力学典型例题23
初中力学经典例题

初中力学经典例题
例题:一个质量为5kg的物体放在水平桌面上,受到一个水平向右、大小为20N 的拉力作用,物体在水平面上做匀速直线运动。
求:(1)物体受到的摩擦力大小;(2)物体对桌面的压力大小;(3)物体与桌面之间的摩擦力系数。
解析:
1. 求物体受到的摩擦力大小
- 因为物体在水平面上做匀速直线运动,根据二力平衡的知识,在水平方向上拉力和摩擦力是一对平衡力,大小相等,方向相反。
- 已知拉力,所以摩擦力,方向水平向左。
2. 求物体对桌面的压力大小
- 在竖直方向上,物体受到重力和桌面的支持力,且处于平衡状态。
- 根据重力公式,其中,(在初中阶段,通常取),则。
- 物体对桌面的压力与桌面对物体的支持力是一对相互作用力,大小相等。
而桌面对物体的支持力与物体的重力平衡,所以。
3. 求物体与桌面之间的摩擦力系数
- 根据摩擦力公式,已知,。
- 则。
力学竞赛试题

1、一根轻质弹簧一端固定,用大小为F₁的力压弹簧的另一端,平衡时弹簧长度为L₁;改用大小为F₁的力拉弹簧的另一端,平衡时弹簧长度为L₁。
已知弹簧的拉伸与压缩均在弹性限度内,则该弹簧的劲度系数为( )A. (F₁ - F₁) / (L₁ - L₁) (答案)B. (F₁ + F₁) / (L₁ + L₁)C. (F₁ + F₁) / (L₁ - L₁)D. (F₁ - F₁) / (L₁ + L₁)2、下列关于胡克定律F = kx 中的x、F、k 的单位,下列说法正确的是( )A. x 是长度单位,国际单位制中是mB. F 是力单位,国际单位制中是kgC. k 是劲度系数单位,国际单位制中是N/m (答案)D. k 是劲度系数,它没有单位3、弹簧振子以O点为平衡位置在B、C两点间做简谐运动,B、C相距20cm。
某时刻振子处于B点,经过0.5s,振子首次到达C点。
求:(1)振动的周期和频率;(2)振子在5s内通过的路程及5s末的位移大小;(3)振子在B点的加速度大小跟它距O点4cm处P点的加速度大小的比值。
(答案:5:2)4、一列简谐横波沿x轴正方向传播,波速为6m/s。
已知x = 0处的质点,在t = 0时刻开始向上运动,且经过0.4s第一次到达波峰。
则下列说法正确的是_______ 。
A. 该波的周期为0.8sB. t = 0.5s时,x = 4m处的质点位于波峰C. t = 0.9s时,x = 6m处的质点位于波谷(答案)D. x = 10m处的质点,在t = 0.7s时,速度方向向下5、下列说法正确的是()A. 物体做受迫振动达到稳定后,物体振动的频率等于物体的固有频率B. 通过超声波被血流反射回来其频率发生变化可测血流速度,是利用了多普勒效应C. 只有缝、孔的宽度或障碍物的尺寸跟波长相差不多,或比波长更小时,才能发生衍射现象D. 质点的振动方向与波的传播方向在同一直线的波,叫作横波(答案:B)6、在“用单摆测重力加速度”的实验中,为使实验结果较为准确,在实验中,下列说法正确的是( )A. 要用细线、细铁丝等作为摆线B. 摆线长度等于摆球静止时摆线悬点到摆球上端的距离C. 开始计时时,应在摆球到达最高点时开始计时D. 要保证摆球在同一竖直面内摆动,不能形成圆锥摆(答案)7、关于简谐运动,下列说法正确的是()A. 物体振动的最大位移等于振幅B. 物体的振动速度最大时,加速度也最大C. 物体每次通过同一位置时,其速度不一定相同,但加速度一定相同D. 物体每次通过平衡位置时,加速度相同,速度也一定相同(答案:A、C)8、关于受迫振动,下列说法正确的是( )A. 物体做受迫振动达到稳定后,物体振动的频率等于物体的固有频率B. 物体做受迫振动达到稳定后,物体振动的频率等于驱动力的频率(答案)C. 物体做受迫振动时,振动稳定后的频率等于物体固有频率和驱动力频率之和D. 物体做受迫振动时,振动稳定后的周期与物体固有周期和驱动力周期无关。
理论力学23-平面汇交力系与平面力偶系

