概率第2-2讲
概率论第二章习题讲解

( )
j
i
i
二. 二维连续随机变量的边缘分布 x +∞ F X ( x ) = F ( x , +∞ ) = ∫ dx ∫ f ( x , y )dy ∞ ∞ d +∞ f X (x ) = FX (x )= ∫ ∞ f ( x , y )dy dx y +∞ FY ( y ) = F (+ ∞ , y ) = ∫ dy ∫ f ( x , y )dx ∞ ∞ +∞ d fY ( y ) = FY ( y ) = ∫ ∞ f ( x , y )dx dy 一. 离散型随机变量的独立性 p xi , y j = pX ( xi ) pY y j 二. 连续随机变量的独立性
+∞ ∞
∞
f (z y( x , y )dy
2. 平方和的分布
n
FZ ( z ) =
∫∫ f ( x , y )dxdy
x2 + y2 < z
n
3.(独立的随机变量) 3.(独立的随机变量)最大值与最小值的分布
Fmax ( z ) = ∏ Fi ( z ),
i =1
p 1 q[ x ] F ( x ) = P ( X ≤ x ) = ∑ pq m 1 = = 1 q [ x ] = 1 (1 p)[ x ] 1 q m =1 其中,[x]为 x 的整数部分. 其中, 为 的整数部分.
8
(
)
当 x ≥ 1 时,
4 自动生产线在调整以后出现废品的概率为 p (0<p<1), 生产过程中出现废品时立即重新调整, 生产过程中出现废品时立即重新调整 求在两次调整之间生产的合格品数的概率分布. 求在两次调整之间生产的合格品数的概率分布 设随机变量X表示自动生产线 解 设随机变量 表示自动生产线 : 在两次调整之间生产的合格品数, 在两次调整之间生产的合格品数, 的所以可能取值:0,1,2,…,n,…. 则X的所以可能取值 的所以可能取值
概率论课件第二章

例1. 抛硬币试验中S {H,T}, 样本点H与T不是数量。
例2. 测试灯泡寿命试验, S={e}={t|t≥0},样本点本身 是数量。
定义 : 设随机试验E的样本空间是S,若 X : S R为单值实范数,则称X为随机变量 (random variable, 简记为r.v.) 。
2. 特例: (1,) 是参数为的指数分布. (=1) 3. 伽玛函数的性质: (i) (+1)= ();
1 (iii)( ) . 2
(ii) 对于正整数n, (n+1)=n!;
§5. 随机变量的函数的分布
一、 X为离散型r.v. 例1.设X具有以下的分布律,求Y=(X-1)2分布律: X -1 0 1 2 pk 0.2 0.3 0.1 0.4
(二) 贝努利试验
(二项分布)
定 义 : 设 试 验E只 有 两 个 可 能 结 果 A与 A , 且 P( A ) p ( 0 p 1), 将 试 验E独 立 重 复 地 进 行 n次 , 这 样 的 试 验 称 为 贝 努 利 试 验.
设X是n重贝努利试验中事件A发生的次数, 则X 是一个随机变量, 于是
§4. 连续型随机变量及其概率密度
F(x) , 存在非负函 1.定义 : 对于r.v.X的分布函数 数f(x) , 使对于任意的实数 x, 有
则称X为连续型r.v.f(x)称为X概率密度函数, 简称概率密度. 连续型r.v.的分布函数是连续函数.
F(x ) f(t)dt
x
2.概率密度 f(x)的性质:
25
标准正态分布的上分位点:
设X ~ N(0,1), 若z 满足条件
2022版高考数学大一轮复习第11章概率第2讲古典概型与几何概型2

第十一章概率第二讲古典概型与几何概型1。
[2021长春市第一次质量监测]张老师居住的一条街上,行驶着甲、乙两路公交车,这两路公交车的数目相同,并且都是每隔十分钟就到达车站一辆(即停即走)。
张老师每天早晨都是在6:00到6:10之间到达车站乘车到学校,这两条公交线路对他是一样的,都可以到达学校,甲路公交车的到站时间是6:09,6:19,6:29,6:39,…,乙路公交车的到站时间是6:00,6:10,6:20,6:30,…,则张老师乘坐上甲路公交车的概率是() A.10%B。
50%C。
60%D。
90%2。
[2021安徽省示范高中联考]在以正五边形ABCDE的顶点为顶点的三角形中,任取一个,是钝角三角形的概率()A。
12B.13C。
14D.233。
[2021石家庄质检]北京冬奥会将于2022年2月4日到2022年2月20日在北京和张家口举行.申奥成功后,中国邮政陆续发行多款邮票,图案包括冬奥会会徽“冬梦”、冬残奥会会徽“飞跃”、冬奥会吉祥物“冰墩墩”、冬残奥会吉祥物“雪容融”、多种冰上运动等.现从2枚会徽邮票、2枚吉祥物邮票、1枚冰上运动邮票共5枚邮票中任取3枚,则恰有1枚吉祥物邮票的概率为()A.310B.12C。
35D。
7104。
[2021晋南高中联考]把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为 ( )A.23B .13C 。
35D 。
145。
[2021贵阳四校第一次联考][条件创新]在区间[-2,2]内随机取一个数x ,则事件“y ={2x ,x ≤0,x +1,x >0,且y ∈[12,2]”发生的概率为( )A.78B 。
58C 。
38D 。
126。
[2021广东珠海模拟][与音乐结合]现有8位同学参加音乐节演出活动,每位同学都会拉小提琴或吹长笛,已知5人会拉小提琴,5人会吹长笛,现从这8人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学的概率是 ( )A.14B 。
2概率统计第二讲

∑
k ≥1
pk=1.
三、一维离散型r.v的几个常用分布 一维离散型 的几个常用分布
1. 退化分布 单点分布) 退化分布(单点分布 单点分布 X~P{X=a}=1,其中 为常数。 ~ 为常数。 = = ,其中a为常数 2. (0-1)分布 两点分布 - 分布 两点分布) 分布(两点分布 X~P{X=k}=pk(1-p)1-k, (0<p<1) k=0,1 ~ = = - - = , 3. 几何分布 X~P{X=k}= (1-p)k-1 p, (0<p<1) k=1, 2, … ~ = = - - = 4. 二项分布 二项分布B(n, p) - - X~P{X=k}= Ck pk(1-p)n-k, ~ = = n (0<p<1) k=0, 1, 2, …, n =
3. [04(一)(三)(四)一(6)] 设r.v.X服从参数为λ的指数分布 则 服从参数为λ 一 三 四一 服从参数为 的指数分布,
P { X > DX } = _____ .
