监控量测在地铁区间隧道盾构施工中应用
盾构工程施工测量和监控量测方案

盾构工程施工测量和监控量测方案1 施工测量1.1 控制测量为确保施工控制点的稳定可靠,测量与相邻标段测量点联测闭合,对地面首级和二级控制网点进行同等精度的复测工作。
(1)复测按照招标文件的要求及《城市轨道交通工程测量规范》GB50308的规定,施工前,测量队对业主在交接桩时提供工程范围测区精密控制网、精密水准点等进行复测。
复测时按照首级控制网点同等精度进行观测,并与邻近标段的平面和高程控制网点进行贯通联测,做好工程测量的相互衔接。
将复测成果书面上报监理单位。
在工程施工期间,每两个月对首级控制网复测一次,并将复测成果上报监理单位。
如监测发现施工场地周围的地面有变形时,及时对首级控制网进行复测,增加复测频率,确认控制点无误后才可以继续使用。
如发现首级控制网测量超出规范允许范围时,立即报告监理单位,重新交桩后才可以使用首级控制网。
(2)控制测量复测工作完成后,在首级控制网点的基础上,根据工程项目的施工需要并结合本标段工程特点城市道路交通建筑物等实际情况定平面和高程控制网方案,现场选点埋设控制网标石后组织施测。
(3)平面控制测量为满足施工需要,严格地按四等导线测量规范增设了导线点,在盾构竖井处适当位置增设了精密导线点和精密水准点。
将新增设的控制点与地面首级控制网进行了联测,确保竖井投点在多方控制中。
盾构始发井投点测量为指导盾构掘进施工,必需把导线数据导入始发井强制对中平台上,施工完成到设计标高时,根据现场的实际情况和现有的仪器设备,采用投点仪投点(投点仪标称精度不低于1/30000),把井口上测设的为了提高投点精度,在竖井口长边对角适当位置设置投点P1,P2点,如图10-1-1-1。
然后利用地面上的控制网进行联测,将测量数据进行平差后,计算出P1、P2各点的坐标(或用前方交会法,定出P1、P2各点),将P1、P2点投在井下的投点板上,如图10-1-1-2所示。
为了检核投点精度,在井上作多次投点,投在投点板上的P1′、P2′、P1″、P2″…点。
地铁盾构区间联络通道施工难点分析及对策

地铁盾构区间联络通道施工难点分析及对策摘要:地铁区间隧道是列车通行的通道,在施工的过程中,存在许多需要解决的难题。
为了提高地铁建设的质量,相关部门在采用合理的施工方法实,不仅要理解地铁工程建设的重要性,还要根据实际的环境,切实解决所存在的问题。
基于此,本文通过探究地铁盾构区间联络通道的施工难点,分析主要以盾构法施工、浅埋暗挖法施工、明挖法施工等多种施工方式的要点,来保证地铁隧道施工的顺利进行。
关键词:地铁;盾构区间;联络通道;施工难点;对策引言:地铁区间联络通道是地铁隧道上部和下部之间的通道,通常设置水泵房,以方便收集和排放联络通道的废水。
隧道内有两个连续的层,一个是内层,一个是外层。
在开挖围通道后,喷灌适当的外层混凝土,一旦通道的变形稳定下来,就对内层现浇混凝土。
在施工阶段,区间联络通道和泵站的建设是复杂和具有较大风险的,容易出现安全和质量问题。
目前,地铁隧道内的贯通,需要固区间联络通道内的土层,确保固结效果达到要求后,解决地铁通道区间施工存在的问题。
因此,重视地铁隧道区间联络通道的施工是非常重要的。
一、土体加固施工分析(一)土体加固必要性大多数通道都在地铁区间的中心,在城市道路之下。
交通难以分流,涵洞的建设也很复杂。
为确保安全,在地下工程开始前,必须将暗挖场平整,以满足未来施工的要求。
(二)土体加固方式土层应在土层上方和隧道中进行固定,上方土层应从基层到联络通道的地方进行加固。
隧道内的土层加固应通过将混凝土管打入侧壁,用水泥砂浆加固[1]。
(三)土体加固难点及风险分析(1)土体加固优缺点分析在地铁结构中,高压旋转喷法是土层改良的主要方法。
高压旋转喷的主要过程分为单管法、双管法和三管法。
