动物分子生物学实验
分子生物学常用实验方法原理介绍

分子生物学常用实验方法原理介绍一、GST pull-down实验基本原理:将靶蛋白-GST融合蛋白亲和固化在谷胱甘肽亲和树脂上,作为与目的蛋白亲和的支撑物,充当一种“诱饵蛋白”,目的蛋白溶液过柱,可从中捕获与之相互作用的“捕获蛋白”(目的蛋白),洗脱结合物后通过SDS-PAGE电泳分析,从而证实两种蛋白间的相互作用或筛选相应的目的蛋白,“诱饵蛋白”和“捕获蛋白”均可通过细胞裂解物、纯化的蛋白、表达系统以及体外转录翻译系统等方法获得。
此方法简单易行,操作方便。
注:GST即谷胱甘肽巯基转移酶(glutathione S-transferase)二、足印法(Footprinting)足印法(Footprinting)是一种用来测定DNA-蛋白质专一性结合的方法,用于检测目的DNA序列与特定蛋白质的结合,也可展示蛋白质因子同特定DNA片段之间的结合。
其原理为:DNA和蛋白质结合后,DNA与蛋白的结合区域不能被DNase(脱氧核糖核酸酶)分解,在对目的DNA 序列进行检测时便出现了一段无DNA序列的空白区(即蛋白质结合区),从而了解与蛋白质结合部位的核苷酸数目及其核苷酸序列。
三、染色质免疫共沉淀技术(Chromatin Immunoprecipitation,ChIP)染色质免疫共沉淀技术(Chromatin Immunoprecipitation,ChIP)是研究体内蛋白质与DNA相互作用的有力工具,利用该技术不仅可以检测体内反式因子与DNA的动态作用,还可以用来研究组蛋白的各种共价修饰以及转录因子与基因表达的关系。
染色质免疫沉淀技术的原理是:在生理状态下把细胞内的DNA与蛋白质交联在一起,通过超声或酶处理将染色质切为小片段后,利用抗原抗体的特异性识别反应,将与目的蛋白相结合的DNA 片段沉淀下来。
染色质免疫沉淀技术一般包括细胞固定,染色质断裂,染色质免疫沉淀,交联反应的逆转,DNA的纯化及鉴定。
四、基因芯片(又称 DNA 芯片、生物芯片)技术基因芯片指将大量探针分子固定于支持物上后与标记的样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。
分子生物学实验指导

实验一RT-PCR法钓取小鼠肝脏GAPDH基因一、TRlzol试剂提取小鼠肝脏总RNATRIzol RNA提取试剂盒是由GIBCOBRL公司推出的产品,其操作方法简捷、方便,lh之内即可完成,所制备的RNA可用于cDNA合成及Northern blot等。
【试剂】TRlZOL试剂氯仿异丙醇75%乙醇(DEPC水配制)无RNase水【操作方法】(1)收获细胞1~5×106;或50-100mg组织,加TRlzol试剂lml匀浆。
(2),移入1.5ml Ep管中,室温静置5min。
(3)每1ml TRIZOL中加氯仿0.2m1,摇振15s,置室温2~3min。
(4)4℃离心,12,000g×15min。
(5)仔细吸取上层水相,移至另一Ep管中。
(6)加0.5ml异丙醇,混匀,置室温10min。
(7)4℃离心,12,000g×10min。
(8)弃上清,加75%乙醇1m1,轻轻摇振,充分洗涤沉淀,4℃离心,7500g×5min。
(9)弃上清,真空干燥后,沉淀重悬于50μl无RNase水中。
一70℃保存备用。
二、核酸的定量(1)分光光度法测定核酸浓度。
组成核酸分子的碱基,均具有一定的吸收紫外线特性,最大吸收波长为250~270nm之间。
例如腺嘌呤的最大紫外线吸收值在260.5nm,胞嘧啶:267nm 鸟嘌呤:276nM胸腺嘧啶:264.5 nm尿嘧啶259nm。
这些碱基与戊糖、磷酸形成核苷酸后,其最大吸收峰不会改变,但核苷酸最大吸收波长是260nm,吸收低谷在230nm,这个物理特性为紫外分光光度法测定核酸溶液浓度提供了基础。