4. [98(三)(四)二(5)] 设F1(x)与F2(x)分别为 r.v.X1与X2的 三 四二 与 分别为 分布函数, 为使F(x)=a F1(x)−b F2(x)是某一 的分布函数 是某一r.v.的分布函数 分布函数 为使 − 是某一 的分布函数, 在下列给定的各组数值中应取 (A) a=3/5, b= −2/5 (C) a= −1/2, b= 3/2 5. 已知 ~ 已知X X P (B) a=2/3, b= 2/3 (D) a=1/3, b= −3/2 [ ]
2. 多维离散型随机变量函数的分布律
定理2 定理 设X1,X2,… , Xn是一个n维随机变量,若y= 则 Y=g(X1,X2,…, Xn)也是一个随机变量。 以二维为例,若 (X, Y)~P(X=xi, Y=yk)=pik ,i, k=1, 2, … 则 Z=g(X, Y)~P{Z=zl}=
2023考研概率统计全考点精讲-第二讲 随机变量及其分布

第二讲 随机变量及其分布【考试要求】1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤−∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson)分布()P λ及其应用.3.(数一了解,数三掌握)泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ、指数分布及其应用,其中参数为λ的指数分布()λE 的概率密度为()e ,00,0x x f x x λλ−⎧>=⎨≤⎩.5.会求随机变量函数的分布.考点:随机变量与分布函数1.随机变量:设试验E 的样本空间为Ω,如果对于每一个样本点Ω∈ω,都有一个实数)(ωX 与之对应,则称定义在Ω上的单值实值函数)(ωX 为随机变量,简记为X . 通常用,,X Y Z 等表示随机变量.【注】随机变量的等式和不等式可表示随机事件. 2.分布函数(1)定义:设X 是一个随机变量,x 是任意实数,称(){}()F x P X x x =≤−∞<<+∞为X 的分布函数.(2)基本性质①单调不减,即若12x x <,则12()()F x F x ≤;②lim ()0x F x →−∞=,lim ()1x F x →+∞=; ③()F x 是右连续,即(0)()F x F x +=.【注】这三条性质是一个函数作为某随机变量的分布函数的充分必要条件. (3)其他性质(用分布函数()F x 求概率)①)()(}{a F b F b X a P −=≤<; ②)0(}{−=<a F a X P ;③)0()(}{−−==a F a F a X P ;④)0()0(}{−−−=<≤a F b F b X a P ; ⑤)()0(}{a F b F b X a P −−=<<; ⑥{}()(0)P a X b F b F a ≤≤=−−. 【注】分布函数在处连续.【例1】 下述函数中,可以作为某个随机变量的分布函数的是( ) (A ) ()211F x x =+ (B )()x x F sin = (C ) ()11arctan π2F x x =+ (D ) ()1e ,020,0xx F x x −⎧−>⎪=⎨⎪≤⎩【例2】 设随机变量X 的分布函数为()00πsin 02π12,x F x A x,x ,x ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩,则A _____=,6P X ______π⎧⎫<=⎨⎬⎩⎭.【例3】 已知随机变量X 的分布函数为()0,11,18,111,1x x F x ax b x x <−⎧⎪⎪=−⎪=⎨⎪+−<<⎪≥⎪⎩,且()F x a {}0P X a ⇔=={}114P X ==,则_____,_____a b ==. 【例4】 设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥−<≤<=−1,110,210,0)(x e x x x F x,则{}1P X ==( )(A )0 (B )21(C )121−−e (D )11e −−考点:离散型随机变量及其分布1.离散型随机变量定义:若随机变量X 所有可能取值是有限或可列无限个,则称X 为离散型随机变量.2.分布律(1)定义:设离散型随机变量X 的所有可能取值为()12i x i ,,=,且X 取ix 的概率为i p ,则称{}()12i i P X x p i ,,===为离散型随机变量X 的分布律.X(2)基本性质:①0,1,2,i p i ≥=;②11ii p∞==∑.【注】这两条性质也是一个数列可以作为某随机变量分布律的充分必要条件. 3.离散型随机变量的分布函数若离散型随机变量X 的分布律为{}()12i i P X x p i ,,===,则X 的分布函数为(){}{}()i i i i x xx xF x P X x P X x p x ≤≤=≤===−∞<<+∞∑∑.若123x x x <<<,则()111212230,,,x x p x x x F x p p x x x <⎧⎪≤<⎪=⎨+≤<⎪⎪⎩. 【注】若已知X 的分布函数()F x (阶梯函数),则X 的分布律为{}()()0i i i P X x F x F x ==−−,12i ,,=.【例1】 (1)做n 次伯努利实验,已知每次成功的概率均为()10<<p p ,令X 表示n 次试验中成功的次数,求X 的分布律.(2)做伯努利试验,已知每次成功的概率均为()10<<p p ,令X 表示直到第一次成功为止所进行的实验次数,求X 的分布律.【例2】 设袋中有5个球,其中3个新球,2个旧球,从中任取3个球,用X 表示3个球中新球个数,求X 的分布律与分布函数.考点:连续型随机变量及其分布1.连续型随机变量及其概率密度(1)定义:设随机变量X 的分布函数为()F x ,若存在非负可积函数()f x ,使得对于任意实数x ,有()()xF x f t dt −∞=⎰,则称X 为连续型随机变量,()f x 称为X 的概率密度函数,简称概率密度(简写为.f .d .p ).【注】①只有存在概率密度的随机变量才能称为连续型随机变量,分布函数连续的随机变量不一定是连续型随机变量.②存在既非连续型又非离散型的随机变量.③(),()()0()F x x F x f x x F x '⎧=⎨⎩为的可导点,为的不可导点. (2)概率密度的基本性质:①()0f x ≥;②()1f x dx +∞−∞=⎰.【注】这两条性质是一个函数可以作为概率密度函数的充分必要条件.(3)连续型随机变量的其他性质: ①)(x F 处处连续.②对()+∞∞−∈∀,a ,有{}.0==a X P ③若()f x 在x 处连续,则有()()F x f x '=. ④对于任意的实数()1212x ,x x x ≤,有{}()()211221()x x P x X x F x F x f x dx <≤=−=⎰.【例1】 设随机变量X 的概率密度为()x f ,则下列函数中必为某随机变量的概率密度的是( )(A )()x f 2 (B )()x f 2 (C )()x f −1 (D )()x f −1【例2】 设随机变量X 的概率密度为()cos ,||20,||2A x x f x x ππ⎧≤⎪⎪=⎨⎪>⎪⎩,求(1)常数A ; (2)X 的分布函数为()x F . 【例3】 设随机变量X 的概率密度为()1||,||10,x x f x else −<⎧=⎨⎩,则______412=⎭⎬⎫⎩⎨⎧<<−X P .考点:常见分布1.常见的离散型随机变量 (1) 0-1分布若随机变量X 的分布律为{}()()110101kk P X k p p ,k ,p −==−=<<,则称X 服从0-1分布,记为),1(~p B X .(2) 二项分布若随机变量的分布律为{}C (1),0,1,2,k k n kn P X k p p k n −==−=,其中01p <<,则称X 服从二项分布,记为~(,)X B n p .