C,连接BC与x轴的交点即为所求.【解答】解:(1)把点(m,6),B(3,n)分别代入y=(x>0)得:m=1,n=2,故答案为:1、2;(2)由函数图象可知,使kx+b<成立的x的取值范围是0<x<1或x>3,故答案为:0<x<1或x>3;(3)由(1)知A点坐标为(1,6),B点坐标为(3,2),则点A关于x的轴对称点C的坐标(1,﹣6),设直线BC的解析式为y=kx+b,将点B、C坐标代入,得:,解得:,则直线BC的解析式为y=4x﹣10,当y=0时,由4x﹣10=0得:x=,∴点P的坐标为(,0).27.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲16分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【考点】GA:反比例函数的应用.【分析】(1)先用待定系数法分别求出AB和CD的函数表达式,再分别求第五分钟和第三十分钟的注意力指数,最后比较判断;(2)分别求出注意力指数为36时的两个时间,再将两时间之差和16比较,大于16则能讲完,否则不能.【解答】解:(1)设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2=,把C(25,40)代入得,k2=1000,∴y2=.当x1=5时,y1=2×5+20=30,当x2=30时,y2=1000÷30=,∴y1<y2,∴第30分钟注意力更集中.(2)令y1=36,∴36=2x+20,∴x1=8.令y2=36,∴36=1000÷x,∴x2=1000÷36≈27.8,∵27.8﹣8=19.8>16,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.。

2018-2019学年第二学期期中质量检测八年级数学试题(带答案)

2018-2019学年第二学期期中质量检测八年级数学试题(带答案)

姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题(时间 120分钟 分值 120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx +c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .+﹣2=0D .x 2+2x =x 2﹣12.一元二次方程x 2+ax+a ﹣1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有实数根D .没有实数根3.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣34.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则应邀请( )个球队参加比赛. A.6 B.7C.8D.95.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26.已知点A(-3,y 1),B(2,y 2),C(3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 17.某烟花厂为春节烟火晚会特别设计制作一种新型礼炮,这种礼炮的升空高度h(m )与飞行时间t(s )的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 8.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大9.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )10. 如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点A(-2,0),B(1,0), 直线x =-0.5与此抛物线交于点C ,与x 轴交于点M , 在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD , 某同学根据图象写出下列结论:①a-b =0;②当-2<x<1时,y>0;③四边形ACBD 是菱形; ④9a-3b +c>0,你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③ 第10题图二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分) 11.如果y =(m ﹣2)是关于x 的二次函数,则m =__________.12. 如果一元二次方程x 2﹣4x+k =0经配方后,得(x ﹣2)2=1,那么k = . 13.若m 是方程2x 2+3x ﹣1=0的根,则式子4m 2+6m+2019的值为 .14. 已知抛物线c bx ax y ++=2经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是__________.15. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为 __________.16.已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是__________. 17.把二次函数y =12x 2+3x +52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3). 若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2), 点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为__________. 第18题图三.解答题(本大题共7小题,共62分)19.(8分)选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.(8分)为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?23.(9分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(12分)在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题答案一.选择题(本大题共10小题,每小题3分,共30分)1. B2. C3. A4.B5. D6.B7.B8. D9. C 10.D二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分)11. m=-1 12. 3 13. 2021 14. (1,-8) 15. -1或2或1 16. k ≥ 17. (-1,1) 18. 12三.解答题(本大题共7小题,共62分)19.(8分)解:(1)3x ﹣1=±(x ﹣1)………………………………………………1分 即3x ﹣1=x ﹣1或3x ﹣1=﹣(x ﹣1)……………………3分 所以x 1=0,x 2=;……………………4分(2)3x (x ﹣1)+2(x ﹣1)=0…………………………………1分(x ﹣1)(3x +2)=0x ﹣1=0或3x +2=0…………………3分 所以x 1=1,x 2=﹣.……………………4分20.解:(1)当m =0时,方程为x 2+x ﹣1=0. △=12﹣4×1×(﹣1)=5>0. ∴x =, ∴x 1=,x 2=.…………………4分(2)∵方程有两个不相等的实数根, ∴△>0即(﹣1)2﹣4×1×(m ﹣1) =1﹣4m +4 =5﹣4m >0 ∵5﹣4m >0∴m <.…………………7分21. (8分)解:设AB 的长度为x 米,则BC 的长度为(100-4x)米,根据题意得 (100-4x)x =400,解得x 1=20,x 2=5,………………4分 则100-4x =20或100-4x =80,∵80>25,∴x 2=5舍去, 即AB =20,BC =20,则羊圈的边长AB ,BC 分别是20米,20米。