在波长260nm紫外线下,1OD值的光密度相当于双链DNA浓度为50ug/ ml;单链DNA或RNA为40ug/ml;单链寡核苷酸为20ug/ml。
另外,还可以通过测定260nm和280nm的紫外线吸收值,然后根据其比值来估计核酸的纯度。
DNA样品的比值为1.8,RNA样品的比值为2.0。
分子生物学实验3篇

分子生物学实验第一篇:PCR技术在分子生物学中的应用PCR(聚合酶链式反应)是分子生物学中一项广泛应用的技术,被用于DNA的扩增和检测。
PCR技术已经成为了分子生物学和生物医学研究的基础技术之一。
PCR技术被广泛的应用于遗传学、人类学、医学研究、植物学和动物学研究等各领域。
PCR技术的基本原理是:通过提取DNA,将DNA特异性引物与模板DNA相结合,利用热稳定DNA聚合酶和四种脱氧核苷酸为反应体系提供能量,使其在一定条件下循环扩增目标DNA片段。
通过PCR扩增后的DNA片段可以进行进一步的分析和检测。
PCR技术的扩增具有明显的优势,可同时扩增不同长度的DNA片段,扩增时间短,扩增的精度和重复性高,且所需的样本量小。
PCR技术在分子诊断、基因组学和分子系统学等领域的应用不断扩展和深化。
随着PCR技术的不断发展,PCR在分子生物学研究中的应用越来越广泛,成为分子生物学研究的重要工具。
第二篇:RNA干扰技术在分子生物学中的应用RNA干扰(RNAi)是分子生物学中一种重要的现象,其中小分子RNA片段通过RNAi途径参与靶基因的沉默和调节。
RNAi技术是人类基因功能研究中最具前途的一种技术之一。
RNA干扰技术的基本原理是通过利用RNAi分子的特异性配对功能,引导RNAi分子与靶基因mRNA相结合,导致mRNA的降解和翻译的抑制,实现对基因表达的调控。
RNA干扰技术在分子生物学研究中有广泛的应用,如:功能基因的筛选、基因表达调节、基因功能验证等。
RNA干扰技术具有多种优点,如高效性、特异性强、节约时间、资源和成本等方面的优势,逐步成为生命科学研究中的重要工具。
在研究过程中,RNA干扰技术常用于寻找分子病理学中新的治疗靶点,鉴定靶点基因和靶点蛋白,为新药物的开发和临床治疗提供了重要的理论和实验基础。
第三篇:基因克隆技术在分子生物学中的应用基因克隆技术始于20世纪70年代,是指将DNA分子导入到载体中,使其在细胞中进行表达的过程。
分子生物学实验报告

分子生物学实验报告----绿色荧光蛋白(GFP)基因的克隆、表达和纯化一、实验背景绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
当受到紫外或蓝光激发时,GFP发射绿色荧光。
它产生荧光无需底物或辅因子发色团是其蛋白质一级序列固有的。
GFP由3个外显子组成,长2.6kb;GFP是由238个氨基酸所组成的单体蛋白,相对分子质量为27.0 kMr,其蛋白性质十分稳定,能耐受60℃处理。
1996年GFP的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。
发色团是由其蛋白质内部第65-67位的Ser-Tyr-Gly自身环化和氧化形成。
1996年GFP的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。
实验使用的EGFP蛋白取自原核-真核穿梭质粒pEGFP-NB3B的蛋白质编码序列。
此质粒原本被设计于在原核系统中进行扩增,并可在真核哺乳动物细胞中进行表达。
本质粒主要包括位于PCMV真核启动子与SV40 真核多聚腺苷酸尾部之间的EGFP编码序列与位于EGFP上游的多克隆位点;一个由SV40 早期启动子启动的卡那霉素/新霉素抗性基因,以及上游的细菌启动子可启动在原核系统中的复制与卡那抗性。
在EGFP编码序列上下游,存在特异的BamH I及Not I限制性内切酶位点,可切下整段EGFP编码序列。