(3) 几何分布若随机变量X 的分布律为{}1(1)k P X k p p −==−⋅,1,2,3k =,其中01p <<,则称X 服从参数为p 的几何分布,记为()~X G p .(4) 超几何分布(从未考过)若随机变量X 的分布律为{}C C C k n kM N MnNP X k −−==,其中N k ∈,且{}{}n M k N n M ,min ,0max ≤≤−+,则称X 服从超几何分布.【注】:此公式的数学模型为:设N 件产品中含M 件次品,现从中任取n 件产品,则所取的n 件产品恰有k 件次品的概率.(5) 泊松分布 ①定义若随机变量X 的分布律为{}e !kP X k k λλ−==,0,1,2,k =,其中0λ>,则称X 服从参数为λ的泊松分布,记为~()X P λ.X②泊松定理(数一了解;数三掌握)设0λ>是一个常数,n 是任意正整数,若lim n n np λ→∞=,则对于任意的非负整数k ,有()e lim 1.!nk n kkknn n C p p k λλ−−→∞−=【例1】 设随机变量X 服从参数为()2,p 的二项分布,随机变量Y 服从参数为()3,p 的二项分布,若{}519P X ≥=,则{}1_______P Y ≥=. 【例2】 设某时间段内通过一路口的汽车流量服从泊松分布,已知该时段内没有汽车通过的概率为1e,则这段时间内至少有两辆汽车通过的概率为___________. 2.常见的连续型随机变量 (1) 均匀分布若X 的概率密度为1,()0,a xb f x b a⎧<<⎪=−⎨⎪⎩其它,则称X 在()a,b 上服从均匀分布,记为()~,X U a b ,其分布函数为0,(),1,x a x aF x a x b b a x b<⎧⎪−⎪=≤<⎨−⎪⎪≥⎩. (2) 指数分布若X 的概率密度为e ,0()0,0x x f x x λλ−⎧>=⎨≤⎩,其中0λ>,则称X 服从参数为λ的指数分布,记为()XE λ,其分布函数为1e ,0()0,0x x F x x λ−⎧−≥=⎨<⎩.(3) 正态分布若随机变量X的概率密度为22()2()()x f x x μσ−−=−∞<<+∞,其中0σ>,μ与σ均为常数,则称X 服从参数为,μσ的正态分布,记为2~(,)X N μσ,其分布函数为22()2()d ()t xF x t x μσ−−=−∞<<+∞⎰.特别地,当0,1μσ==,即~(0,1)X N ,称X 服从标准正态分布,其概率密度为22(),x x x ϕ−=−∞<<+∞,分布函数22()d t xx t −Φ=⎰,x −∞<<+∞.【注】(1)指数分布的无记忆性:若()~X E λ,则对任意的0,0s t >>,有{}{}|.P X s t X s P X t >+>=>【例3】 设随机变量()6,1~U X ,则方程012=++Xy y 有实根的概率为____.【例4】 设随机变量()~2,5X U ,现对X 进行三次独立重复观测,求至少有两次观测值大于3的概率.【例5】 设随机变量Y 服从参数为12λ=的指数分布,求关于未知量x 的方程2230x Yx Y ++−=没有实根的概率.【例6】 设随机变量的概率密度函数为()221e ()x x f x k x −+−=−∞<<+∞X则常数=_______k .【例7】 设随机变量()22,X N σ且{}240.3P X <<=,则{}0_______P X <=.【例8】 设随机变量()2,X N μσ,则概率{}P X μσ−<的值随着σ的增大而( )(A )增大 (B )减小 (C )保持不变 (D )无法确定考点:随机变量函数的分布1.离散型随机变量函数的分布设X 为离散型随机变量,其概率分布为{},1,2,i i P X x p i ===,函数()g x 连续,则随机变量()Y g X =的分布律为{}(),1,2,i k k i g x y P Y y p k ====∑.做法:找到Y 全部可能的取值,算出相应值的概率.【例1】 设随机变量X 在()1,2−上服从均匀分布,1,01,0X Y X −<⎧=⎨≥⎩,求Y 的分布律.【例2】(课后作业)设随机变量X 的概率分布为,求常数和的概率分布. 2.连续型随机变量函数的分布情形一:Y 为离散型. 做法:找到Y 全部可能的取值,算出相应值的概率. 情形二:Y 为连续型.(1)分布函数法(代数法和几何法)先求出()Y g X =的分布函数()Y F y ,即()(){}()()Y g x y F y P g X y f x dx ≤=≤=⎰,再对()YF y 求导得到Y 的概率密度()Y f y .(2)公式法 若()y g x =在X 的取值区间内有连续导数()g x ',且()0g x '>或者()0g x '<,则()Y g X =是连续型随机变量,且其概率密度为{}(1,2,)3k c P X k k ===c sin()2Y X π=()()()',0,X Y f h y h y y f y αβ⎧<<⎡⎤⎪⎣⎦=⎨⎪⎩其他其中(),αβ为()y g x =的值域,()h y 是()g x 的反函数.情形三:Y 既非连续型又非离散型 做法:分布函数法求其分布函数.【例3】 设随机变量X 服从()0,2上的均匀分布,则随机变量2Y X =在()0,4内的概率密度()Y f y _______=.【例4】 设随机变量X 的概率密度为()22,00,x x f x ππ⎧<<⎪=⎨⎪⎩其它,求sin Y X =的概率密度()Y f y .。
统计与概率-第2讲:概率

事件类型 定义概率 确定事件必然事件 一定会发生的事件 1 不可能事件一定不会发生的事件 0 随机事件可能发生也有可能不发生0~12、求概率的方法:①一般的,如果在一次实验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中m 种结果,那么事件A 发生的概率为nmA P)( ②几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件A ,然后计算阴影区域的面积在总面积中所占的比例,这个比例即事件A 发生的概率 3、运用列表法或画树状图法求概率的一般步骤:①把所有可能发生的实验结果一一列举出来(用表格或者树状图的形式) ②把所求事件可能发生的结果都找出来 ③代入概率的计算公式【方法技巧】第二节 概率【知识梳理】4、判断游戏公平的步骤:①画出树状图②根据概率公式求出事件的概率③比较是否相等,相等就公平,否则就不公平【考点突破】考点1、概率例1、转动转盘,当转盘停止转动时,指针落在红色区域的可能性最大的是()A.B.C.D.变式1、如图是一个可以自由转动的转盘,转动这个转盘后,转出()色的可能性最小.A.红B.黄C.绿D.不确定变式2、布袋中有大小一样的3个白球和2个黑球,从袋中任意摸出1个球,下列判断正确的是()A.摸出的球一定是白球B.摸出的球一定是黑球C.摸出的球是白球的可能性大 D.摸出的球是黑球的可能性大例2、如图,有5张扑克牌,从中随机抽取一张牌,点数是偶数的可能性大小是()A.B.C.D.变式1、一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()A.B.C.D.变式2、一副完整的扑克牌,去掉大小王,将剩余的52张混合后从中随机抽取一张,则抽出A的概率是()A.B.C.D.例3、掷两枚硬币,则一枚硬币正面朝上,一枚硬币反面朝上的概率是()A.1 B.C.D.变式1、从长度分别为2,4,6,8的四条线段中任选三条作边,能构成三角形的概率为()A.B.C.D.例4、一个不透明的袋中装有除颜色外其余都相同的1个白球和2个黑球.先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黑球的概率是()A.B.C.D.变式1、一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.