高压旋转喷的优点是:(1)可调整钻杆的长度,使土层加固到一定深度,而且土层中细小颗粒的渗透性泥浆难以深入,填充泥浆也需要保证均匀性、而且面积可以调整控制;(2)距离上方公管顶部较窄,或建筑结构在工作条件上略有难度的环境中,使用公管不必移动或拆除,可以直接使用便于加固。
地铁隧道盾构施工监控量测与顶管沉降变形预测

地铁隧道盾构施工监控量测与顶管沉降变形预测地铁隧道盾构施工是现代城市建设中常见的工程技术之一。
为了确保施工过程的安全可靠以及隧道的稳定性,监控量测和顶管沉降变形预测成为地铁隧道盾构施工的重要环节。
本文将介绍地铁隧道盾构施工监控量测的方法以及顶管沉降变形的预测方法。
1. 地铁隧道盾构施工监控量测的方法地铁隧道盾构施工监控量测是通过使用各种现代监测设备和技术手段来实现的。
下面是常用的监控量测方法:1.1 激光扫描监测激光扫描监测是一种高精度的测量手段,它通过激光扫描仪来获取地铁隧道盾构施工过程中的数据。
这种方法可以实时监测盾构机的位移、管片质量等参数,并通过数据分析和处理,进一步预测施工过程中可能发生的问题。
1.2 雷达监测雷达监测是利用地下雷达设备对地铁隧道盾构施工区域进行扫描和测量,获取地下隧道结构的各种信息。
通过对雷达监测数据的分析,可以了解盾构施工过程中的地层变化、隧道结构的稳定性等情况,为施工提供准确的参考数据。
1.3 倾斜仪监测倾斜仪监测是一种常用的盾构施工监测手段,它通过安装在盾构机和顶管上的倾斜仪来实时监测隧道施工过程中的倾斜情况。
倾斜仪监测可以提供关键的施工数据,帮助工程师及时调整施工参数,确保隧道的稳定性和安全性。
2. 顶管沉降变形的预测方法顶管的沉降变形是地铁隧道盾构施工过程中常见的问题之一。
为了预测和控制顶管的沉降变形,以下是一些常用的方法:2.1 数值模拟方法数值模拟方法是通过建立地铁隧道盾构施工的有限元模型,利用计算机仿真技术来模拟和预测顶管的沉降变形。
这种方法可以考虑到各种影响因素,如地层情况、盾构机参数、隧道结构等,并通过模型的分析和优化,得出预测结果。
2.2 统计方法统计方法是通过对历史施工数据进行分析和统计,来预测顶管的沉降变形。
通过收集和整理大量的施工数据,包括地层情况、盾构机参数、施工工艺等,建立合适的数学模型,可以得到相对准确的预测结果。
2.3 监测方法监测方法是通过实时监测顶管的沉降和变形情况,及时发现问题并采取相应的措施。
地铁隧道盾构施工的沉降监测

地铁隧道盾构施工的沉降监测摘要:盾构法施工具有安全、高效、易操作等显著优势,目前在地铁隧道施工中得到了广泛的应用,但此施工方法在断面尺寸多变的区段适应力不足,易造成地层损失,甚至引发地表塌陷、管线断裂等严重问题。
文中以盾构法施工为切入点,对盾构在隧道运行过程中引起地层沉降的原因进行解剖,针对该问题提出控制优化措施,为处理地面沉降问题提供参考。
关键词:盾构法施工;地层沉降;控制措施引言近几年,我国经济的质量和总量都保持快速增长,带动了城市化的快速发展,城市常住人口持续增多,最终导致交通拥挤问题日益加重。
地铁以其运行时间长、安全性高、速度快、运输量大等特点,成为缓解人口密度较高的城市地面交通压力的关键方法。
尤其在最近几年,国内地铁建设进入快速发展期,对于大中规模城市而言,地铁成为了关键交通方式。
据相关部门统计,截至2020 年,国内地铁建成及投运的城市有45个,运营长度有6303km,同比增长21.66%。
从城规交通系统制式结构上看,地铁以79% 的比重位居首位。
可见,地铁建设因其独特优势,促进市民出行自由的同时,也在社会的进步、环境保护方面和突显城市的综合实力上都具有一定意义,因此地铁在各大城市中取得了广泛的应用和推广,成为城市发展中不可或缺的交通方式。
对于城市地下工程的修建而言,通常有盾构法、矿山法、新奥法和明挖法,不同施工方法的适用条件和优劣势也会有所不同。