2018-2019学年度新人教版八年级(下)期中考试数学试卷(含答案解析)

2018-2019学年度新人教版八年级(下)期中考试数学试卷(含答案解析)

2018-2019学年度八年级(下)期中考试数学试卷一、选择题(本大题共12小题,共36.0分)1.下列说法正确的是()A. 任何数都有两个平方根B. 若a2=b2,则a=bC. √4=±2D. −8的立方根是−22.下列二次根式中,能与√3合并的是()A. √24B. √12C. √32D. √183.数轴上点A表示的数为-√105,点B表示的数为√77,则A、B之间表示整数的点有()A. 21个B. 20个C. 19个D. 18个4.不等式9-3x<x-3的解集在数轴上表示正确的是()A.B.C.D.5.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 806.等式√x−1•√x+1=√x2−1成立的条件是()A. x>1B. x<−1C. x≥1D. x≤−17.下列各式计算正确的是()A. √102−82=√102−√82=10−8=2B. √(−4)×(−9)=√−4×√−9=(−2)×(−3)=6C. √14+19=√14+√19=12+13=56D. −√1916=−√2516=−458.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是√3和-1,则点C所对应的实数是()A. 1+√3B. 2+√3C. 2√3−1D. 2√3+19.在△ABC中,BC=8cm,AC=5cm,若△ABC的周长为xcm,则x应满足()A. 15<x<24B. 18<x<21C. 10<x<26D. 16<x<2610.如图,每个小正方形的边长都为1,A、B、C是小正方形各顶点,则∠ABC的度数为()A. 90∘B. 60∘C. 45∘D.30∘11. 已知关于x 的不等式组的{2x −a <2b +1x−a≥b 解集为3≤x <5,则ba 的值为( )A. −2B. −12C. −4D. −1412. 如图,ABCD 是一张矩形纸片,AB =3cm ,BC =4cm ,将纸片沿EF 折叠,点B 恰与点D 重合,则折痕EF 的长等于( )A. 3.25cmB. 3.5cmC. 3.6cmD. 3.75cm二、填空题(本大题共6小题,共18.0分) 13. 已知533=148877,那么5.33等于______.14. 已知x -2=√5,则代数式(x +2)2-8(x +2)+16的值等于______.15. 设√10的整数部分为a ,小数部分为b ,则b (√10+a )的值为______.16. 已知关于x 的不等式组{5−2x >1x−a≥0只有四个整数解,则实数a 的取值范是______. 17. 已知实数a 、b 、c 在数轴上的位置如图所示,化简代数式|a |-√(a +c)2+√(c −a)2-√−b 33的结果等于______.18. 观察下列式子:当n =2时,a =2×2=4,b =22-1=3,c =22+1=5 n =3时,a =2×3=6,b =32-1=8,c =32+1=10 n =4时,a =2×4=8,b =42-1=15,c =42+1=17…根据上述发现的规律,用含n (n ≥2的整数)的代数式表示上述特点的勾股数a =______,b =______,c =______.三、计算题(本大题共1小题,共12.0分)19. 实验中学计划从人民商场购买A 、B 两种型号的小黑板,经洽谈,购买一块A 型小黑板比购买一块B 型小黑板多用20元,且购买5块A 型小黑板和4块B 型小黑板共需820元.(1)求购买一块A 型小黑板、一块B 型小黑板各需多少元?(2)根据实验中学实际情况,需从人民商场购买A 、B 两种型号的小黑板共60块,要求购买A 、B 两种型号的小黑板总费用不超过5240元,并且购买A 型小黑板的数量至少占总数量的13,请你通过计算,求出购买A 、B 两种型号的小黑板有哪几种方案?四、解答题(本大题共5小题,共54.0分)20. (1)已知a 、b 为实数,且√1+a +(1-b )√1−b =0,求a 2017-b 2018的值;(2)若x 满足2(x 2-2)3-16=0,求x 的值.21. 计算下列各题(1)√−0.1253+√3116+3(78−1)2-|−112| (2)(√7+√3)(√7−√3)2 (3)(2√27+14√48-6√13)÷√1222. (1)解不等式组:{1−x+12≤x +2x(x −1)>(x +3)(x −3)并把解集在数轴上表示出来. (2)解不等式组:{3x −4(x −2)≥3x 2−1<2x−1323. 如图,四边形ABCD 中,AD =4,AB =2√5,BC =8,CD =10,∠BAD =90°.(1)求证:BD ⊥BC ;(2)计算四边形ABCD 的面积.24. 如图,在⊙O 中,DE 是⊙O 的直径,AB 是⊙O 的弦,AB 的中点C 在直径DE 上.已知AB =8cm ,CD =2cm (1)求⊙O 的面积;(2)连接AE ,过圆心O 向AE 作垂线,垂足为F ,求OF的长.答案和解析1.【答案】D【解析】解:A、负数没有平方根,0的平方根是0,只有正数有两个平方根,故本选项错误;B、当a=2,b=-2时,a2=b2,但a和b不相等,故本选项错误;C、=2,故本选项错误;D、-8的立方根是-2,故本选项正确;故选:D.根据负数没有平方根,0的平方根是0,正数有两个平方根即可判断A,举出反例即可判断B,根据算术平方根求出=2,即可判断C,求出-8的立方根即可判断D.本题考查了平方根,立方根,算术平方根的应用,能理解平方根,立方根,算术平方根的定义是解此题的关键,题目比较好,难度不大.2.【答案】B【解析】解:A.=2,故选项错误;B、=2,故选项正确;C、=,故选项错误;D、=3,故选项错误.故选B.同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.把每个根式化简即可确定.本题考查同类二次根式的概念,正确对根式进行化简是关键.3.【答案】C【解析】【解答】解:设A、B之间的整数是x,那么-<x<,而-11<-<-10,8<<9,∴-11<x<9,AB之间的整数有19个.故选:C.【分析】本题主要考查了无理数的估量,解题关键是确定无理数的整数部分即可解决问题.先设AB之间的整数是x,于是-<x<,而-11<-<-10,8<<9,从而可求-11<x<9,进而可求A、B之间整数的个数.4.