平衡方程的解法
通过代入法或消元法求解 平衡方程,得到各个力的 具体数值。
平面汇交力系的实例分析
实例一
分析一个固定在墙上的梯子的受力情 况,梯子受到的重力和人对梯子的推 力在同一直线上,可以合成一个合力 ,合力方向与重力方向相反。
实例二
分析一个水平放置的杠杆的受力情况 ,杠杆受到的重力和人对杠杆的压力 在同一直线上,可以合成一个合力, 合力方向与重力方向相反。
理论力学23-平面汇交力 系与平面力偶系
目录 CONTENT
• 平面汇交力系 • 平面力偶系 • 平面汇交力系与平面力偶系的联
系 • 习题与解答 • 总结与展望
01
平面汇交力系
平面汇交力系的合成
1 2
平面汇交力系合成的基本原理
根据力的平行四边形法则,将两个或多个力合成 一个合力。
力的三角形法则
解答4
根据力矩的平行四边形法则, 求出平面力偶系的总力矩。
05
总结与展望
总结
定义:作用在物体上的力,其作用线都在同一平面内且相交于一点。 平衡条件:合力为零。
总结
• 解题方法:利用力的合成与分解,将汇交力系简化为单一 的力或力的合成。
总结
定义
作用在物体上的力偶,其力偶矩 矢量都在同一平面内。
04
习题与解答
习题
题目1
题目2
题目3
题目4
求平面汇交力系的合力
求平面汇交力系的合力 矩
求平面力偶系的合力矩
求平面力偶系的总力矩
解答
01
02
03
04
解答1
根据力的平行四边形法则,求 出平面汇交力系的合力大小和
方向。
解答2
根据合力矩定理,求出平面汇 交力系的合力矩。
高中物理 20个力学经典计算题汇总及解析

高中物理 20个力学经典计算题汇总及解析1. 概述在力学领域中,经典的计算题是学习和理解物理知识的重要一环。
通过解题,我们能更深入地了解力学概念,提高解决问题的能力。
在本文中,我将为您带来高中物理领域中的20个经典力学计算题,并对每个问题进行详细解析,以供您参考和学习。
2. 一维运动1) 题目:一辆汽车以30m/s的速度行驶,经过10秒后匀减速停下,求汽车减速的大小和汽车在这段时间内行驶的距离。
解析:根据公式v=at和s=vt-0.5at^2,首先可求得汽车减速度a=3m/s^2,然后再求出汽车行驶的距离s=30*10-0.5*3*10^2=150m。
3. 二维运动2) 题目:一个质点在竖直平面内做抛体运动,初速度为20m/s,抛体初位置为离地30m的位置,求t=2s时质点的速度和所在位置。
解析:首先利用v=vo+gt求得t=2s时的速度v=20-9.8*2=-19.6m/s,然后再利用s=s0+vo*t-0.5gt^2求得t=2s时的位置s=30+20*2-0.5*9.8*2^2=30+40-19.6=50.4m。
1. 牛顿运动定律3) 题目:质量为2kg的物体受到一个5N的力,求物体的加速度。
解析:根据牛顿第二定律F=ma,可求得物体的加速度a=5/2=2.5m/s^2。
2. 牛顿普适定律4) 题目:一个质量为5kg的物体受到一个力,在10s内速度从2m/s 增加到12m/s,求物体受到的力的大小。
解析:利用牛顿第二定律F=ma,可求得物体受到的力F=5*(12-2)/10=5N。
3. 弹力5) 题目:一个质点的质量为4kg,受到一个弹簧的拉力,拉力大小为8N,求弹簧的弹性系数。
解析:根据弹簧的胡克定律F=kx,可求得弹簧的弹性系数k=8/0.2=40N/m。
4. 摩擦力6) 题目:一个质量为6kg的物体受到一个10N的水平力,地面对其的摩擦力为4N,求物体的加速度。
解析:首先计算摩擦力是否达到最大值f=μN=6*10=60N,由于摩擦力小于最大值,所以物体的加速度a=10-4/6=1m/s^2。
初中物理力学经典例题15道题