表达EGFP 蛋白使用的pET-28 原核载体包含有在多克隆位点两侧的His-tag polyHis 编码序列;用于表达蛋白的T7 启动子,T7 转录起始物以及T7 终止子;选择性筛选使用的lacI 编码序列及卡那霉素抗性序列,pBR322 启动子,以及为产生单链DNA 产物的f1 启动子。
分子生物学实验设计

分子生物学实验设计在分子生物学领域中,实验设计是进行科学研究的关键步骤之一。
良好的实验设计可以确保实验结果的准确性和可重复性,从而为科学研究提供有力的支持。
本文将介绍分子生物学实验设计的基本原则和常用方法,以及一些注意事项。
一、实验目的每个实验都应该有明确的目的,这有助于指导实验设计和实验操作。
在分子生物学实验设计中,实验目的可以是检测特定基因的表达水平、研究蛋白质的功能、分析细胞信号通路等等。
根据实验目的的不同,可以选择合适的实验方法和技术。
二、选择合适的实验模型在分子生物学实验中,常用的实验模型包括细胞系、动物模型和植物模型等。
选择合适的实验模型要考虑实验目的、实验内容和实验可行性等因素。
例如,如果研究某个基因在特定细胞中的表达情况,可以选择合适的细胞系进行研究。
三、合理设计实验组和对照组实验组和对照组是进行比较分析的基本单位。
实验组是接受特定处理或介入干预的样本,而对照组是与实验组相对照的样本,用于比较分析实验结果。
在分子生物学实验设计中,应该根据实验目的和研究问题合理设计实验组和对照组,确保实验结果的可靠性。
四、选择合适的实验方法和技术分子生物学领域有多种实验方法和技术可供选择,例如PCR、Western blot、免疫组化等。
在实验设计中,应该根据实验目的和研究问题选择合适的实验方法和技术。
同时,还需要合理设计实验的控制组和实验参数,以保证实验结果的准确性和可重复性。
五、样本处理和数据分析在分子生物学实验中,样本处理和数据分析是非常重要的步骤。
样本处理应该严格按照实验设计的要求进行,保证实验结果的可信度。
同时,在数据分析过程中,应该选择合适的统计方法和软件工具,对实验结果进行科学的定量分析和解释。
六、安全和伦理考虑分子生物学实验设计不仅需要考虑实验的科学性,还需要考虑实验的安全性和伦理性。
在实验设计过程中,应该注意选择符合伦理规范和安全要求的实验方法和技术,并严格遵守实验室的操作规程和安全规定。
分子生物学实验讲义

《生化与分子生物学》实验讲义天津医科大学生物医学工程系2005年实验一自抗凝血中提取哺乳动物细胞基因组DNA一、实验目的1、了解核酸的基本特性。
2、掌握DNA提取和鉴定的方法。
二、实验原理核酸的分离与提取是分子生物学研究中很重要的基本技术,核酸样品的质量可能直接关系到后续实验的成败。
核酸包括DNA、RNA两种分子,在真核细胞中都是以与蛋白质相结合的状态存在(DNA与组蛋白形成核小体,再折叠缠绕成染色体),真核生物基因组DNA 为双链线性分子,存在于细胞核内。
基因组DNA的提取需经过DNA的释放(破膜)、DNA与蛋白质的分离,DNA的沉淀等过程。
分离纯化核酸的总原则:1、保证核酸一级结构的(核苷酸序列)的完整性,全部的遗传信息均储存在一级结构中。
2、排除其它分子的污染。
a)对酶有抑制作用的有机溶剂和过高浓度的金属离子。
b)生物大分子:蛋白质、多糖和脂质。
c)其它核酸分子:RNA.三、实验试剂1、TKM缓冲液10 mmol/L Tris-HCl pH 7.6 (Tris 三羟甲基氨基甲烷)10 mmol/L KCl2 mmol/L EDTA4 mmol/L MgCl22、TE缓冲液10 mmol/L Tris-HCl1 mmol/L EDTA pH 8.03、10%SDS4、饱和氯化钠四、实验步骤1、取0.5ml EDTA抗凝的全血于清洁的1.5ml Eppendorf离心管中。
2、加入0.5ml TKM缓冲液,13μl Triton X-100(终浓度为1.2%),颠倒混匀。
在台式离心机上离心,5,000rpm×10分钟。
