平面任意力系的平衡条件和平衡方程(精选)
第二章2 平面任意力系的简化,平衡条件和平衡方程

FRy ' Fiy ' Fiy Fy
主矢大小 方向
2 2 FR ( Fix ) ( Fiy )
Fix cos( F 'R , i ) FR
Fiy cos( F 'R , j ) FR
作用点: 作用于简化中心 上
主矩
MO MO (Fi )
Fr Ft tan20 3.64P 1
F 0
x
FBx Fr 0
F
y
0
FBy P P2 Ft 0
FBy 32P 1
FBx 3.64P 1
取小轮,画受力图.
F 0 Fy 0 M 0
x
A
FAx Fr ' 0
FAy Ft 'P 1 0
将该力系中心的位置坐标 记为 xC
1 xC F qx 2 ql 2 dx l 3 0
l
l
y
q
Foy
O
xc
F
q
x
Fox
x l dx
FA
A
q
ql 2 l 2 3
最后,利用平面力系的平衡方程求 得 3 个未知的约束反力:
y
由: M Oz ( Fi ) 0
n i 1
xc
主矩:
M O M O ( F ) 3F1 1.5 P 1 3.9 P 2 2355kN m
(2)求合力其作用线位置:
M O M O FR x FRy y FRx x FR' y y FR' x
x 3.514
(3)求合力作用线方程:
理论力学第3章 力系的平衡条件与平衡方程

10
例题二的解答
解:选取研究对象:杆CE(带有销 钉D)以及滑轮、绳索、重物组成 的系统(小系统)受力分析如图, 列平衡方程:
M D (F ) 0 M C (F ) 0 M B (F ) 0
( F C cos ) CD F ( DE R ) PR 0 F Dx DC F ( CE R ) PR 0 F BD F ( DE R ) P ( DB R ) 0 Dy
2012年11月3日星期六
北京邮电大学自动化学院
29
滚动摩擦力偶的性质
滚动摩擦力偶M 具有如下性质(与滑动摩擦力性质类似): ◆ 其大小由平衡条件确定; ◆ 转向与滚动趋势相反; ◆ 当滚子处于将滚未滚的平衡临界状态时, M = M max =δFN
式中:δ —滚动摩擦系数,它的量纲为长度; FN —法向反力(一般由平衡条件确定)。
q (2a b) 2a
2
YA q (2a b)
16
2012年11月3日星期六
北京邮电大学自动化学院
课堂练习3
多跨静定梁由AB梁和BC梁用中间铰B连接而成,支撑和荷 载情况如图所示,已知P = 20kN,q=5kN⋅m,α = 45°。求 支座A、C的反力和中间铰B处的反力。
2012年11月3日星期六
x
xC
x
2012年11月3日星期六
北京邮电大学自动化学院
5
平行分布线载荷的简化
Q
q
1、均布荷载 Q=ql
l 2
l 2
Q
q
2、三角形荷载 Q=ql /2
2l 3
l 3
Q
3、梯形荷载 Q=(q1+q2)l /2 (自己求合力的位置)
第四章:力系的平衡条件与平衡方程

未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
(未知量不能全部由平衡方程求解)
物体系的平衡·静定和超静定问题
未知量个数 <= 独立平衡方程数 静定
(全部未知量可以由平衡方程完全求解)
未知量个数 > 独立平衡方程数 静不定或超静定
∑ M B = 0 −8FAy + 5*8 +10*6 +10* 4 +10* 2 = 0
得 FAy = 20kN ∑ Fiy = 0 FAy + FBy − 40 = 0
得 FBy = 20kN
求各杆内力
取节点A
⎧⎪∑ ⎨⎪⎩∑
Fiy Fix
= =
0 0
→ →
FAD FAC
取节点C
⎧⎪∑ ⎨⎪⎩∑
解得 P3max=350kN
22mm 22mm
所以,平衡载重P3取值范围为:
75kN ≤ P3 ≤ 350kN
(2)P3=180kN时:
∑ M A = 0 4P3 − 2P2 −14P1 + 4FB = 0
解得 FB=870kN
∑ Fy = 0 FA + FB − P1 − P2 − P3 = 0
∑M =0
FA'
⋅r
sinθ
− M2
=
0
解得 M 2 = 8kN ⋅m
FB = FA = 8kN
例
已知:OA=R,AB=
l,
r F
,
不计物体自重与摩擦,系统在图示位置平衡;
求: 力偶矩M 的大小,轴承O处的约 束力,连杆AB受力,滑块给导 轨的侧压力.
平面任意力系的合成与平衡条件(建筑力学)