初中物理力学经典例题15道题1. 一个质量为2kg的物体,在水平地面上受到10N的水平拉力,求物体的加速度。
解答:根据牛顿第二定律,物体的加速度等于合外力除以物体的质量。
所以物体的加速度为a = F/m = 10N / 2kg = 5m/s^2。
2. 一个质量为0.5kg的物体受到一个5N的竖直向下的重力,求物体的重力加速度。
解答:重力加速度是指物体在自由下落时垂直于地面的加速度。
根据牛顿第二定律,物体的重力加速度等于重力除以物体的质量。
所以物体的重力加速度为g = F/m = 5N / 0.5kg = 10m/s^2。
3. 一个质量为4kg的物体,向右运动时受到一个10N的水平拉力和一个8N的水平推力,求物体的加速度。
解答:物体的加速度等于合外力除以物体的质量。
合外力等于水平拉力减去水平推力,即F = 10N - 8N = 2N。
所以物体的加速度为a = F/m = 2N / 4kg = 0.5m/s^2。
4. 一个质量为2kg的物体,在斜面上受到一个与斜面垂直的力为10N的重力和一个沿斜面方向的力为4N,斜面的倾角为30度,求物体的加速度。
解答:首先将斜面上的力分解为与斜面垂直方向的力和沿斜面方向的力,即重力沿斜面方向的分力为F1 = mg * sinθ,沿斜面方向的合力为F2 = mg * cosθ。
其中,m = 2kg,g = 9.8m/s^2,θ = 30°。
所以沿斜面方向的合力为F2 = 2kg * 9.8m/s^2 * cos(30°) ≈ 16.96N。
物体的加速度等于沿斜面方向的合力除以物体的质量,即a = F2/m = 16.96N / 2kg ≈ 8.48m/s^2。
5. 一个质量为3kg的物体,向左运动时受到一个3N的水平拉力和一个5N的水平推力,求物体的加速度。
解答:物体的加速度等于合外力除以物体的质量。
合外力等于水平推力减去水平拉力,即F = 5N - 3N = 2N。
初中物理力学经典例题

初中物理力学经典例题以下是一些经典的初中物理力学例题:1. 一个质量为5kg的物体静止在水平地面上,施加一个10N的水平力。
求物体的加速度。
解答:根据牛顿第二定律F = ma,其中F是物体所受的合力,m是物体的质量,a是物体的加速度。
由于力和质量已知,将其代入方程可以求得加速度。
所以a = F / m = 10N / 5kg = 2m/s²。
2. 一个弹簧常数为200N/m的弹簧拉伸10cm后,求弹簧所受的弹力。
解答:根据胡克定律F = kx,其中F是弹簧所受的弹力,k是弹簧的弹簧常数,x是弹簧的伸长量。
由于弹簧常数和伸长量已知,将其代入方程可以求得弹力。
所以F = 200N/m × 0.1m = 20N。
3.一个物体以2m/s的速度沿直线运动,经过5s后速度变为8m/s。
求物体的加速度。
解答:根据加速度的定义a = (vf - vi) / t,其中a是物体的加速度,vf是物体的最终速度,vi是物体的初始速度,t是时间间隔。
由于初始速度、最终速度和时间间隔已知,将其代入方程可以求得加速度。
所以 a = (8m/s - 2m/s) / 5s = 1.2m/s²。
4. 一个质量为2kg的物体以10m/s的速度水平地撞击到静止的墙壁,反弹后以8m/s的速度反向运动。
求撞击过程中墙壁对物体的平均力。
解答:由于撞击过程中物体速度发生了变化,需要用动量定理来求解。
根据动量定理FΔt = Δmv,其中F是力,Δt是撞击时间,Δm是物体的质量变化量,v是物体的速度变化量。
由于质量变化量为零(质量不变),而速度变化量已知,可以求得撞击时间。
所以Δt = Δmv / F = (2kg × (8m/s - (-10m/s))) / (8m/s) = 9.5s。
由于撞击过程是瞬间发生的,可以认为撞击时间非常短,近似为0。
因此,墙壁对物体的平均力可以近似为墙壁对物体的瞬时力,即F = Δmv / Δt = 2kg × (8m/s - (-10m/s)) / 0s = ∞(无穷大)。
初中物理力学试题及解析