(低渗破红细胞膜)。
3、倾去上清液,在离心管中加入1.0ml TKM缓冲液,混匀后离心,5,000rpm ×10分钟,重复步骤3两次。
(清洗)4、于沉淀中加入200μl TKM缓冲液和15μl 10%SDS(终浓度为0.7%),混匀后于55℃保温20分钟。
(破白细胞膜)注:此步中可加入少量蛋白酶K。
分子生物学实验设计报告
分子生物学实验设计报告李豪20一、引言基因标记技术是近年来发展起来的分子生物学技术,荧光蛋白是海洋生物体内的一类发光蛋白,分为绿色荧光蛋白、蓝色荧光蛋白、黄色荧光蛋白和红色荧光蛋白。
绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白,共27kD,由238个氨基酸构成。
它产生荧光无需底物或辅因子,发色团是其蛋白质一级序列固有的。
当受到紫外或蓝光激发时,GFP发射绿色荧光。
研究绿色荧光蛋白在大肠杆菌体内的基因克隆和表达。
通过质粒重组形成所需要的重组质粒pET-28a-GFP,将重组质粒导入大肠杆菌体内,通过酶切、PCR及用IPTG诱导检测是否在大肠杆菌体内诱导表达成功。
根据电泳结果及荧光现象得出结论,重组质粒三、具体实验方案实验一、仪器准备与培养基的配置1.实验原理:1)质粒(Plasmid)是一种染色体外的遗传因子,大小在1kb~200kb之间,是具有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。
质粒具有自主复制能力,能使子代保持他们恒定的复制数,可表达它携带的遗传信息。
它可以独立游离于细胞质内,也可以整合到细菌染色体中,它离开宿主细胞就不能复制,而它控制的许多生物学功能也是对宿主细胞的补偿。
2)从大肠杆菌中抽提质粒DNA的方法很多,可以在实验中根据不同的需要采用不同的方法。
碱变性法抽提质粒DNA的基本原理是根据染色体DNA和质粒DNA分子量的巨大差异而达到分离的。
十二烷基磺酸钠(SDS)是一种阴离子表面活性剂,它既能使细菌细胞裂解,又能使一些蛋白质变性碱变性法因其抽提效果好,收得率高,获得的DNA可用于酶切、连接与转化,因而被各实验室广泛采用。
抽提过程中在加入溶液II后,碱性条件使DNA的氢键断裂,宿主染色体双螺旋结构解开而变性,而闭合环状的质粒DNA的两条链不会完全分离,当加入溶液III中和后,宿主DNA相对分子质量大,还没来得及复性,就在冰冷的条件下与SDS、蛋白质、高分子量的RNA等缠绕在一起而沉淀下来,而质粒DNA由于能够迅速配对恢复原来的构型而溶解在TE溶液中。
分子生物学实验报告
分⼦⽣物学实验报告分⼦⽣物学实验报告----绿⾊荧光蛋⽩(GFP)基因的克隆、表达和纯化⼀、实验背景绿⾊荧光蛋⽩(green fluorescent protein,GFP)是⼀类存在于包括⽔母、⽔螅和珊瑚等腔肠动物体内的⽣物发光蛋⽩。
当受到紫外或蓝光激发时,GFP发射绿⾊荧光。
它产⽣荧光⽆需底物或辅因⼦发⾊团是其蛋⽩质⼀级序列固有的。
GFP由3个外显⼦组成,长2.6kb;GFP是由238个氨基酸所组成的单体蛋⽩,相对分⼦质量为27.0 kMr,其蛋⽩性质⼗分稳定,能耐受60℃处理。
1996年GFP的晶体结构被解出,蛋⽩质中央是⼀个圆柱形⽔桶样结构,长420 nm,宽240 nm,由11个围绕中⼼α螺旋的反平⾏β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3个短的垂直⽚段覆盖,底部由⼀个短的垂直⽚段覆盖,对荧光活性很重要的⽣⾊团则位于⼤空腔内。
发⾊团是由其蛋⽩质内部第65-67位的Ser-Tyr-Gly⾃⾝环化和氧化形成。
1996年GFP的晶体结构被解出,蛋⽩质中央是⼀个圆柱形⽔桶样结构,长420 nm,宽240 nm,由11个围绕中⼼α螺旋的反平⾏β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3个短的垂直⽚段覆盖,底部由⼀个短的垂直⽚段覆盖,对荧光活性很重要的⽣⾊团则位于⼤空腔内。