【答案】B【解析】解:移项,得:-3x-x<-3-9,合并同类项,得:-4x<-12,系数化为1,得:x>3,将不等式的解集表示如下:故选:B.直接解不等式,进而在数轴上表示出解集.此题主要考查了在数轴上表示不等式的解集以及解不等式,正确解不等式是解题关键.5.【答案】C【解析】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD-S△ABE,=AB2-×AE×BE=100-×6×8=76.故选:C.由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD-S△ABE求面积.本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.6.【答案】C【解析】解:∵、有意义,∴,∴x≥1.故选:C.根据二次根式有意义的条件,即可得出x的取值范围.本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.7.【答案】D【解析】解:A、原式==6,所以A选项错误;B、原式==×=2×3=6,所以B选项错误;C、原式==,所以C选项错误;D、原式=-=-,所以D选项正确.故选:D.根据二次根式的性质对A、C、D进行判断;根据二次根式的乘法法则对B进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.【答案】D【解析】解:设点C所对应的实数是x.则有x-=-(-1),解得x=2+1.故选D.设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.本题考查的是数轴上两点间距离的定义,根据题意列出关于x的方程是解答此题的关键.9.【答案】D【解析】解:设AB长度为acm,∵根据三角形的三边关系定理得:8-5<a<8+5,∴3<a<13,∴8+5+3<a+8+5<13+8+5,即16<a+8+5<26,∵△ABC的周长为xcm,∴16<x<26,故选:D.根据三角形的三边关系定理求出边AB的范围,再根据不等式的性质进行变形,即可得出选项.本题考查了三角形的三边关系定理,能求出边AB的范围是解此题的关键.10.【答案】C【解析】解:由勾股定理得:AC=BC=,AB=,∵AC2+BC2=AB2=10,∴△ABC为等腰直角三角形,∴∠ABC=45°,故选:C.利用勾股定理的逆定理证明△ACB为直角三角形即可得到∠ABC的度数.本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.11.【答案】A【解析】解:不等式组由①得,x≥a+b,由②得,x<,∴,解得,∴=-2.故选:A.先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.12.【答案】D【解析】解:连接DF、BD、EB,由折叠的性质可知,FD=FB,在Rt△DCF中,DF2=(4-DF)2+32,解得,DF=cm,由折叠的性质可得,∠BFE=∠DFE,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF,∴平行四边形BFDE是菱形,在Rt△BCD中,BD═=5,∵S菱形BFDE=EF×BD=BF×CD,∴×EF×5=×3,解得EF=3.75,故选:D.根据折叠的性质得到FD=FB,根据勾股定理求出BF,证明平行四边形BFDE 是菱形,根据菱形的面积公式计算即可.本题考查的是翻转变换的性质、矩形的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.13.【答案】148.877【解析】解:∵533=148877,∴5.33=148.877,故答案为:148.877.直接利用有理数的乘方运算性质得出答案.此题主要考查了有理数的乘方运算,正确得出小数点移动位数是解题关键.14.【答案】5【解析】解:当x-2=时,原式=[(x+2)-4]2=(x-2)2=5故答案为:5根据二次根式的运算法则以及完全平方公式即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用完全平方公式,本题属于基础题型.15.【答案】1【解析】解:∵3<<4,∴a=3,b=-3,∴b(+a)=(-3)(+3)=10-9=1,故答案为:1.先求出的范围,求出a、b的值,代入根据平方差公式求出即可.本题考查了估算无理数的大小,平方差公式的应用,解此题的关键是求出a、b的值.16.【答案】-3<a≤-2【解析】解:,解①得:x≥a,解②得:x<2.∵不等式组有四个整数解,∴不等式组的整数解是:-2,-1,0,1.则实数a的取值范围是:-3<a≤-2.故答案是:-3<a≤-2.首先解不等式组,即可确定不等式组的整数解,即可确定a的范围.本题考查了不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.【答案】a+b-2c【解析】解:原式=|a|-|a+c|+|c-a|+b,=a-(a+c)+(a-c)+b,=a-a-c+a-c+b,=a+b-2c.故答案为:a+b-2c.根据=|a|进行化简,然后再利用绝对值的性质化简,再合并同类项即可.此题主要考查了实数运算,关键是掌握二次根式的性质和绝对值的性质.18.【答案】2n;n2-1;n2+1【解析】解:∵当n=2时,a=2×2=4,b=22-1=3,c=22+1=5 n=3时,a=2×3=6,b=32-1=8,c=32+1=10n=4时,a=2×4=8,b=42-1=15,c=42+1=17…∴勾股数a=2n ,b=n 2-1,c=n 2+1.故答案为:2n ,n 2-1,n 2+1.由n=2时,a=2×2=4,b=22-1=3,c=22+1=5;n=3时,a=2×3=6,b=32-1=8,c=32+1=10;n=4时,a=2×4=8,b=42-1=15,c=42+1=17…得出a=2n ,b=n 2-1,c=n 2+1,满足勾股数.此题主要考查了数据变化规律,得出a 与b 以及a 与c 的关系是解题关键. 19.【答案】解:(1)设一块A 型小黑板x 元,一块B 型小黑板y 元.则{5x +4y =820x−y=20,解得{y =80x=100.答:一块A 型小黑板100元,一块B 型小黑板80元.(2)设购买A 型小黑板m 块,则购买B 型小黑板(60-m )块则{100m +80(60−m)≤5240m ≥13×60, 解得20≤m ≤22,又∵m 为正整数∴m =20,21,22则相应的60-m =40,39,38∴共有三种购买方案,分别是方案一:购买A 型小黑板20块,购买B 型小黑板40块;方案二:购买A 型小黑板21块,购买B 型小黑板39块;方案三:购买A 型小黑板22块,购买B 型小黑板38块.方案一费用为100×20+80×40=5200元; 方案二费用为100×21+80×39=5220元; 方案三费用为100×22+80×38=5240元. ∴方案一的总费用最低,即购买A 型小黑板20块,购买B 型小黑板40块总费用最低,为5200元【解析】(1)设购买一块A 型小黑板需要x 元,一块B 型为y 元,根据等量关系:购买一块A 型小黑板比买一块B 型小黑板多用20元;购买5块A 型小黑板和4块B 型小黑板共需820元;可列方程组求解.