变式2、甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小赖打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小赖抽出的两颗球颜色相同的机率为何?()A.B.C.D.例5、中秋节来临,小红家自己制作月饼.小红做了三个月饼,1个芝麻馅,2个豆沙馅;小红的爸爸做了两个月饼,1个芝麻馅,1个豆沙馅(除馅料不同,其它都相同).做好后他们请奶奶品尝月饼,奶奶从小红做的月饼中拿了一个,从小红爸爸做的月饼中拿了一个.请利用列表或画树状图的方法求奶奶拿到的月饼都是豆沙馅的概率.变式1、一个不透明的口袋里装有分别标有汉字“书”、“香”、“昌”、“平”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“书”的概率为多少?(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“昌平”的概率.变式2、甲、乙两位同学玩转盘游戏,游戏规则:将圆盘平均分成三份,分别涂上红,黄,绿三种颜色,两位同学分别转动转盘两次(若压线,重新转).若两次指针指到的颜色相同,则甲获胜;若两次指针指到的颜色是黄绿组合则乙获胜;其余情况则视为平局.(1)请用画树状图的方法,列出所有可能出现的结果;(2)试用概率说明游戏是否公平.例6、在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表,由表估计该麦种的发芽概率是()试验种子数n(粒)50 200 500 1000 3000 发芽频数m 45 188 476 951 2850发芽频率0.9 0.94 0.952 0.951 0.95A.0.8 B.0.9 C.0.95 D.1变式1、在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是()A.10 B.14 C.16 D.40考点2、统计与概率在实际生活的应用例1、某中学艺术节期间,向全校学生征集书画作品.美术社团从九年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)直接回答美术社团所调查的4个班征集到作品共件,并把图1补充完整;(2)根据美术社团所调查的四个班征集作品的数量情况,估计全年级共征集到作品的数量为;(3)在全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,用树状图或列表法,求恰好抽中一男生一女生的概率.变式1、为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.<A 组>1.下列说法中,正确的是( )A .“射击运动员射击一次,命中靶心”是必然事件B .不可能事件发生的概率为0C .随机事件发生的概率为D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 2.下列图形:任取一个是中心对称图形的概率是( ) A . B .C .D .13.袋中有红球4个,白球若干,抽到红球的概率为,则白球有( )个. A .8B .6C .4D .24.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为 事件(填“必然”或“不可能”或“随机”). 5.某校男子足球队的年龄分布如下面的条形图所示.(1)求这些队员的平均年龄;(2)下周的一场校际足球友谊赛中,该校男子足球队将会有11名队员作为首发队员出场,不考虑其他因素,请你求出其中某位队员首发出场的概率.6.某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜【分层训练】色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表)甲种品牌化妆品球两红一红一白两白礼金券(元) 6 12 6乙种品牌化妆品球两红一红一白两白礼金券(元)12 6 12(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.<B组>1.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两个不同的数,与7组成“中高数”的概率是.2.如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.3.4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?4.现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.5.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.6.有甲、乙两个不透明的布袋,甲袋中装3个完全相同的小球,分别标有数字1,2,3;乙袋中也装3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率.7.一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;(2)甲、乙两人用这六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.参考答案【考点突破】考点1、概率例1、解:因为四个选项中的转盘均被均分为4份,所以哪个选项中红色区域份数最多,指针落在红色区域的可能性就越大,四个选项中D中共有3份,故指针落在红色区域的可能性最大,故选D.变式1、解:因为转盘被平均分为8份,黄色为2份,红色为3份,绿色为3份,所以转动这个转盘后转出可能性最小的颜色是黄色.故选:B.变式2、解:A、∵布袋中有大小一样的3个白球和2个黑球,从袋中任意摸出1个球,∴摸出的球不一定是白球,故此选项错误;B、∵布袋中有大小一样的3个白球和2个黑球,从袋中任意摸出1个球,∴摸出的球不一定是黑球,故此选项错误;C、摸出的球是白球的可能性大,正确;D、摸出的球是黑球的可能性小于白球的可能性,故此选项错误.故选:C.例2、解:∵有5张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,∴从中随机抽取一张,点数为偶数的概率是,故选:C.变式1、解:∵一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴你抬头看信号灯时是绿灯的概率是:=.故选C.变式2、解:因为一副扑克牌,去掉大小王,一共还有52张,A有四张,所以恰好抽到的牌是K 的概率是:=.故选:C.例3、解:∵掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,又∵一枚硬币正面朝上,一枚硬币反面朝上的有2种情况,∴一枚硬币正面朝上,一枚硬币反面朝上的概率是:=.故选C.变式1、解:∵从长度分别为2,4,6,8的四条线段中任选三条作边,等可能的结果有:2,4,6; 2,4,8; 2,6,8; 4,6,8;其中能构成三角形的只有4,6,8;∴能构成三角形的概率为:.故选C.例4、解:根据题意画图如下:因为一共有6种情况,两次都摸到黑球的有2种情况,所以两次都摸到黑球的概率是=.故选B.变式1、解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选C.变式2、解:树状图如图所示:共有12种等可能的结果,颜色相同的有2种情形,故小赖抽出的两颗球颜色相同的机率==;故选:B.例5、解:用字母A表示芝麻馅,字母表示豆沙馅,画树状图:共有6种等可能的结果数,其中月饼都是豆沙馅的结果数为2,所以月饼都是豆沙馅的概率==.