实验使⽤的EGFP蛋⽩取⾃原核-真核穿梭质粒pEGFP-NB3B的蛋⽩质编码序列。
此质粒原本被设计于在原核系统中进⾏扩增,并可在真核哺乳动物细胞中进⾏表达。
本质粒主要包括位于PCMV真核启动⼦与SV40 真核多聚腺苷酸尾部之间的EGFP 编码序列与位于EGFP上游的多克隆位点;⼀个由SV40 早期启动⼦启动的卡那霉素/新霉素抗性基因,以及上游的细菌启动⼦可启动在原核系统中的复制与卡那抗性。
在EGFP编码序列上下游,存在特异的BamH I及Not I限制性内切酶位点,可切下整段EGFP编码序列。
分子生物学实验
分子生物学实验引言分子生物学实验是研究生物体分子层面的结构和功能的实验方法。
通过在分子水平上研究细胞中的基因表达、蛋白质合成和代谢等过程,可以全面了解生物体的生理机制和疾病发生的分子基础。
本文将介绍常见的分子生物学实验方法和技术。
1. DNA提取实验DNA提取是分子生物学实验中的基础步骤,它的目的是从细胞中分离出DNA。
常用的DNA提取方法有酚/氯仿法、CTAB法和商业试剂盒法等。
以下是酚/氯仿法的步骤:1.收集样本组织或细胞:可以使用动植物组织、细菌、真菌等样本。
2.细胞破碎:使用细胞破碎缓冲液将样本破碎,释放出内部的细胞和胞浆。
3.蛋白质沉淀:加入酚/氯仿缓冲液,使蛋白质从细胞裂解物中沉淀。
4.DNA沉淀:将上一步的上清液加入异丙醇中沉淀DNA。
5.洗涤和溶解:用乙醇洗涤并净化DNA沉淀,最后用缓冲液溶解DNA。
2. PCR实验PCR(聚合酶链反应)是分子生物学中的一种重要技术,用于扩增特定的DNA片段。
PCR实验一般包括以下步骤:1.DNA模板准备:提取好的DNA作为PCR反应的模板。
2.反应组分配置:配置PCR反应体系,包括引物、脱氧核苷酸(dNTPs)、聚合酶和缓冲液等。
3.反应条件设定:设置PCR反应的温度和时间参数,包括变性、退火和延伸步骤。
4.PCR扩增反应:将PCR反应体系放入热循环仪中进行循环扩增。
5.PCR产物分析:使用凝胶电泳等方法对PCR产物进行分析和检测。
3. 克隆实验克隆实验是将DNA片段插入到载体DNA中,并通过细胞转化和筛选得到含有目标DNA的克隆。
以下是常见的克隆实验步骤:1.DNA片段选择:根据需要选择目标DNA片段,并通过酶切或PCR方法制备。
2.载体准备:选择适当的载体,如质粒或噬菌体,并进行酶切或PCR扩增。
3.构建重组体:将目标DNA片段和载体DNA连接,形成重组DNA。
4.细胞转化:将重组DNA引入宿主细胞中。
5.筛选克隆:通过筛选方法(如抗生素筛选)获得含有目标DNA的克隆。
《分子生物学检验技术》实验指导
《分子生物学检验技术》实验指导【实验目的】1、把握动物组织DNA提取的方法;2、把握紫外分光光度法检测、鉴定DNA浓度和纯度的方法。
【实验原理】获得相当纯度和完整性的基因组DNA,可用于DNA酶切图谱、多态性分析、基因诊断、构建基因组文库等。
因此,DNA样品质量的好坏将直截了当关系到实验的成败。
较理想的DNA样品应达到以下三点要求:①不应存在对酶有抑制作用的有机溶剂和过高浓度的金属离子;②最大程度地降低蛋白质、多糖和脂类分子的污染;③排除RNA分子的污染和干扰。
DNA以核蛋白形式存在于细胞中,提取DNA的原则是即要将DNA与蛋白质、脂类和糖类等成分分离,又要保持DNA分子的完整。
本实验中,用阴离子去垢剂十二烷基磺酸钠(SDS)消化破裂细胞膜、核膜,并使组织蛋白变性沉淀,DNA从核蛋白中游离分开;为操纵组织中脱氧核糖核酸酶(DNase)对DNA的降解,加入柠檬酸钠或乙二胺四乙酸二钠(EDTA-Na2)以除去兴奋该酶的金属离子,SDS也能使DNase变性失活;蛋白酶K 可水解蛋白质,消化DNA酶;分离后的DNA用饱和酚/氯仿抽提除去蛋白质,接着用氯仿抽提以除去DNA溶液中微量酚的污染;最后用无水乙醇沉淀DNA,得到欲提取的基因组DNA。