盾构法施工由于其自动化程度高,人工作业成本较低,掘进速度也较其他几种方法快,不受季节和天气的影响,施工过程噪音低,对地面建筑物影响程度小等优点,从而成为地铁隧道建设中使用频率最高的一种施工方法。
如今盾构法隧道施工技术更为完备、成熟,正朝着工程的大型断面、特殊断面、超大深度、超长距离方向快速发展,也向着操作智能化、自动化,掘进过程高效化的方向发展。
因城市地铁主要是为了方便人们出行,因此地铁建设多数位于交通要道和人员密集区域,周围环境复杂,容易影响到地下管线和地表建筑物。
盾构区间监测方案

XX地铁XX号线XXX站~XXX站区间盾构法隧道施工监测方案编写:审核:日期:监测单位:目录一、工程沿线环境概况‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3二、监测依据‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4三、监测目的‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5四、监测项目‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5五、监测点的布设与埋置‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5六、监测控制网布设及各项监测项目的监测方法‥‥‥‥‥‥‥15七、监测频率及监测报警值‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥17八、仪器设备‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥18九、监测质量保证措施‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥19盾构法隧道施工监测方案一、工程沿线环境概况1、XXX站~XXX站:该区间段为单线单洞圆形隧道,设计起止里程为:右DK16+067.9~右DK17+1.7m(左DK17+67.2m),右线全长933.8m,左线全长1002.268m。
其中设防灾联络通道及水泵房一座。
该区间段自XXX站南端头始发,以直线推进开始,过渡至直缓,再到缓圆、圆缓、缓直、直缓、缓圆、圆缓、缓直到XXX站。
隧道沿线均在市区主要道路干线及商业、居民区建筑物下;盾构自XXX 站始发后,沿XX路向南推进约290米后(即在左KD16+790m处)进入楼房集中区,楼房集中区域长约690m(楼房集中区内房屋简介见P7~P8之表1);隧道沿线地下设施较为复杂,主要为雨水、污水管线及自来水管等。
2、XXX站~XXX站:该区间段为单线单洞圆形隧道,设计起止里程为:右DK17+292.7~右DK17+747.455m,右线全长454.755m(左线全长475.757m)。
其中设防灾联络通道及水泵房一座。
该区间段自XXX站北端头始发,向北推进约40m后进入XX路与XX路的十字交叉路口,推进约140m后进入楼房集中区域下方,隧道沿线上方主要为交通繁忙的十字路口及众多的建筑物(建筑物集中区内房屋简介见P9~P10之表2);沿线地下设施复杂,主要为雨水、污水管线等。
地铁隧道盾构法施工技术

地铁隧道盾构法施工技术【摘要】地铁隧道施工经常遇到复杂的地质条件和严苛的周边环境保护要求,极易造成隧道沉降,道路路面塌陷等安全事故。
本文针对盾构法通过采取各种施工技术措施,加强施工过程中的监控量测,以此确保施工安全。
【关键词】关键词:地铁隧道;盾构施工;掘进;监测地铁隧道是贯穿于地铁工程的重要建设形式,因其施工环境复杂,对施工技术提出较高的要求,通常基于盾构法展开施工作业。