平面汇交力系 合成 FR=Fi 平面力偶系 合成 M=Mi
平面任意力系的平衡方程及应用
平面任意力系平衡的充要条件为:
力系的主矢 FR 和主矩 MO 都等于零 FR =0 为力平衡
MO =0 为力偶也平衡
FR' ( Fx )2 ( Fy )2 0
MO MO (Fi ) 0
平面任意力系 的平衡方程
Fx 0
Fy 0 MO(Fi ) 0
平面任意力系的平衡方程及应用
平面任意力系平衡方程的基本式
● 几点说明:
(1)三个方程只能求解三个未知量 (2)二个投影坐标轴不一定互相垂直,只要不平行即可 (3)投影坐标轴尽可能与多个未知力平行或垂直 (4)力矩方程中,矩心尽可能选多个未知力的交点
平面任意力系的平衡方程及应用
平面任意力系的合 成与平衡条件
平面任意力系的合成与平衡条件
平面任意力系
平面任意力系 1、力系的简化 2、平面任意力系的平衡方程及应用
平面任意力系的合成与平衡条件
平面任意力系:各力的作用线在同一平面 内,既不汇交为一点又不相互平行的力系。 研究方法:
(平面任意力系) 未知力系
力系向一点简化
已知力系 (平面汇交力系和平面力偶系)
平面任意力系的简化
F Bd
A
F′
F Bd
A F′ ′
F′ M
B A
M=±F. d=MB(F)
定理:可以把作用于刚体上点A的力F平行移到任一点B,但必须同 时附加一个力偶,这个附加力偶的矩等于原来的力F对新作用点B的矩。
平面任意力系的简化
为什么钉子有
时会折弯? F ′ F
M
两圆盘运动形式 是否一样?
空载时,为使起重机不绕点A翻倒,力系满足平衡方程 MA(F ) 0 。
平面任意力系的平衡资料

' FDx FE cos 45 2 F
MB o
' FDx a F 2a 0
得
' FDx 2F
对ADB杆受力图
MA 0
FBx 2a FDx a 0
得
FBx F
例311 如图所示,静定多跨梁由梁AB和梁BC用中间铰B连 接而成。已知P=20kN,q=5kN/m,α=450,求支座A、C处 的约束反力和中间铰B处两梁之间的相互作用力。
O1 B O2 A
三矩式平衡方程为:
相比较二矩式最简单
M M M
O1 O2 C
0 :N B 2a W cos a W sin b 0 0 : N A 2a W cos a W sin b 0 0 : T b N Aa N B a 0
二矩式平衡方程为:
X 0 : T W sin 0 M 0 :N 2a W cos a W sin b 0 M 0 : N 2a W cos a W sin b 0
O1 B O2 A
解得:
T W sin 5kN W cos a W sin b NA 3.33kN 2a W cos a W sin b NB 5.33kN 2a
解得
FAy q 2a P FB 0
P 3 FAy qa 4 2
已知:P 100kN, M 20kN m,
q 20 kN
求: 固定端A处约束力。 解:取T型刚架,画受力图。
1 其中 F1 q 3l 30kN 2
m
,
工程力学-平面任意力系平衡方程