260nm处DNA有最大吸取峰,测DNA的A260,可运算其浓度。
而蛋白质在280nm处有最大吸取峰,可测定A260nm/A280nm比值,检测DNA的纯度,该比值介于1.8~2.0之间。
【实验器材和试剂】1、动物小白鼠2、设备移液器、台式离心机、水浴箱、陶瓷研钵等;751紫外分光光度计、石英比色皿、洗瓶、滤纸等。
3、试剂(1)基因组DNA提取试剂盒(北京康为世纪生物科技公司):包括Buffer CL、Buffer PP、Buffer GE、RNase A、Proteinase K(7)生理盐水,4℃贮存(8)无水乙醇、70%乙醇【操作步骤】1、制备肝匀浆迅速处死小白鼠,称取新奇肝脏组织50 mg,用预冷生理盐水洗去血液,滤纸吸干后剪碎组织,将剪碎组织放于组织匀浆器或研钵中研磨,同时加入300 μl Buffer CL。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一分子生物学仪器的使用及原理一、实验目的1.学习认识分子生物学实验室的仪器设备2.了解分子生物学仪器设备使用的注意事项二、主要仪器设备1.普通离心机2.无菌操作台3.高速冷冻离心机4.PCR仪5.恒温振荡摇床6.真空干燥箱7.恒温水浴锅8.紫外分光光度计9.微波炉10.微量移液器11.Eppendorf管12.高压灭菌锅13.电泳仪14.凝胶成像系统15.紫外仪三、实验报告要求写出分子生物学主要仪器设备的使用注意事项实验二:质粒(pEGFP-N1)的提取与酶切一. 实验目的1.了解碱裂解法提取质粒的基本原理和主要应用,掌握碱裂解法提取质粒的实验方法和各种试剂在提取过程中的作用。
二. 实验原理碱裂解法是利用细菌染色体DNA与质粒DNA结构的大小差异来分离质粒DNA的。
碱性(pH 12.0~12.5)条件可以破坏碱基配对,宿主和质粒DNA的碱基之间的氢键被破坏。
当条件恢复正常时(加入酸性试剂中和),共价闭合环状的质粒DNA会迅速准确地恢复配对,重新形成完全天然的超螺旋分子;而较大的细菌染色体DNA分子则难以复性,会交联形成不溶于水的线团结构,缠绕附着在细胞壁碎片上,离心时易被沉淀下来,而质粒DNA则留在上清液中,用异丙醇沉淀、70 %乙醇洗涤即可获得质粒DNA。
三. 仪器设备微量取液器(2 μL;20 μL;200 μL;1 000 μL),tip头,手掌型离心机,1.5 mL 离心管, 恒温水浴,制冰机,超净工作台,恒温培养箱。
振荡器,离心机,金属浴,电泳仪,凝胶成像仪。
四.实验试剂1.溶液Ⅰ:50 mmol/L葡萄糖;20 mmol/L Tris·HCl(pH = 8.0);10 mmol/L EDTA(pH=8.0),高压蒸汽灭菌(121 ℃,0.105 Mpa)20 min。
4 ℃贮存。
2.溶液Ⅱ(现用现配):0.2 mol/L NaOH;1 g / L SDS。
3.溶液Ⅲ(pH4.8):每100 mL溶液中含5 mol/L乙酸钾60 mL;冰乙酸11.5 mL;H2O 28.5 mL。
4.RNase(10 mg / mL),LB液体培养基,氨苄青霉素,异丙醇,70 %(V / V)乙醇,无菌水。
五.实验步骤:1.提取步骤:1) 挑取LB固体培养基上生长的单菌落,接种于3-5mlLB(含氨苄)液体培养基中,37℃振荡培养12-14小时。
2) 取上述培养物移入1.5mlep管中,室温以8000r/min离心5分钟,弃上清,再加1.5ml上述培养养物于ep管中,室温以8000r/min再离心5分钟。
3) 弃上清液,将离心管倒置,使液体尽可能流尽。
4) 加溶液Ⅰ100μl,用力弹ep管,使菌体分散均匀;加溶液Ⅱ200μl,颠倒数次混匀(不要剧烈振荡),并将离心ep管放置于冰上5分钟,使细胞膜裂解(溶液Ⅱ为裂解液,故离心管中菌液逐渐变清)。