(2)设购买A 型小黑板m 块,则购买B 型小黑板(60-m )块,根据需从公司购买A 、B 两种型号的小黑板共60块,要求购买A 、B 两种型号小黑板的总费用不超过5240元.并且购买A 型小黑板的数量至少占总数量的,可列不等式组求解.本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A 、B 两种型号小黑板的总费用不超过5240元.并且购买A 型小黑板的数量至少占总数量的,列出不等式组求解. 20.【答案】解:(1)∵a ,b 为实数,且√1+a +(1-b )√1−b =0,∴1+a =0,1-b =0,解得a =-1,b =1,∴a 2017-b 2018=(-1)2017-12018=(-1)-1=-2;(2)2(x 2-2)3-16=0,2(x 2-2)3=16,(x 2-2)3=8,x 2-2=2,x 2=4,x =±2.【解析】(1)根据+(1-b )=0和二次根式有意义的条件,可以求得a 、b 的值,从而可以求得所求式子的值; (2)根据立方根的定义求出x 2-2=2,再根据平方根的定义即可解答本题. 本题考查非负数的性质:算术平方根,整式的混合运算-化简求值,解答本题的关键是明确它们各自的计算方法.21.【答案】解:(1)√−0.1253+√3116+3(78−1)2-|−112| =-0.5+74-12-32=-34;(2)(√7+√3)(√7−√3)2=(√7+√3)×(√7-√3)×(√7-√3)=4√7-4√3;(3)(2√27+14√48-6√13)÷√12 =(6√3+√3-2√3)÷2√3=52. 【解析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用平方差公式计算得出答案;(3)首先化简二次根式,进而计算得出答案.此题主要考查了实数运算,正确化简各数是解题关键.22.【答案】解:(1){1−x+12≤x +2①x(x −1)>(x +3)(x −3)②, 解不等式①得x ≥-1,解不等式②得x <9,故不等式的解集为-1≤x <9,把解集在数轴上表示出来为:(2){3x −4(x −2)≥3①x 2−1<2x−13②, 解不等式①得x ≤5,解不等式②得x >-4,故不等式的解集为-4<x ≤5.【解析】(1)求出两个不等式的解集的公共部分,并把解集在数轴上表示出来即可; (2)求出两个不等式的解集的公共部分即可.考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.23.【答案】解:(1)∵AD =4,AB =2√5,∠BAD =90°, ∴BD =√AB 2+AD 2=6.又BC =8,CD =10,∴BD 2+BC 2=CD 2,∴BD ⊥BC ;(2)四边形ABCD 的面积=△ABD 的面积+△BCD 的面积 =12×4×2√5+12×6×8=4√5+24.【解析】(1)先根据勾股定理求出BD 的长度,然后根据勾股定理的逆定理,即可证明BD ⊥BC ;(2)根据图形得到四边形ABCD 的面积=2个直角三角形的面积和即可求解. 此题主要考查了勾股定理和勾股定理的逆定理,把四边形的面积分解成两个直角三角形的面积来求是解本题的关键所在.24.【答案】解:(1)连接OA ,如图1所示∵C 为AB 的中点,AB =8cm ,∴AC =4cm又∵CD =2cm设⊙O 的半径为r ,则(r -2)2+42=r 2解得:r =5∴S =πr 2=π×25=25π(2)OC =OD -CD =5-2=3EC =EO +OC =5+3=8∴EA =√AC 2+EC 2=√42+82=4√5∴EF =EA2=4√52=2√5 ∴OF =√EO 2−EF 2=√25−20=√5【解析】(1)连接OA ,根据AB=8cm ,CD=2cm ,C 为AB 的中点,设半径为r ,由勾股定理列式即可求出r ,进而求出面积.(2)在Rt △ACE 中,已知AC 、EC 的长度,可求得AE 的长,根据垂径定理可知:OF ⊥AE ,FE=FA ,利用勾股定理求出OF 的长.本题主要考查了垂径定理和勾股定理,作出辅助线是解题的关键.。

2018-2019学年苏科版数学八年级下册期中试卷含答案

2018-2019学年苏科版数学八年级下册期中试卷含答案

2018-2019学年八年级下期中数学试卷一.选择题(每题3分,共10小题,共30分.)1.在、、、、、中,分式的个数有()A.2个B.3个C.4个D.5个2.下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男、女同学的人数D.端午节期间苏州市场上粽子的质量3.下列图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.使二次根式有意义的x的取值范围是()A.x=1B.x≠1C.x>1D.x≥15.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形6.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°7.下列运算正确的是()A.=B.=C.=x+y D.=8.若2<x<3,那么+的值为()A.1B.2x﹣5C.1或2x﹣5D.﹣19.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件.②若=﹣1﹣2a,则a≥﹣;③和是同类二次根式;④分式是最简分式;其中正确的有()个.A.1个B.2个C.3个D.4个10.如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3.若h1=2,h2=1,则正方形ABCD的面积为()A.9B.10C.13D.25二.填空题(每空2分,共18分)11.当x=时,分式无意义;当x=时,分式的值为0.12.平行四边形ABCD中,∠A+∠C=100゜,则∠B=.13.一个袋中装有6个红球,4个黄球,1个白球,每个球除颜色外都相同,任意摸出一球,摸到球的可能性最大.14.某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100400800 1 000 2 000 4 000发芽的频数853******** 1 6043204发芽的频率0.8500.7500.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为(精确到0.1).15.在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是.16.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠2;(3)当x=0时,分式的值为﹣1.你所写的分式为.17.已知xy>0,则化简代数式x的结果是.18.如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则AM+BM+CM的最小值为.三.解答题:(共72分)19.(8分)计算:①(3﹣)(3+)+(2﹣)②÷﹣×+ 20.(8分)计算:(1)﹣(2)﹣(a+1)21.