变式1、解:(1)从中任取一个球,球上的汉字刚好是“书”的概率=;(2)画树状图为:共有12种等可能的结果数,其中取出的两个球上的汉字能组成“昌平”的结果数为2,所以取出的两个球上的汉字能组成“昌平”的概率═=.变式2、解:(1)如图所示:(红,红),(红,黄),(红,绿),(黄,红),(黄,黄),(黄,绿),(绿,红),(绿,黄),(绿,绿)共9种情况;(2)P(甲获胜)==,P(乙获胜)=,P(甲获胜)>P(乙获胜),所以游戏不公平.例6、解:∵种子粒数3000粒时,种子发芽的频率趋近于0.95,∴估计种子发芽的概率为0.95.故选C.变式1、解:∵通过大量重复试验后发现,摸到红球的频率稳定于0.4,∴=0.4,解得:n=10.故选A.考点2、统计与概率在实际生活的应用例1、解:(1)根据题意得:调查的4个班征集到作品数为:5÷=12,B班作品的件数为:12﹣2﹣5﹣2=3.如图:(2)∵美术社团所调查的四个班平均每个班征集作品是:12÷4=3(件),∴全校共征集到的作品:3×14=42(件);(3)列表如下:男1 男2 男3 女1 女2男1 男1男2 男1男3 男1女1 男1女2男2 男2男1 男2男3 男2女1 男2女2男3 男3男1 男3男2 男3女1 男3女2女1 女1男1 女1男2 女1男3 女1女2女2 女2男1 女2男2 女2男3 女2女1共有20种机会均等的结果,其中一男生一女生占12种,∴P(一男生一女生)=,即恰好抽中一男生一女生的概率为.故答案为12,42.变式1、解:(1)根据题意得:15÷10%=150(名).本项调查中喜欢“跑步”的学生人数是;150﹣15﹣45﹣30=60(人),所占百分比是:×100%=40%,画图如下:(2)用A表示女生,B表示男生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是=.【分层训练】<A组>1.解:A、“射击运动员射击一次,命中靶心”是随机事件,故A错误;B、不可能事件发生的概率为0,故B正确;C、随机事件发生的概率为0到1,故C错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,故D错误;故选:B.2.解:∵共有4种等可能的结果,任取一个是中心对称图形的有3种情况,∴任取一个是中心对称图形的概率是:.故选C.3.解:设白球有x个,根据题意,抽到红球的概率为,有=,解可得x=8,故选A.4.解:小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为随机事件.故答案为:随机.5.解:(1)该校男子足球队队员的平均年龄是:(13×2+14×6+15×8+16×3+17×2+18×1)÷22=330÷22=15(岁).故这些队员的平均年龄是15岁;(2)∵该校男子足球队一共有22名队员,将会有11名队员作为首发队员出场,∴不考虑其他因素,其中某位队员首发出场的概率为:P=.6.解:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,摇出一红一白的概率=;(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴甲品牌化妆品获礼金券的平均收益是:×6+×12+×6=10元.乙品牌化妆品获礼金券的平均收益是:×12+×6+×12=8元.∴我选择甲品牌化妆品.<B组>1.解:画树状图为:共有30种等可能的结果数,其中任选两个不同的数,与7组成“中高数”的结果数为12,所以任选两个不同的数,与7组成“中高数”的概率==.故答案为.2.解:∵S正方形=(3×2)2=18,S阴影=4××3×1=6,∴这个点取在阴影部分的概率为:=,故答案为:.3.解:(1)∵4件同型号的产品中,有1件不合格品,∴P(不合格品)=;(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)==;(3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴=0.95,解得:x=16.4.解:(1)如图所示:共18种情况,数字之积为6的情况数有3种,P(数字之积为6)==.(2)由上表可知,该游戏所有可能的结果共18种,其中骰子向上一面出现的数字与卡片上的数字之积大于7的有7种,骰子向上一面出现的数字与卡片上的数字之积小于7的有11种,所以小明赢的概率=,小王赢的概率=,故小王赢的可能性更大.5.解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球恰在B手中的只有1种情况,∴两次传球后,球恰在B手中的概率为:;(2)画树状图得:∵共有8种等可能的结果,三次传球后,球恰在A手中的有2种情况,∴三次传球后,球恰在A手中的概率为:=.6.解:(1)画树状图:共有9种等可能的结果数,它们分别是:(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0),(3,﹣1),(3,﹣2),(3,0);(2)因为在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),(3,﹣2),所以点M(x,y)在函数y=﹣x+1的图象上的概率P=.7.解:(1)∵1,2,3,4,5,6六个小球,∴摸到标号数字为奇数的小球的概率为:=;(2)画树状图:如图所示,共有36种等可能的情况,两次摸到小球的标号数字同为奇数或同为偶数的有18种,摸到小球的标号数字为一奇一偶的结果有18种,∴P(甲)==,P(乙)==,∴这个游戏对甲、乙两人是公平的.。
概率论与数理统计第二讲
定义 设X是S上的随机变量F(x)为其分布函数, 如果存在定义在(-∞,+∞)上的非负实质函数 f(x),使得
F ( x)
x
f ( t )dt, x
则称X为连续型随机变量,称F(x)为连续型分 布函数,称f(x)为X的概率密度函数(或概率 密度或分布密度)。
设X为连续型随机变量,F(x)与f(x)分别 为其分布函数和概率密度 1)对任意常数a<b有
即
P(X<0)=P(X-3<-3)=0.1。
当μ=0且σ=1的正态分布N(0,1),称为标准正 态分布。 x2 1 2 概率密度 ( x ) e , x ,
2
在统计用表中给出了 x 0至x 3.49所对应 的( x)值。 当x 3.49时,( x) 1 ;
P(λ)
λ=np=1
0.368 0.368 0.184 0.061 0.015 0.004
例 某物业管理公司负责10000户居民的 房屋维修工作。假定每户居民是否报修 是相互独立的,且报修的概率都是0.04% 另外,一户居民住房的维修只需一名修理 工来处理。易知,在某个时段报修的居民 数X~B(10000,0.0004).试问 1)该物业管理公司至少需要配备多少名 维修工人,才能使居民报修后能得到及时 修理的概率不低于99%。
P (a X b) f ( x )dx
a
b
2)F(x)是连续函数,且当f(x)在x=x0处连续时
F ( x0 ) f ( x0 )
3)对任意常数c,P(X=c)=0,从而对任何a<b,有
P (a X b) P (a X b) P (a X b) P (a X b)
概率论2-2
上页
广 东 工 业 大 学
下页
返回
例1 为安全起见,工厂同时装有两套报警系统1,2。已 知每套系统单独使用时能正确报警的概率为0.92和0.93, 又已知第一套系统失灵时第二套系统仍能正常工作的概率 为0.85。试求该工厂在同时启用两套报警系统时,能正确 报警的概率是多少?
广 东 工 业 大 学
上页
下页
返回
例1 为安全起见,工厂同时装有两套报警系统1,2。已 知每套系统单独使用时能正确报警的概率为0.92和0.93, 又已知第一套系统失灵时第二套系统仍能正常工作的概率 为0.85。试求该工厂在同时启用两套报警系统时,能正确 报警的概率是多少?