盾构法在应用中存在诸多技术要点,加强质量控制十分必要。
1盾构隧道施工测量概述地下工程测量是一项持续性工作,需落实到勘察设计、施工建设、运营等阶段。
经地下工程测量后,应及时反馈线状工程的实际状况,根据所得结果采取调整措施,及时纠偏,保证隧道可顺利贯通。
盾构法因具有技术可靠性和施工便捷性的特点而取得广泛的应用,盾构期间做好测量工作具有显著现实意义,能够作为反映盾构施工状况的“窗口”,在此基础上合理组织后续的盾构作业,直至盾构贯通为止。
根据盾构法隧道工程的施工特点,测量工作应重点考虑如下几方面:创建平面控制网和高程控制网;明确地面的坐标、方向及高程,将其有序传递至地下,由此构建完整的地下坐标系统;在前述基础上,做好地下平面和高程的测量与控制工作;组织测量放样,作为开挖和衬砌的参照基准,保证开挖量的合理性以及衬砌结构的准确性。
根据上述所提的要点,详细部署测量工作包括:经测量后,在地下标定建筑物的控制基准线,包含设计中心线和高程,作为参照基准而使用,以便后续的开挖和衬砌作业均可高效推进;开挖面掘进施工期间,根据要求使施工中线顺利贯通,应确保实际开挖范围稳定在设定的界限以内;按图纸将设备安装到位;采集并完整记录测量数据,汇总成测量资料,交给设计部门和管理部门,为相关部门日常工作的开展提供参考。
盾构施工测量具有指导作用,应保证盾构机沿设计轴线方向稳定运行,同时生成的测量数据应作为盾构机调整姿态的参考。
根据实际情况修正参数,并且测量数据还需反映出隧道衬砌环的安装质量。
区间盾构施工监测方案

区间盾构施工监测方案一、监测内容在盾构施工过程中由于土体的缺失而导致不同程度的地面和隧道沉降,从而会影响到周围的地面建筑、地下管线等设施的正常使用。
针对该区间隧道沿线的建(构)筑物及地下管线设施,结合盾构推进施工中引起地面沉降的机理,进行如下监测内容:1)道路与管线沉降监测2)一般建(构)筑物沉降3)隧道轴线上方地表沉降监测4)地面裂缝的观察二、监测的意义和目的1)监测的意义在软土地层的盾构法隧道施工中,由于盾构穿越地层的地质条件千变万化,岩土介质的物理力学性质也异常复杂,而工程地质勘察总是局部的和有限的,因而对地质条件和土体的物理力学性质的认识总存在诸多不确定性和不完善性。
由于软土盾构隧道是在这样的前提条件下设计和施工的,为保证盾构掘进隧道工程的施工安全和周围环境安全,并在施工过程中积极改进施工工艺和参数,需对盾构推进的全过程进行监测。
在设计阶段要根据周围环境、地质条件、施工工艺特点,编制施工监测方案,在施工阶段要按监测结果及时反馈,合理调整施工参数和采取技术措施,最大限度地减少地层移动,确保工程安全并保护周围环境。
2)监测的目的(1)认识各种因素对地表和土体变形等的影响,以便有针对性地改进施工工艺和修改施工参数,减小地表和土体的变形。
(2)预测下一步的地表和土体变形,根据变形发展趋势和周围建筑物情况,决定是否需要采取保护措施,并为确定经济合理的保护措施提供依据。
(3)检查施工引起的地面沉降和隧道沉降是否控制在允许的范围内。
(4)控制地面沉降和水平位移及其对周围建筑物的影响,以减少工程保护费用。
(5)建立预警机制,保证工程安全,避免因结构和环境安全事故引起的工程总造价增加。
(6)为研究土体性质、地下水条件、施工方法与地表沉降和土体变形的关系积累数据,为改进设计提供依据。
(7)为研究地表沉降和土体变形的分析计算方法等积累资料。
三、监测实施的重点1)各区间沿线建(构)筑物2)隧道影响范围内的管线四、监测内容的实施1)变形监测控制网的布设(1)变形监测控制网的起算点或终点要有稳定的点位,应布设在牢靠的非变形区。
地铁施工监测规范

地铁施工监测规范篇一:地铁工程监控量测技术规程地铁工程监控量测技术规程第一章定义、术语1.1 定义1.1 监控量测地铁工程施工中对围岩、地表、支护结构及周边环境的动态进行的经常性观察和量测工作。