(8分)“摩拜单车”公司调查无锡市民对其产品的了解情况,随机抽取部分市民进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.(1)本次问卷共随机调查了名市民,扇形统计图中m=.(2)请根据数据信息补全条形统计图.(3)扇形统计图中“D类型”所对应的圆心角的度数是.(4)从这次接受调查的市民中随机抽查一个,恰好是“不了解”的概率是.22.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标都在格点上,且与△ABC关于原点O成中心对称.(1)请直接写出A1的坐标;并画出.(2)P(a,b)是△ABC的AC边上一点,将△ABC平移后点P的对称点P'(a+2,b﹣6),请画出平移后的△A2B2C2.(3)若和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.23.(8分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.24.(12分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.25.(10分)如图,直线l1:y=﹣x+b分别与x轴、y轴交于A、B两点,与直线l2:y=kx﹣6交于点C(4,2).(1)点A坐标为(,),B为(,);(2)在线段BC上有一点E,过点E作y轴的平行线交直线l2于点F,设点E的横坐标为m,当m为何值时,四边形OBEF是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(每题3分,共10小题,共30分.)1.在、、、、、中,分式的个数有()A.2个B.3个C.4个D.5个【分析】根据分式的定义对各式进行逐一判断即可.【解答】解:在、、的分母中含有字母,属于分式,故选:B.【点评】本题考查的是分式的定义,熟知一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式是解答此题的关键.2.下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男、女同学的人数D.端午节期间苏州市场上粽子的质量【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【解答】解:一批手机电池的使用寿命适合抽样调查;中国公民保护环境的意识适合抽样调查;你所在学校的男、女同学的人数适合普查;端午节期间苏州市场上粽子的质量适合抽样调查,故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:A.【点评】本题考查了轴对称图形与中心对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.使二次根式有意义的x的取值范围是()A.x=1B.x≠1C.x>1D.x≥1【分析】根据二次根式的被开方数为非负数可得出关于x的一次不等式,解出即可得出x的范围.【解答】解:∵二次根式有意义,∴可得x﹣1≥0,解得x≥1.故选:D.【点评】此题考查了二次根式有意义的条件,属于基础题,解答本题关键是掌握二次根式有意义的条件:二次根式的被开方数为非负数.5.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【解答】解:A、根据菱形的判定定理,正确;B、根据正方形和矩形的定义,正确;C、符合平行四边形的定义,正确;D、错误,可为不规则四边形.故选:D.【点评】本题考查菱形、矩形和平行四边形的判定与命题的真假区别.6.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点评】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.7.下列运算正确的是()A.=B.=C.=x+y D.=【分析】根据分式的基本性质即分子分母同时扩大或缩小相同的倍数,分式的值不变,分别对每一项进行分析,即可得出答案.【解答】解:A、=﹣,故本选项错误;B、,不能约分,故本选项错误;C、,不能约分,故本选项错误;D、==,故本选项正确;故选:D.【点评】此题考查了分式的性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0.8.若2<x<3,那么+的值为()A.1B.2x﹣5C.1或2x﹣5D.﹣1【分析】根据=|a|=,进而化简求出即可.【解答】解:∵2<x<3,∴2﹣x<0,3﹣x>0,∴+=x﹣2+3﹣x=1.故选:A.【点评】此题主要考查了二次根式的化简求值,正确记忆公式是解题关键.9.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件.②若=﹣1﹣2a,则a≥﹣;③和是同类二次根式;④分式是最简分式;其中正确的有()个.A.1个B.2个C.3个D.4个【分析】根据必然事件的定义,二次根式的性质,最简分式的定义以及同类二次根式的定义进行判断.【解答】解:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件,正确.②若=﹣1﹣2a,则a≤﹣,错误;③=,=3,是同类二次根式,正确;④分式是最简分式,正确;故选:C.【点评】本题主要考查了随机事件、二次根式以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.10.如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3.若h1=2,h2=1,则正方形ABCD的面积为()A.9B.10C.13D.25【分析】正方形ABCD的面积为边长的平方,所以只要能求边长的平方即可;作辅助线构建全等三角形,证明△ABN≌△CDG(AAS),则AN=CG,AM=CH=h2+h3,即h1=h3=2,BN=2+1=3,利用勾股定理求出AB的平方,可得结论.【解答】解:过A点作AM⊥l3分别交l2、l3于点N、M,过C点作CH⊥l2分别交l2、l3于点H、G,∵四边形ABCD是正方形,l1∥l2∥l3∥l4,∴AB=CD,∠ABN+∠HBC=90°,∵CH⊥l2,∴∠BCH+∠HBC=90°,∴∠BCH=∠ABN,∵∠BCH=∠CDG,∴∠ABN=∠CDG,∵∠ANB=∠CGD=90°,在△ABN和△CDG中,,∴△ABN≌△CDG(AAS),∴AN=CG,AM=CH=h2+h3,即h1=h3=2,BN=2+1=3,在Rt△ABN中,由勾股定理得:AB2=AN2+BN2=22+32=13,则正方形ABCD的面积=AB2=13;故选:C.【点评】本题考查了正方形的性质、三角形全等的性质和判定、勾股定理、正方形的面积,同时利用了同角的余角相等证明两角相等,为全等创造了条件,此方法在直角三角形经常运用,要熟练掌握.二.填空题(每空2分,共18分)11.当x=1时,分式无意义;当x=﹣3时,分式的值为0.【分析】依据“分式的分母为零时分式无意义”和“当分式的分子为零且分母不为零时分式的值为0”分别求出x的值即可.【解答】解:当x﹣1=0,即x=1时分式无意义;当时,分式的值为0,解得x=﹣3;故填:1;﹣3.