解:
设 A “工厂同时启用两套报警系统时,能正确报警”,
广 东 工 业 大 学
上页
下页
返回
P ( AB ) P ( A) P ( B | A) P ( B ) P ( A | B )
乘法定理的推广: (1) 若P(AB)>0,则有
P ( ABC ) P ( A) P ( B | A) P (C | AB )
证明: 由乘法定理,有
P ( ABC ) P ( AB) P (C | AB) P( A) P( B | A) P(C | AB)
P ( A) P ( A1 ) P ( A1 A2 ) P ( A1 A2 A3 )
P ( A1 ) P ( A1 ) P ( A2 | A1 ) P ( A1 ) P ( A2 | A1 ) P ( A3 | A1 A2 )
又 P ( A2 | A1 ) 1 P ( A2 | A1 ) 1 0.2 0.8 代入上式,得
广 东 工 业 大 学
新高考 核心考点与题型 概率 第2讲 古典概型 - 解析
第2讲 古典概型【考情考向分析】全国卷对古典概型每年都会考查,主要考查实际背景的可能事件,通常与互斥事件、对立事件一起考查.在高考中单独命题时,通常以选择题、填空题形式出现,属于中低档题;与统计等知识结合在一起考查时,以解答题形式出现,属中档题。
知 识 梳 理1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 具有以下两个特征(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.如从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率.(2)每一个试验结果出现的可能性相同.如向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=m n .4.古典概型的概率公式P (A )=事件A 包含的可能结果数试验的所有可能结果数.[微点提醒]概率的一般加法公式P (A ∪B )=P (A )+P (B )-P (A ∩B )中,易忽视只有当A ∩B =∪, 即A ,B 互斥时,P (A ∪B )=P (A )+P (B ),此时P (A ∩B )=0.考点一 基本事件及古典概型的判断【例1】 袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型? (2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型. (2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为511,同理可知摸到黑球、红球的可能性均为311,显然这三个基本事件出现的可能性不相等,故以颜色为划分基本事件的依据的概率模型不是古典概型. 规律方法 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同.(3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列或组合的知识.【变式】 甲、乙两人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽1张. (1)写出甲、乙抽到牌的所有情况.(2)甲、乙约定,若甲抽到的牌的数字比乙大,则甲胜,否则乙胜,你认为此游戏是否公平?为什么? 解 (1)设(i ,j )表示(甲抽到的牌的数字,乙抽到的牌的数字),则甲、乙二人抽到的牌的所有情况(方片4用4′表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种.(2)由(1)可知甲抽到的牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种情况,∪甲胜的概率p =512,∪512≠12,∪此游戏不公平.考点二 简单的古典概型的概率【例2】 (1)两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( ) A.12B.14C.13D.16(2)设袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此2球所得分数之和为3分的概率为________.解析 (1)两名同学分3本不同的书,基本事件有(0,3),(1a ,2),(1b ,2),(1c ,2),(2,1a ),(2,1b ),(2,1c ),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∪一人没有分到书,另一人分得3本书的概率p =28=14.(2)袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,基本事件总数n =6×6=36,取出此2球所得分数之和为3分,包含第一次抽到红球,第二次抽到黄球或者第一次抽到黄球,第二次抽到红球,基本事件个数m =2×3+3×2=12,所以取出此2球所得分数之和为3分的概率p =m n =1236=13.规律方法 计算古典概型事件的概率可分三步:(1)计算基本事件总个数n ;(2)计算事件A 所包含的基本事件的个数m ;(3)代入公式求出概率p .【变式1】 同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( ) A.13B.12C.23D.56【变式2】用1,2,3,4,5组成无重复数字的五位数, 若用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位数字,则出现a 1<a 2<a 3>a 4>a 5的五位数的概率为________.解析 (1)从四首歌中任选两首共有C 24=6种选法,不选取《爱你一万年》的方法有C 23=3种,故所求的概率为p =36=12.(2)用1,2,3,4,5组成无重复数字的五位数,基本事件总数n =A 55,用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位数字,出现a 1<a 2<a 3>a 4>a 5的五位数有:12543,13542,23541,34521,24531,14532,共6个,∪出现a 1<a 2<a 3>a 4>a 5的五位数的概率p =6A 55=120.考点三 古典概型的交汇问题多维探究角度1 古典概型与平面向量的交汇【例1】 设平面向量a =(m ,1),b =(2,n ),其中m ,n ∪{1,2,3,4},记“a ∪(a -b )”为事件A ,则事件A 发生的概率为( ) A.18B.14C.13D.12解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ∪(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∪{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.角度2 古典概型与解析几何的交汇【例2】 将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为________.解析 依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有6×6=36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足2aa 2+b2≤2,即a ≤b 的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率为2136=712.角度3 古典概型与函数的交汇【例3】 已知函数f (x )=13x 3+ax 2+b 2x +1,若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( ) A.79B.13C.59D.23解析 f ′(x )=x 2+2ax +b 2,由题意知f ′(x )=0有两个不等实根,即Δ=4(a 2-b 2)>0,∪a >b ,有序数对(a ,b )所有结果为3×3=9种,其中满足a >b 有(1,0),(2,0),(3,0),(2,1),(3,1),(3,2)共6种,故所求概率p =69=23.角度4 古典概型与统计的交汇【例4】某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.解 (1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45. (2)因为样本容量与总体中的个体数的比是530+45=115,所以样本中包含的男生人数为30×115=2,女生人数为45×115=3.则从5人中任意选取2人共有C 25=10种,抽取的2人中没有一名男生有C 23=3种,则至少有一名男生有C 25-C 23=7种.故至少有一名男生的概率为p =710,即选取的2人中至少有一名男生的概率为710. 规律方法 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【变式】 已知某中学高三理科班学生的数学与物理的水平测试成绩抽样统计如下表:若抽取学生n 人,成绩分为A (优秀),B (良好),C (及格)三个等级,设x ,y 分别表示数学成绩与物理成绩,例如:表中物理成绩为A 等级的共有14+40+10=64人,数学成绩为B 等级且物理成绩为C 等级的共有8人.已知x 与y 均为A 等级的概率是0.07.(1)设在该样本中,数学成绩的优秀率是30%,求a ,b 的值;(2)已知a ≥7,b ≥6,求数学成绩为A 等级的人数比C 等级的人数多的概率. (1)由题意知14n=0.07,解得n =200,∪14+a +28200×100%=30%,解得a =18,易知a +b =30,所以b =12.(2)由14+a +28>10+b +34得a >b +2,又a +b =30且a ≥7,b ≥6,则(a ,b )的所有可能结果为(7,23),(8,22),(9,21),…,(24,6),共18种,而a >b +2的可能结果为(17,13),(18,12),…,(24,6),共8种,则所求概率p =818=49.基础巩固题组 (建议用时:40分钟)一、选择题1.