1.2 施工监控量测土建承包商按施工合同有关要求在满足监测技术规程的要求下,自行组织对地铁工程实施的监控量测工作。
1.3 第三方监控量测由业主通过招标或委托形式引入的有关资质的单位对其签订的承包合同范围实施的监控量测工作。
1.2 术语2.1 地铁在城市中修建的快速、大运量、用电力牵引并位于隧道内或地铁转到地面和高架桥上的轨道交通。
2.2 应测项目保证地铁周边环境和围岩的稳定以及施工安全应进行的日常监测项目。
2.3 选测项目相对于应测项目而言,为了设计和施工的特殊需要,由设计文件规定的在局部地段进行的检测项目。
2.4 浅埋暗挖法在浅埋软质地层的隧道中,基于喷锚技术而发展的一种矿山工法。
2.5 盾构法使用盾构机械进行开挖并采用管片作为衬砌而修建隧道的施工方法。
2.6 明挖法由地面开挖的基坑中修筑地铁构筑物的方法。
2.7 隧道周边收敛位移隧道周边任意两点间距离的变化。
2.8 水平位移监测测定变形体沿水平方向的位移值,并提供变形趋势及稳定预报而进行的量测工作。
2.9 垂直位移监测测试那个变形体沿垂直方向的位移值,并提供变形趋势及稳定预报而进行的量测工作。
2.10 拱顶沉降隧道拱顶内壁的绝对沉降(量)。
2.11 地表沉降地铁工程施工中地层的(应力)扰动区延伸至地表而引起的沉降。
2.12 隧道围岩隧道周围一定范围内对洞身产生影响的岩土体。
2.13 围岩压力开挖隧道时围岩变形或松散等原因而作用而支护、衬砌上的压力。
2.14 初期支护隧道开挖后即行施作的支护结构。
2.15 二次衬砌初期支护完成后施作的衬砌。
2.16 衬砌沿着隧道洞身周边修建的永久性支护结构。
2.17 管片是一种在工厂制作的圆弧形板肋状并由钢筋混凝土、钢、铸铁或其它材料制作的预制构件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
庞旭卿:监控量测在地铁区间隧道盾构施工中应用
监控量测在地铁区间隧道盾构施工中应用
庞旭卿1,2
(1.陕西铁路工程职业技术学院,陕西渭南714000;2.长安大学地测学院,西安710054)
【摘要】在地铁区间主体、车站、及附属结构施工中按照设计及规范要求采用科学先进、准确可靠的监测手段及时反馈信息指导施工,是确保施工安全的关键。
针对深圳地铁5号线盾构施工区间隧道地质条件较差的特点,就盾构施工监控量测工艺流程及盾构施工测量、监测质量保证措施进行设计,保证了盾构隧道工程安全经济顺利地进行。
【关键词】地铁;区间隧道;盾构;监控量测
【中图分类号】U231;U45【文献标识码】B【文章编号】1001-6864(2011)09-0107-02
盾构法是地下隧道的一种施工方法,对地层的适应性也越来越好,因此在地下工程(尤其是地铁区间)中被广泛采用[1]。
然而,在软土层中采用盾构法掘进隧道,会引起地层移动而导致不同程度的沉降和位移,因此,通过盾构法施工地铁中监控量测的实施及信息反馈,对控制周围位移量、确保临近建筑物的安全是非常必要的[2]。
1工程概况
深圳地铁5号线线路全长40.933km,区间以盾构施工为主。
工程地质与水文地质条件复杂,有特殊土等不良地质现象,特别是淤泥层较厚,地下水丰富。
含水层主要为砂层,结构松散,自稳性差,透水性强,施工中易发生坍塌、涌水、涌砂、变形、失稳等现象。
临近地面建筑物多,施工干扰大;围护结构受土的侧压力后有向内收缩的趋势,钢管支撑预应力施加的控制难度大,预应力大则围护结构外扩,不够则围护结构收缩。
2盾构施工监控量测
2.1监测项目
主要包括:地表隆陷、隧道隆陷、土体内部位移、衬砌环内力和变形、土层压应力等[3]。
具体内容详见表1。
表1盾构隧道施工监测项目汇总
序号监测项目量测器工具测点布置监测目的与要求量测频率