【点评】本题主要考查分式有意义及分式的值为零的条件,注意分式的值为零需要满足分式有意义.12.平行四边形ABCD中,∠A+∠C=100゜,则∠B=130°.【分析】根据平行四边形的性质可得∠A=∠C,又有∠A+∠C=100°,可求∠A=∠C=50°.又因为平行四边形的邻角互补,所以,∠B+∠A=180°,可求∠B.【解答】解:∵四边形ABCD为平行四边形,∴∠A=∠C,又∠A+∠C=100°,∴∠A=∠C=50°,又∵AD∥BC,∴∠B=180°﹣∠A=180°﹣50°=130°.故答案为:130°.【点评】此题考查了平行四边形的性质.此题比较简单,熟练掌握平行四边形的性质定理是解题的关键.13.一个袋中装有6个红球,4个黄球,1个白球,每个球除颜色外都相同,任意摸出一球,摸到红球的可能性最大.【分析】先求出总球的个数,再分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性最大.【解答】解:∵袋中装有6个红球,4个黄球,1个白球,∴总球数是:6+4+1=11个,∴摸到红球的概率是=;摸到黄球的概率是;摸到白球的概率是;∴摸出红球的可能性最大.故答案为:红.【点评】本题主要考查可能性的大小,只需求出各自所占的比例大小即可,求比例时,应注意记清各自的数目.14.某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100400800 1 000 2 000 4 000发芽的频数853******** 1 6043204发芽的频率0.8500.7500.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为0.8(精确到0.1).【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,从而得到结论.【解答】解:∵观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,∴该玉米种子发芽的概率为0.8,故答案为:0.8.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15.在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是20.【分析】AC与BD相交于点O,如图,根据菱形的性质得AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,则可在Rt△AOD中,根据勾股定理计算出AD=5,于是可得菱形ABCD的周长为20.【解答】解:AC与BD相交于点O,如图,∵四边形ABCD为菱形,∴AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,在Rt△AOD中,∵OA=3,OB=4,∴AD==5,∴菱形ABCD的周长=4×5=20.故答案为20.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.16.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠2;(3)当x=0时,分式的值为﹣1.你所写的分式为.【分析】(1)分式的分母不为零、分子不为零;(2)分式有意义,分母不等于零;(3)将x=0代入后,分式的分子、分母互为相反数.【解答】解:(1)分式的分子不等于零;(2)分式有意义时,x的取值范围是x≠2,即当x=2时,分式的分母等于零;(3)当x=0时,分式的值为﹣1,即把x=0代入后,分式的分子、分母互为相反数.所以满足条件的分式可以是:;故答案是:.【点评】本题考查了分式的值、分式有意义的条件、分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.17.已知xy>0,则化简代数式x的结果是﹣.【分析】首先判断出x,y的符号,再利用二次根式的性质化简求出答案.【解答】解:∵xy>0,且有意义,∴x<0,y<0,∴x=x•=﹣.故答案为:﹣.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.18.如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则AM+BM+CM的最小值为4.【分析】根据“两点之间线段最短”,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.【解答】解:如图,连接MN,∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN﹣∠ABN=∠ABE﹣∠ABN.即∠MBA=∠NBE.又∵MB=NB,∴△AMB≌△ENB(SAS),∴AM=EN,∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.根据“两点之间线段最短”,得EN+MN+CM=EC最短∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长,过E点作EF⊥BC交CB的延长线于F,∴∠EBF=180°﹣120°=60°,∵BC=4,∴BF=2,EF=2,在Rt△EFC中,∵EF2+FC2=EC2,EC=4.故答案为:4【点评】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质,轴对称最短路线问题和旋转的问题.三.解答题:(共72分)19.(8分)计算:①(3﹣)(3+)+(2﹣)②÷﹣×+【分析】①原式利用平方差公式和乘法分配律计算,再计算加减可得;②先计算乘除,再合并同类二次根式即可得.【解答】解:①原式=32﹣()2+2﹣2=9﹣7+2﹣2=2;②原式=﹣+2=﹣+2=4+.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.(8分)计算:(1)﹣(2)﹣(a+1)【分析】(1)利用同分母分式加减运算法则计算,再约分即可得;(2)先通分,再根据加减法则计算可得.【解答】解:(1)原式===;(2)原式=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算顺序和运算法则.21.(8分)“摩拜单车”公司调查无锡市民对其产品的了解情况,随机抽取部分市民进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.(1)本次问卷共随机调查了50名市民,扇形统计图中m=32.(2)请根据数据信息补全条形统计图.(3)扇形统计图中“D类型”所对应的圆心角的度数是43.2°.(4)从这次接受调查的市民中随机抽查一个,恰好是“不了解”的概率是.【分析】(1)根据A类型的人数和所占的百分比求出随机调查的总人数,用C类型的人数除以总人数即可求出m的值;(2)用总人数乘以B类型的人数所占的百分比求出B类型的人数,从而补全统计图;(3)用360°乘以“D类型”所占的百分比即可;(4)用“不了解”的人数除以总人数即可得出“不了解”的概率.