集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23B.12C.13D.16解析 从A ,B 中任意取一个数,共有C 12·C 13=6种情形,两数和等于4的情形只有(2,2),(3,1)两种,∪p =26=13. 2.设m ,n ∪{0,1,2,3,4},向量a =(-1,-2),b =(m ,n ),则a ∪b 的概率为( ) A.225B.325C.320D.15解析 a ∪b ∪-2m =-n ∪2m =n ,所以⎩⎪⎨⎪⎧m =0,n =0或⎩⎪⎨⎪⎧m =1,n =2或⎩⎪⎨⎪⎧m =2,n =4,因此概率为35×5=325.3.某同学先后投掷一枚骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在平面直角坐标系xOy 中,以(x ,y )为坐标的点在直线2x -y =1上的概率为( ) A.112B.19C.536D.16解析 先后投掷一枚骰子两次,共有6×6=36种结果,满足题意的结果有3种,即(1,1),(2,3),(3,5),所以所求概率为336=112.4.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( ) A.13B.14C.15D.16解析 分别用A ,B ,C 表示齐王的上、中、下等马,用a ,b ,c 表示田忌的上、中、下等马,现从双方的马匹中随机选一匹进行一场比赛有Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc 共9场比赛,其中田忌马获胜的有Ba ,Ca ,Cb 共3场比赛,所以田忌马获胜的概率为13.5.将一个骰子连续掷3次,它落地时向上的点数依次成等差数列的概率为( ) A.112B.19C.115D.118解析 一个骰子连续掷3次,落地时向上的点数可能出现的组合数为63=216种.落地时向上的点数依次成等差数列,当向上点数若不同,则为(1,2,3),(1,3,5),(2,3,4),(2,4,6),(3,4,5),(4,5,6),共有2×6=12种情况;当向上点数相同,共有6种情况.故落地时向上的点数依次成等差数列的概率为12+6216=112. 二、填空题6.小明忘记了微信登录密码的后两位,只记得最后一位是字母A ,a ,B ,b 中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.解析 小明输入密码后两位的所有情况有C 14·C 13=12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是112. 7.若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________.解析 m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∪基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∪椭圆x 2m +y 22=1的焦距为整数的概率p =36=12.8.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为________.解析 甲同学从四种水果中选两种,选法种数有C 24,乙同学的选法种数为C 24,则两同学的选法种数为C 24·C 24,两同学各自所选水果相同的选法种数为C 24,由古典概型概率计算公式可得,甲、乙两同学各自所选的两种水果相同的概率为p =C 24C 24C 24=16.三、解答题9.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. 解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x -=8+8+9+104=354,s 2=14×⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116.(2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.10.某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生人数不少于2人的概率.解 (1)由题意,参加集训的男、女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100,因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100.(2)设“参赛的4人中女生不少于2人”为事件A ,记“参赛女生有2人”为事件B ,“参赛女生有3人”为事件C .则P (B )=C 23C 23C 46=35,P (C )=C 33C 13C 46=15.由互斥事件的概率加法公式,得P (A )=P (B )+P (C )=35+15=45,故所求事件的概率为45.能力提升题组 (建议用时:20分钟)11.已知函数f (x )=12ax 2+bx +1,其中a ∪{2,4},b ∪{1,3},从f (x )中随机抽取1个,则它在(-∞,-1]上是减函数的概率为( ) A.12B.34C.16D.0解析 f (x )共有四种等可能基本事件即(a ,b )取(2,1),(2,3),(4,1),(4,3),记事件A 为f (x )在(-∞,-1]上是减函数,由条件知f (x )是开口向上的函数,对称轴是x =-ba ≥-1,事件A 共有三种(2,1),(4,1),(4,3)等可能基本事件,所以P (A )=34.12.甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领取的钱数不少于其他任何人)的概率是( ) A.34B.13C.310D.25解析 6元分成整数元有3份, 可能性有(1,1,4),(1,2,3),(2,2,2),第一个分法有3种,第二个分法有6种,第三个分法有1种,其中符合“最佳手气”的有4种,故概率为410=25.13.从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是__________.解析 从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换,基本事件总数为n =C 23·C 23=9,从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,第一次调换后,对调后的位置关系有三种:甲丙乙、乙甲丙、丙乙甲,第二次调换后甲在乙的左边对应的关系有:丙甲乙、甲乙丙;丙甲乙、甲乙丙;甲丙乙、丙甲乙,∪经过两次这样的调换后,甲在乙的左边包含的基本事件个数m =6,∪经过这样的调换后,甲在乙左边的概率:p =m n =69=23.14.某快递公司收取快递费用的标准如下:质量不超过1 kg 的包裹收费10元;质量超过1 kg 的包裹,除1 kg 收费10元之外,超过1 kg 的部分,每1 kg(不足1 kg ,按1 kg 计算)需再收5元. 该公司对近60天, 每天揽件数量统计如下表:(1)某人打算将A (0.3 kg),B (1.8 kg),C (1.5 kg)三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过30元的概率;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么公司将前台工作人员裁员1人对提高公司利润是否更有利? 解 (1)由题意,寄出方式有以下三种可能:所有3种可能中,有1种可能快递费未超过30元,根据古典概型概率计算公式,所求概率为13.(2)由题目中的天数得出频率,如下:若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:故公司每日利润为260×5-3×100=1 000(元);若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:故公司每日利润为235×5-2×100=975(元).综上,公司将前台工作人员裁员1人对提高公司利润不利.。
第2讲随机事件的概率
A与B是相等集合
A与B无相同元素
A与B的并集
A与B的交集
A与B的差集
A的余(补)集
§1.2 随机事件的概率
• 1.直观定义 • 2.统计定义 • 3.古典定义; • 4.公理化定义; • 5.几何定义.
1.2.1 概率的统计定义
概率的直 在一次试验中事件A发生的可能性大小的 观定义: 量度称为事件A的概率。
B { 取到的两只球都是黑球}
C { 取到的两只球中至少有一只是白球 }
D { 取到的两只球颜色相同 }
显然C B, D A B
(1)
P( A)
P42 P62
12 30
2 5
(2)类似于(1),可求得
P(B)
P22 P62
1 15
由于AB ,Leabharlann 由概率的有限可加性,所求概率为:
P(D) P( A B) P( A) P(B) 2 1 7 5 15 15
加法原理
完成某件事情有 n 类途径, 在第一类途径中有m1种方 法,在第二类途径中有m2种方法,依次类推,在第 n 类 途径中有mn种方法,则完成这件事共有 m1+m2+…+mn种 不同的方法.
乘法原理
完成某件事情需先后分成 n 个步骤,做第一步有m1种 方法,第二步有 m2 种方法,依次类推,第 n 步有mn种方 法,则完成这件事共有 m1×m2×…×mn种不同的方法.
率的稳定值p,记做P(A)。概率是不变的
我们称这一定义为概率的统计定义 。
4 概率是事件的自然属性,有事件就一定有 概率。频率是概率的表现,频率的本质是概率
概率的公理化定义
• 非负性公理: P(A)0; • 正则性公理: P(Ω)=1; • 可列可加性公理:若A1, A2, ……,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( x) 0
f ( x)dx 1
这两条性质是判定一个 函数 f(x)是否为某r.vX的 概率密度函数的充要条件.
f (x)
面积为1
o
x
(3)对于连续型随机变量X
PX G
G
f x dx
b
P ( a X b)
f ( x )d x
b
a
P ( X b)
即 h=170+13.98 184
设计车门高度为 184厘米时,可使 男子与车门碰头 机会不超过0.01.