5) 加入150μl预冷的溶液Ⅲ,将管温和颠倒数次混匀,见白色絮状沉淀,可在冰上放置10分钟。
(溶液Ⅲ为中和溶液,此时质粒DNA复性,染色体和蛋白质不可逆变性,形成不可溶复合物,同时K+使SDS-蛋白复合物沉淀。
)然后,室温以12000r/min离心5分钟。
6) 抽取上清液于一新微量离心管(ep管)中,加无水乙醇900μl,冰浴20分钟,室温以13000r/min离心10分钟,放入净化工作台用风机吹干,加TE,定容至30μl,再加RNA酶5μl,37℃水浴30分钟。
(-20℃保存备用)酶切步骤:1) 制胶:1%琼脂糖电泳:琼脂糖0.5克,TBE50毫升放电炉上使之融化,温度降到50摄氏度时加入EB冷凝后倒胶,30分钟后凝固,拔去梳子。
2) 加样:取已转化的感受态细胞溶液10微升,再加5微升上样液。
3) 电泳:电压40V和电流50mA 条件下,50分钟后用紫外灯观察(有无条带),若有条带跑出,进行抽提。
①加TE400微升、酚/氯仿/异戊醇(25:24:1)400微升,用力弹匀。
室温下,12500rpm离心10分钟。
观察到液体分三层,取上层液于一新灭菌过的EP管中,再加氯仿400微升,然后室温下,12500rpm离心10分钟。
②取上清液,加无水乙醇900—1000微升、乙酸铵100微升,用力震荡。
-20摄氏度下放置1-1.5小时,然后室温下,13000rpm离心5-10分钟。
③弃去上清液,加75%的酒精混匀。
室温下,12500rpm离心5分钟。
④弃去上清,把EP管放入净化工作台用风机吹干后,用TE定容至30微升。
4) 酶切:30微升体系取上述液体15微升,加多组分缓冲液 3微升BSA 3微升灭菌超纯水 7微升HINDIII和BamHI 各1微升以上操作皆在冰上,操作完后37摄氏度水浴3—4小时。
六、实验结果:1.质粒提取过程中实验操作的注意事项。
2.质粒酶切过程中实验操作的注意事项。
实验三:PCR基因扩增一、实验目的:通过本实验学习PCR反应的基本原理和试验技术。
二、实验原理:多聚酶链式反应的原理类似于DNA的天然复制过程。
在待扩增的DNA片段两侧和与其两侧互补的两个寡核苷酸引物,经变性、退火和延伸若干个循环后,DNA扩增2的n次方倍。
1.变性:加热使模板DNA在高温下(94摄氏度)变性,双链间的氢键断裂而形成两条单链,即变性阶段。
2.退火:使溶液温度降低至50-60摄氏度,模板DNA与引物按碱基配对原则互补结合,即退火阶段。
3.延伸:溶液反应温度升至72摄氏度,耐热的DNA聚合酶以单链DNA为模板,在引物的指导下,利用反应混合物中的四种脱氧核苷三磷酸,按5’-3’的方向复制出互补的DNA,即引物的延伸阶段。
上述三步为一个循环,即高温变性,低温退火、高温延伸三个阶段。
从理论上讲,每经过一个循环,样本中的DNA量应该增加一倍,新形成的链又可以作为下一轮循环的模板,经过25-30个循环后DNA可以扩增10的6次方-10的9次方。
典型的PCR反应体系右如下组分组成:DNA模板、反应缓冲液、dNTP、MgCl2、两个合成的DNA引物、耐热的Taq聚合酶。
三、试验所需器材和试剂仪器:1.PCR热循环仪2.琼脂糖凝胶电泳系统材料:1.DNA模板(1400bp),2.两个合成的DNA引物,3.四种dNTP,4.MgCl2,5.琼脂糖,6.DNA 相对分子质量标准,7、吸头,8.小指管。
试剂:1.10*反应缓冲液;500mmol/L KCL、100mmol/L Tris-cl (PH 8.3)、15mmol/LMgCl2、0.1%的明胶。