【解答】解:(1)本次问卷共随机调查的市民数是:8÷16%=50(人),m%=×100%=32%,故扇形统计图中m=32;故答案为:50,32;(2)根据题意得:50×40%=20(人),补全条形统计图如图所示:(3)扇形统计图中“D类型”所对应的圆心角的度数是:360°×=43.2°;故答案为:43.2°;(4)从这次接受调查的市民中随机抽查一个,恰好是“不了解”的概率是=;故答案为:.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.22.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标都在格点上,且与△ABC关于原点O成中心对称.(1)请直接写出A1的坐标(3,﹣4);并画出.(2)P(a,b)是△ABC的AC边上一点,将△ABC平移后点P的对称点P'(a+2,b﹣6),请画出平移后的△A2B2C2.(3)若和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(1,﹣3).【分析】(1)直接利用关于原点对称点的性质得出对应点位置进而得出答案;(2)直接利用平移规律得出△ABC平移后的位置;(3)利用所画三角形连接对应点得出对称中心.【解答】解:(1)如图所示:△A1B1C1即为所求,A1(3,﹣4);故答案为:(3,﹣4);(2)如图所示:△A2B2C2即为所求;(3)如图所示:中心对称点O′的坐标为:(1,﹣3).故答案为:(1,﹣3).【点评】此题主要考查了平移变换以及旋转变换,正确得出对应点位置是解题关键.23.(8分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.24.(12分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】方法一:(1)解:如图1(1)过点E作EF⊥AM交AM于F点,连接EM,∵AE平分∠DAM∴∠DAE=∠EAF在△ADE和△AEF中,AE=AE∠D=∠AFE=90°∴△ADE≌△AEF∴AD=AF,EF=DE=EC,在△EFM和△ECM中,∠EFM=∠CEM=EMEF=CE∴△EFM≌△ECM,∴FM=MC,AM=AF+FM=AD+MC方法二:证明:延长AE、BC交于点N,如图1(2),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.方法一:证明:将△ADE绕点A顺时针旋转90°,得到新△ABF,如图1(3)∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM方法二:证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(4)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.【点评】本题考查了正方形及矩形的性质、全等三角形的性质和判定、等腰三角形的判定、平行线的性质、角平分线的定义等知识,考查了基本模型的构造(平行加中点构造全等三角形),考查了反证法的应用,综合性比较强.添加辅助线,构造全等三角形是解决这道题的关键.25.(10分)如图,直线l1:y=﹣x+b分别与x轴、y轴交于A、B两点,与直线l2:y=kx﹣6交于点C(4,2).(1)点A坐标为(8,0),B为(0,4);(2)在线段BC上有一点E,过点E作y轴的平行线交直线l2于点F,设点E的横坐标为m,当m为何值时,四边形OBEF是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.【分析】(1)由点C的坐标利用待定系数法即可求出直线l1的解析式,再分别令直线l1的解析式中x=0、y=0求出对应的y、x值,即可得出点A、B的坐标;(2)由点C的坐标利用待定系数法即可求出直线l2的解析式,结合点E的横坐标即可得出点E、F的坐标,再根据平行四边形的性质即可得出关于m的一元一次方程,解方程即可得出结论;(3)分AB为边和AB为对角线两种情况讨论.当AB为边时,根据菱形的性质找出点P的坐标,结合A、B的坐标即可得出点Q的坐标;当AB为对角线时,根据三角形相似找出点P的坐标,再根据菱形对角线互相平分即可得出点Q的坐标.综上即可得出结论.【解答】解:(1)将点C(4,2)代入y=﹣x+b中,得:2=﹣2+b,解得:b=4,∴直线l1为y=﹣x+4.令y=﹣x+4中x=0,则y=4,∴B(0,4);令y=﹣x+4中y=0,则x=8,∴A(8,0).故答案为:8;0;0;4.(2)∵点C(4,2)是直线l2:y=kx﹣6上的点,∴2=4k﹣6,解得:k=2,∴直线l2为y=2x﹣6.∵点E的横坐标为m(0≤m≤4),∴E(m,﹣m+4),F(m,2m﹣6),∴EF=﹣m+4﹣(2m﹣6)=10﹣m.∵四边形OBEF是平行四边形,∴BO=EF,即4=10﹣m,解得:m=.故当m=时,四边形OBEF是平行四边形.(3)假设存在.以P、Q、A、B为顶点的菱形分两种情况:①以AB为边,如图1所示.∵点A(8,0),B(0,4),∴AB=4.∵以P、Q、A、B为顶点的四边形为菱形,∴AP=AB或BP=BA.当AP=AB时,点P(8﹣4,0)或(8+4,0);当BP=BA时,点P(﹣8,0).当P(8﹣4,0)时,Q(8﹣4﹣8,0+4),即(﹣4,4);当P(8+4,0)时,Q(8+4﹣8,0+4),即(4,4);当P(﹣8,0)时,Q(﹣8+8﹣0,0+0﹣4),即(0,﹣4).②以AB为对角线,对角线的交点为M,如图2所示.∵点A(8,0),B(0,4),∴M(4,2),AM=AB=2.∵PM⊥AB,∴∠PMA=∠BOA=90°,∴△AMP∽△AOB,∴,∴AP=5,∴点P(8﹣5,0),即(3,0).∵以P、Q、A、B为顶点的四边形为菱形,∴点Q(8+0﹣3,0+4﹣0),即(5,4).综上可知:若点P为x轴上一点,则在平面直角坐标系中存在一点Q,使得P、Q、A、B四个点能构成一个菱形,此时Q点坐标为(﹣4,4)、(4,4)、(0,﹣4)或(5,4).【点评】本题考查了待定系数法求函数解析式、平行四边形的性质以及菱形的性质,解题的关键是:(1)利用待定系数法求出直线解析式;(2)找出关于m的一元一次方程;(3)分AB为边或对角线考虑.本题属于中档题,难度不大,解决该题型题目时,充分利用平行四边形和菱形的性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省海门市东洲中学2018-2019学年八年级下学期期中考试数学
试题(word无答案)
一、单选题
(★★) 1 . 函数y=kx的图象经过点P(3,﹣1),则k的值为()
A.3B.﹣3C.D.﹣
(★) 2 . 一元二次方程 x 2﹣6 x﹣5=0配方可变形为()
A.(x﹣3)2=14B.(x﹣3)2=4C.(x+3)2=14D.(x+3)2=4
(★★) 3 . 在平面直角坐标系中,函数的图象经过()
A.第一、二、三象限B.第一、二、四象限
C.第一、三、四象限D.第二、三、四象限
(★) 4 . 如图在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为()
A.26cm B.24cm C.20cm D.18cm
(★★) 5 . 已知关于的一元二次方程没有实数根,则实数的取值范围是()
A.B.C.D.