1地表隆陷水准仪每30m设一断面,过既有建筑物时加密每10m一断面
2隧道隆陷水准仪、钢尺5m设一断面
3周边净空
收敛位移
收敛仪
每5 50m一个断面,
每断面1 3个测点
4管片裂缝观察、目测
5管片实际
位置监测
水准仪每环
监测隧道施工引起的地
表变形、隧道变形情况,
确保施工安全。
掘进面前后<20m时测1 2
次/d,掘进面前后<50m时测1
次/2d,掘进面前后>50m时测1
次/周
随时观察
每天
2.2施工监测工艺流程
隧道与土体变形监测成果是确定盾构机掘进参数的重要依据,为保证盾构机正常掘进,信息化施工是重要手段,盾构区间施工监测的工艺流程如图1所示。
2.3施工监测实施
(1)测点布置:如图3 图5所示。
地面沉降(隆陷)监测点布置:根据隧道通过的围岩条件布置测点,一般地段30m设一断面。
地面沉降观测点的观测周期:盾构机机头前10m和后20m范围每天早晚各观测一次,并随施工进度递进[4]。
每次观测点应与上一次观测点部分重合,以做比较,掘进前后50m范围内两天观测一次,范围之外的检测点每周观测一次,直至稳定。
当沉降或隆起超过规定限差(-30/+10mm)或变化异常时,应加大监测频率和检测范围。
并将信息及时传递给有关部门。
监测方法:用精密水准仪进行测量。
监测要点:监测时严格按照GB12987-91国家二等水准测量规范执行,沉降点复测周期按照《城市测量规范》执行。
数据处理:地表沉降监测随施工进度进行,并将各沉降点沉降值存入计算机监测管理管理系统汇总成沉降变化曲线、沉降速度变化曲线统一管理,绘制报表。
(2)隧道隆陷。
每5m设一断面;周边净空收敛位移测量:每10 20m设一断面。
监测方法:用收敛仪测量。
测量精度:ʃ1mm。
数据处理:监测值存入计算机监测管理系统统汇总成位移变化曲线、位移速度变化曲线统一管理。
(3)管片裂缝。
监测方法:观察、目测。
监测要点:发
701
低温建筑技术2011年第9期(总第159期
)
现裂缝后立即用裂缝观测器实测裂缝宽度并统一编号,用黑色墨汁写在裂缝旁。
数据处理:将裂缝编号后宽度值存入计算机监测管理系统统一管理。
4
盾构施工监控量测质量保证措施
①成立专业监测小组,内部建立二级检查制度,仪器按规定时间进行核准;②对业主提供的基准点资料及时进行复测,确保准确性;③通过详细调查资料,确定受施工影响的建(构)筑物和地下管线,并在其上设置监测点;④根据要求,设立地面沉降监测断面和相应的监测点;⑤将所有被保护对象的详细调查资料汇编成册,
以备随时查阅;⑥在基坑开挖施工以前取得所有监测点的初始数据;⑦每天的监测成果要及时送报主管工程师(并报送监理工程师);⑧妥善保留所有的原始资料,以供抽查;⑨监测值出现异常时,
迅速报告相关工程师并加密观测次数,进行处理;⑩制定监测信息化施工流程。
5
结语
在深圳地铁5号线区间隧道盾构施工中由于监控量测和施工密切配合获得了成功,有效避免了隆陷、
坍塌及施工中的变形失稳等现象。
因此,加强监控量测工作,把施工过程中及竣工后其地层及其结构的动态变化始终纳入可控的管理系统之中显得非常重要
[5]。
参考文献
[1]刘洪震.广州地铁三号线大—汉区间盾构工程施工监控量测
[J ].西部探矿工程,2006,(8).
[2]汪玉华,李海民,王立军.盾构法施工引起的地层变位分析
[J ].铁道工程学报,2006,(11).
[3]尹旅超,朱振宏,李玉珍,等.日本隧道盾构新技术[M ].武
汉:华中理工大学出版社,
1999.[4]GB50299-1999,地下铁道工程施工及验收规范[S ].[5]郭磊.监控量测在盾构施工中的作用[J ].隧道建设,2005,(2).
[收稿日期]2011-04-12
[作者简介]庞旭卿(1976-),男,陕西华阳人,博士,研究方
向:路基工程与城市轨道工程。
8
01。