初中物理力学试题及解析题1:题目:一力学家测量一个物体的质量为5千克,该物体在水平方向上受到10牛的水平力。
求该物体的加速度。
解析:根据牛顿第二定律F=ma,其中F为力,m为质量,a为加速度。
代入已知数据可得10=5a,解得a=2m/s²。
题2:题目:一个物体质量为2千克,受到一个垂直向下的重力为20牛的作用力,求该物体的重力加速度。
解析:重力加速度的大小为g,根据牛顿第二定律F=ma,其中F为力,m为质量,a为加速度。
代入已知数据可得20=2g,解得g=10m/s²。
题3:题目:一根木棒在1秒内由静止开始,加速运动到6m/s。
求该木棒的平均加速度。
解析:平均加速度的计算公式为a=(v-u)/t,其中v为末速度,u为初速度,t为时间。
代入已知数据可得a=(6-0)/1=6m/s²。
题4:题目:一辆汽车以20m/s的速度行驶,司机突然踩下刹车,并使汽车在2秒内停下来。
求汽车的减速度。
解析:减速度的计算公式为a=(v-u)/t,其中v为末速度,u为初速度,t为时间。
代入已知数据可得a=(0-20)/2=-10m/s²。
由于减速度是指向相反方向的,所以答案为-10m/s²。
题5:题目:一个小球以4m/s的初速度沿直线运动,经过2秒后速度变为12m/s。
求小球的加速度。
解析:加速度的计算公式为a=(v-u)/t,其中v为末速度,u为初速度,t为时间。
代入已知数据可得a=(12-4)/2=4m/s²。
题6:题目:一力学家测量的一个物体的质量为10千克,该物体在水平方向上受到20牛的水平力。
求该物体的加速度。
解析:根据牛顿第二定律F=ma,其中F为力,m为质量,a为加速度。
代入已知数据可得20=10a,解得a=2m/s²。
题7:题目:一辆汽车质量为1200千克,在水平方向上受到2000牛的水平力推动。
求汽车的加速度。
解析:根据牛顿第二定律F=ma,其中F为力,m为质量,a为加速度。
(完整word版)振动力学作业题解23

第02章 单自由度系统的振动2.1 一根抗弯刚度72=3610Ncm EI ⨯的简支架,两支承间跨度l 1=2m ,一端伸臂l 2=1m ,略去梁的分布质量,试求悬臂端处重为Q =2548 N 的重物的自由振动频率。
【提示:22123()EJ k l l l =+,2212()3st Ql l l EIδ+=,11.77n ω= 1/s 】2.2 梁AB 其抗弯刚度72=910Ncm EI ⨯,A 端与B 端由弹簧支承,弹簧刚性系数均为k =52.92 kN/m ,如图所示。
略去梁的分布质量,试求位于B 端点左边1米处,重为Q =4900 N 的物块自由振动的周期。
【解法1:通过计算静变形求解。
A ,B 弹簧受力为3Q 和23Q ,压缩量为3Q k 和23Q k ,则由弹簧引起的静变形为159Qkδ=;利用材料力学挠度公式求出梁变形引起的静变形222212(321)4619Q QEI EIδ⋅⋅--==⋅。
周期为:22 1.08nT πω===s 。
解法2:通过弹簧刚度的串并联计算总等效刚度求解。
A ,B 弹簧相对Q 处的等效刚度为(产生单位变形需要的力,利用解法1中计算的静变形结果)195k k =;利用材料力学挠度公式求出梁相对Q 处的等效刚度294EI k =;总等效刚度为:12111eq k k k =+。
周期为22 1.08nT πω===s 。
】 2.4 一均质刚杆重为P ,长度为L 。
A 处为光滑铰接,在C 处由刚性系数为k 的弹簧使杆在水平位置时平衡。
弹簧质量不计,求杆在竖直面内旋转振动时的周期。
【解:利用定轴转动微分方程:21()32st P l l P k a a g ϕϕδ=--,2st lk a P δ=, 得:22103P lk a gϕϕ+=, 22n T πω===题 2-1 图BAQ题 2-2 图QkkAB 题 2-4 图2.8 一个重为98 N 的物体,由刚性系数为k =9.8 kN/m 的弹簧支承着(简化为标准m-k-c 振动系统),在速度为1 cm/s 时其阻力为0.98 N 。