(★★) 6 . 当函数y=(x-1)2-2的函数值y随着x的增大而减小时,x的取值范围是()A.B.C.D.x为任意实数
(★) 7 . 某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()
A.80(1+x)2=100B.100(1﹣x)2=80C.80(1+2x)=100D.80(1+x2)=100
(★) 8 . 如图,函数 y1=﹣2 x 与 y2= ax+3 的图象相交于点 A( m,2),则关于 x 的不等式﹣2 x > ax+3 的解集是()
A.x>2B.x<2C.x>﹣1D.x<﹣1
(★★) 9 . 在同一直角坐标系中,函数 y= ax 2+ b与 y= ax+ b( a, b都不为0)的图象的相对位置可以是()
A.B.C.D.
(★★) 10 . 如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S 四边形DEBC=2S △EFB;④∠CFE=3∠DEF,其中正确结论的个数共有().
A.1个B.2个C.3个D.4个
二、填空题
(★) 11 . 函数中,自变量的取值范围是_____.
(★) 12 . 将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式
是_____.
(★★) 13 . 矩形ABCD的对角线AC、BD相交于点O,AB=4cm,∠AOB=60º,则这个矩形的对角线的
长是__cm
(★★) 14 . 如图,直线y=ax+b与直线y=cx+d相交于点(2,1),则关于x的一元一次方程ax +b=cx+d的解为__________.
(★★) 15 . 如图,若菱形 ABCD的顶点 A, B的坐标分别为(3,0),(﹣2,0),点 D在 y轴上,则点 C的坐标是_____.
(★★) 16 . 如图,直线y=﹣x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将
△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为______________.
(★★) 17 . 如图,在平面直角坐标系中,直线 AB交 x轴于点 A( a,0),交 y轴于点 B(0, b),且 a、 b满足,直线 y= x交 AB于点 M,过点 M作 MC⊥ AB交 y轴于点 C,
则点 C的坐标为___.
三、解答题
(★★) 18 . 某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地
的面积之和为60平方米,人行通道的宽度应是多少米?
(★) 19 . 解方程
(1)
(2) x 2+3 x+1=0.
(★★) 20 . 如图,在▱ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.
(★★★★) 21 . 已知直线 l 1: y= kx+ b经过点 A(5,0), B(1,4).
(1)求直线 AB的函数关系式;
(2)若直线 l 2: y=2 x-4与直线 AB相交于点 C,求点 C的坐标;
(3)过点 P( m,0)作 x轴的垂线,分别交直线点 l 1, l 2与点 M, N,若 m>3,当 MN=3时,求 m 的值.
(★★) 22 . 如图,边长为8的正方形 OABC的两边在坐标轴上,以点 C为顶点的抛物线经过点A,
(1)请求出抛物线的解析式;
(2)连接OB,与抛物线交于点M,请求出M点坐标;
(★★) 23 . 关于x的一元二次方程
(1)求证:方程总有两个不相等的实数根。

(2)m为何整数时,此方程的两个根都是正整数?
(3)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求m的值。

(★★) 24 . 已知将一矩形纸片 ABCD折叠,使顶点 A与 C重合,折痕为 EF.
(1)求证: CE= CF;
(2)若 AB ="8" cm, BC="16" cm,连接 AF,写出求四边形 AFCE面积的思
路.
(★★) 25 . 在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
销售量y(千克)…34.83229.628…
售价x(元/千克)…22.62425.226…
(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
(★★★★) 26 . 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A 的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.
(1)菱形ABCO的边长
(2)求直线AC的解析式;
(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB 的面积为S(S≠0),点P的运动时间为t秒,
①当0<t<时,求S与t之间的函数关系式;
②在点P运动过程中,当S=3,请直接写出t的值.
(★★★★) 27 . 在平面直角坐标系 xOy中,对于点 P( x, y),如果点 Q( x,)的纵坐标满足,那么称点 Q为点 P的“关联点”.
(1)请直接写出点(3,5)的“关联点”的坐标;
(2)如果点 P在函数的图象上,其“关联点” Q与点 P重合,求点P的坐标;(3)如果点 M ( m , n )的“关联点” N在函数 y=2 x2的图象上,当0 ≤ m≤ 时,求线段 MN 的最大值.。

相关文档
最新文档