4)FR=0 M0=0 力系处于平衡状态。
例3-1 图示物体平面A、B、C三点构成一等边三角形,三点分别作
用F力,试简化该力系。
解:1.求力系的主矢
F x F F cos60o F cos60o 0
Fy 0 F sin 60o F sin 60o 0
y
C
F M0 F
上作用F力,集中力偶M0=Fa,=45°,试求杆件AB的约束力。
A
M0=Fa
C
B
F
解:1.取AB杆为研究对象画受力图
2.列平衡方程求约束力
Da a
FAx
A
M0=Fa
C
FAy FC
B F
aa
M A (F ) 0 : FC sin 45 a F 2a M 0 0
FC
2Fa a
Fa 2/2
MC (F) 0:
FAx
2
3a 3
F
a
M0
0
FAy 0 FAx 3F
C aa
一 矩
MA(F) 0: Fx 0 :
二 矩
MA(F) 0: MB(F) 0:
三 矩
MA(F) 0: MB(F) 0:
2 3a
式 Fy 0 :
式 Fx 0 :
式 M C (F8) 0 :
3
本课节小结
A F
B x
FR ( Fx )2 ( Fy )2 0
2.选A点为简化中心,求力系的主矩
M0
M A (F)
F
sin 60
AB
F
AB 2
简化结果表明该力系是一平面力偶系。
4
二、平面任意力系的平衡方程
平面力系的平衡方程及应用

各力的作用线都在同一平面内且 汇交于一点的力系。
正文
力在直角坐标轴上的投影
1
Fx=F·cosa ; Fy=F·sina = F ·cosb
说明: (1)力在坐标轴上的投影为代数量; (2)力的指向与坐标轴的正向一致时,力的投影为正值,否则为负。
正文
合力投影定理
推论1:力偶对刚体的作用与力偶在其作用面内的位置无关;
推论2:只要保持力偶矩的大小和力偶的转向不变,可以同时改变力偶中力的大小和力偶臂的长短,而不改变力偶对刚体的作用。
M
M
M
力偶表示方法
正文
思考:
力偶与力的异同
共同点:单位统一,符号规定统一。 差异点:1.力矩随矩心位置不同而变化;力 偶矩对物体作用效果与矩心选取无关。 2.力偶矩可以完全描述一个力偶;力对点之矩不能完全描述一个力。
′
F
M
单 手 攻 丝
正文
平面任意力系的简化
1
平面一般力系向平面内一点简化
F3
F1
F2
O
O
O
F
R′
MO
F
1′
M1
F1 =F1
′ M1=MO(F1)
F
2′
M2
F
3′
M3
F2 =F2
′ M2=MO(F2)
F3 =F3
′ M3=MO(F3)
简化中心
O
FR=F1+F2+F3= F1+F2+F3 MO=M1+M2+M3=MO(F1)+ MO(F2) + MO(F3)
正文
平面力偶系的合成与平衡
第3章力系的平衡条件与平衡方程

第3章 力系的平衡条件与平衡方程3.1 平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程如果一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。
力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都分别等于零,即 110()0i n R i n O O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式:11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或 00()0x y O F F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。
平面汇交力系:平面汇交力系对平面内任意一点的主矩都等于零,即恒满足()0O M F ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。
其中AB 为吊车大梁,BC为钢索,A 处为固定铰支座,B 处为铰链约束。
已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。
求:1、电动机处于任意位置时,钢索BC所受的力和支座A处的约束力;2、分析电动机处于什么位置时。
钢索受力最大,并确定其数值。
解:1、选择研究对象以大梁为研究对象,对其作受力分析,并建立图示坐标系。
建立平衡方程 取A 为矩心。
根据()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+由xF =∑cos 0Ax TB F F θ-=2()cos303()2Q P P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽量选在两个或多个未知力的交点上,这样建立的力矩平衡方程中将不包含这些未知力;坐标系中坐标轴取向应尽量与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数目。