2.4*dNTP 各1mmol/l3.耐热的Taq聚合酶 1U/ul4.DNA模板 1ng/ul5.引物(浓度为 10 pmol/ul )上游:5'CCCaagcttGATCACTGTCCTTCTGCCAT3'下游:5'CGggatccCTAGTTGCAGTAGTTCTCCAGC3'四、实验步骤:1.在0.5ml的ep管内配制25ul反应体系:反应物体积(ul)ddHO 13.8210*PCR缓冲液 2.52.5mmol/ldNTP 2.01.225mmol/l Mgcl2上游引物 1.5下游引物 1.5Taq 酶 0.52.按下述程序进行扩增1)94摄氏度预变性 5分钟2)94摄氏度变性 40秒3)52摄氏度退火 40秒4)72摄氏度延伸 40秒5)重复步骤2)→4) 30次6)72摄氏度延伸 5分钟3.琼脂糖凝胶电泳分析PCR结果配制2%的琼脂糖凝胶,取10ul扩增产物电泳。
保持电流40mA.电泳结束后,紫外灯下观察电泳结果,并在凝胶成像系统中拍照。
五、实验总结1.简述PCR反应体系中各组分的作用。
2.如何优化PCR反应中退火温度?实验四:琼脂糖凝胶电泳检测DNA一、实验目的:学会常用的DNA琼脂糖凝胶电泳。
二、实验原理DNA分子在电场中会向正极方向移动。
不同长度的DNA由于受到凝胶介质的阻力不同,表现为不同的迁移率而被分开。
DNA分子在琼脂糖凝胶电泳中泳动时有电荷效应和分子筛效应。
DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。
在一定的电场强度下,DNA分子的迁移速度取决于DNA分子本身的大小和构型。
溴乙锭是一种荧光染料,这种扁平分子可以嵌入核酸双链的配对碱基之间,它与DNA的结合几乎没有碱基序列的特异性。
在高离子强度的饱和溶液中,大约每2.5个碱基插于一个溴乙锭分子。
与DNA结合的染料在紫外线下呈现橙色荧光。
三、实验试剂和器材1.质粒DNA (4800bp)2.配制1L 1*TBE电泳缓冲液(Tris碱 10.8g,硼酸 5.5g, Na2-EDTA 0.93g ,加入dd H2O 定容至1L, pH约8.0)3.电泳级琼脂糖4.1mg/ml溴乙锭(终浓度为0.5μg/ml,EB见光易分解,棕色试剂瓶中于4℃条件下保存)5.6*加样缓冲液(0.25%溴酚蓝,40%蔗糖水溶液)6.DNA分子量标准(DNA maker)7.1.5ml离心管装入铝制饭盒(灭菌)8.移液器吸头装入相应的吸头盒(灭菌)。
四、实验步骤1.制胶:1)称取0.4g琼脂糖粉,放入三角瓶,加入50ml 1* TBE电泳缓冲液,放入微波炉中烧开(1min)。
注意观察烧瓶中的琼脂糖粉末,待完全熔化后停止微波炉(切不可让胶溶液溢出到微波炉中!)。
2)戴上线手套,从微波炉中取出三角瓶,置桌面上冷却致不烫手(约50-60°C),加入EB使其终浓度为5ug/ml。
2.铺胶:1)把梳子插到凝胶灌制模具的正确位置后缓缓倒入胶溶液。
胶溶液倒至与模具的矮边缘相平即可,不要把胶溶液溢到外面。
在桌面上静置10-20分钟待胶完全凝固。
(剩下的胶溶液封口后留待以后再熔化使用)。
2)在水平电泳槽中加满1*TBE电泳缓冲液。
3)待胶完全凝固后(15-20分钟),小心拔出梳子。
用手指捏住模具两侧的高边缘取出模具和凝胶放入电泳槽中间的平台上,凝胶要没入电泳液中。
凝胶上有样品孔的一侧要朝向电泳槽的负极。
3.加样:1)在凝胶上选择相邻的加样孔。
用10ul的吸液头分别将管中的样品加入凝胶的加样孔中(如果需要时,在相邻的加样孔中加入1.5-3ul DNA分子量标准物)。
加样时持移液器的手以肘部固定在桌上,用另一只手扶住这只手的手腕,以减少移液器的抖动。
看到蓝色的样品吸管尖头伸进加样孔后(不能伸得太深,以免穿破凝胶的底部)缓缓将蓝色的样品压入加样孔中。
切不可使蓝色样品流到孔外。
4.电泳:1)根据电泳槽的长度把电泳仪的电压调至40V(5V/cm),注意正负电极的位置连接正确。
2)打开电源开关,样品将形成一条蓝色的横带向前移动(如果发现蓝色向后移动,立即关闭电源,调换电极)。
3)电泳将进行约30min左右5.拍照:蓝色的溴酚蓝迁移到距凝胶边缘1-2cm时,关闭电源。