Gamma 分布
,
e
x
设 , 是正常数, 由积分
0
x
1
dx
定义. 如果 X 的密度是
1 x x e ,x0 f x 0 ,x0
从直方图可以初步看出,年降雨量 近似服从正态分布
身高问题 这是用某大学男大学生的身高的 数据画出的频率直方图
红线是拟 合的正态 密度曲线
可见,某大学男大学生的身高 服从正态分布
身高问题(续) 此外,人的身高高低不等,但中等身材 的占大多数,特高和特矮的只是少数,而且 较高和较矮的人数大致相近,这从一个方面 反映了服从正态分布的随机变量的特点
P ( X x1 ) 1 (
x1
)
P ( x1 X x 2 ) (
x2
) (
x1
)
例4 设 X ~ N(1,4) , 求 P (0 X 1.6) 解
P(0 X 1.6) P(
0 1 2 X 1 2 1.6 1 ) 2
-2
-1 0.4
1
2
3
0.3
0.2
0.1
-3
-2
-x -1
1
x
2
3
5
正态分布的计算
对一般的正态分布 :X ~ N ( , 2)
若 X ~ N ( ,
2)
,
Y
X
~ N (0,1)
对任意的实数x1, x2 (x1< x2),有
P ( X x1 ) ( x1 )
P{10 X 15} P{25 X 30}
1 , 0 x 30 f ( x ) 30 0, 其它
0
15
1 30
10
dx
30
1 30
dx
1 3
25
10 15
[ ]
25 30
[ ]
45
x
一般地,设D是轴上一些不相交的区间 之和,若X的概率密度为
0.3 0.5
附录C
0.3 [1 0.5]
0.6179 [1 0.6915]
0.3094
例5 公共汽车车门的高度是按男子与车门 顶头碰头机会在0.01以下来设计的.设男子 身高X~N(170,62),问车门高度应如何确定?
解: 设车门高度为h cm,按设计要求 P(X≥ h)≤0.01 或 P(X< h)≥ 0.99,
说 明
⑴.正态分布是自然界及工程技术中最常见 的分布之一,大量的随机现象都是服从或近 似服从正态分布的.可以证明,如果一个随 机指标受到诸多因素的影响,但其中任何一 个因素都不起决定性作用,则该随机指标一 定服从或近似服从正态分布 ⑵.正态分布有许多良好的性质,这些性质 是其它许多分布所不具备的 ⑶.正态分布可以作为许多分布的近似分布
1 f ( x ) D的长度 0
,xD ,xD
则称X在D上服从均匀分布。
指数分布 若随机变量 X 的概率密度为
e x , f ( x) 0, x0 x0
其中常数>0 ,则称X 服从参数为的指数 分布,记为 X~E() .
f ( x)
0
x
则上述概率
P X a , b P a X b P X b P X a
复习
随机变量
X:S R1
X()
离散型随机变量 分布列
P(X=xi)= pi , i=1, 2, ...
几种重要的离散型随机变量
§3
连续型随机变量
定义 3.1
设X 是随机变量,如果存在非负函数
使得对任何满足 有
a b
f
x
的
a ,b
P a X b
为参数的指数随机变量
解:
X 的密度函数为
1 x e 10 f x 10 0
x 0 x0
返回主目录
1 x e 10 f x 10 0
x 0 x0
P 10 X 20
20 20
x 10
10
f ( x ) dx
(c, c l ) (a, b)
P (c X c l )
cl
1 ba
dx
l ba
c
若 X 取值在区间[a, b] 上,并且它在 [a, b]中任意小区间内取值的概率与这 个小 区间的长度成正比. 则 X ~U[a, b]
[
a c
]
c+l b
应用场合 均匀分布常见于下列情形: 如在数值计算中,由于四舍五 入,小数 点后某一位小数引入的误差; 公交线路上两辆公共汽车前后通过某汽 车停车站的时间,即乘客的候车时间等.
10
1 10
e
dx
1 10
x 10
20
e
10
e
1
e
2
0 . 2325
正态分布
1 定义 若r.v X 的概率密度为
f ( x) 1
( x ) 2
2 2
2 2 其中 和 都是常数, 任意, >0, 则称X服从参数为 和 2 的正态分布.
记作 X ~ N ( , 2 )
一个性质 忆 记
无
性
s 0,
t0
P( X s t | X s) P( X t )
应用场合 用指数分布描述的实例有:
随机服务系统中的服务时间 电话问题中的通话时间
无线电元件的寿命
动物的寿命
指数分布常作为各种 “寿命”分布的近似
例3
设打一次电话所用的时 以 1 10 好在你前面走进公用电 钟到 20 分钟之间的概率. 话间,求你需等待 10 分 间 X (单位:分钟)是 .如果某人刚
2 l
3 2
3 2
1
3
l 0 . 92
几种常见的分布 均匀分布
指数分布
正态分布
均匀分布(Uniform)
若随机变量X 的概率密度为
f ( x)
1 f ( x) b a 0 axb 其他
a
b
则称 X 在[a, b]上服从均匀分布,记为 X~U[a, b]
一个性质
例2 某公共汽车站从上午7时起,每15分钟来一 班车,即 7:00,7:15,7:30, 7:45 等时刻有汽 车到达此站,如果乘客到达此站时间 X 是7:00 到 7:30 之间的均匀随机变量, 试求他候车时间 少于5 分钟的概率. 解: 以7:00为起点0,以分为单位 依题意, X ~ U ( 0, 30 )
2)
由P(A)=0, 不能推出A=
例1 某汽车加油站每周补充汽油一次,已知 此加油站每周销售量X(单位:kL)是以
C (1 x ), f ( x) 0,
2
0 x 1 其他
为概率密度的随机变量,其中C为待定常数。 如果要求在一周内加油站的油售完的概率 不得大于0.01,那么此加油站储油库的容油 体积应至少为多少升。
例如 计算事件 X a , b 的概率
分析 如果 X 是离散型随机变量,则
P X a , b
X k a , b
pk
如果 X 是连续型随机变量,则
P X a , b
b
f
a
x dx
更一般地,无论是离散型还是连续型, 以至其它类型的随机变量 对事件
X a , b 的概率,都有
P X b P X a
P X a , b P a X b
为了对不同类型的随机变量给出一种 统一的描述方法,我们引进分布函数的概 念
事实上,如果我们定义
F x P X x
下面我们来求满足上式的最小的 h.
求满足 P(X< h ) 0.99 的最小的 h . 因为X~N(170,62),
X 170 6 ~ N (0,1)
故 P(X< h)= (
h 170 6
)
0.99
查表得 (2.33)=0.9901>0.99 所以
h 170 6
=2.33,
C (1 x ), f ( x) 0,
2
0 x 1 其他
解:
由密度函数的性质得
f ( x)dx c 3/2
1
C (1 x ) 1
2
0
设此加油站储油库的容油体积为l千升(0<l<1)
l应满足
l
P ( X l ) 0 . 01
1
又有 P ( X l ) f ( x ) dx (1 x ) dx [1 l (1 l ) 3 ]