材料力学典型例题及解析 4.弯曲内力典型习题解析
《材料力学》课程讲解课件第四章弯曲内力

x
∴ 弯曲构件内力:Fs -剪力,M -弯矩。
若研究对象取m - m 截面的右段:
Y 0, Fs F FBY 0.
mC 0,
FBY
FBY (l x) F(a x) M 0.
Fs
F (l a) l
,
M F (l a) x 18 l
1. 弯矩:M 构件受弯时,横截面上
存在垂直于截面的内力偶矩 (弯矩)。
由 Fy 0, 得到:
A
FAy
a
Mc
C FSc
FAy q 2a FSc 0
FSc FAy q 2a qa
(剪力FS 的实际方向与假设方
向相反,为负剪力)
由 MC 0, 得到:
MC FAy 2a 2qa a M1 0
MC FAy 2a 2qa a M1 2qa2
F
M (x) FAY x M A
F(x L) (0 x l)
x
③根据方程画内力图
FL
x
41
§4-4 剪力方程和弯矩方程 剪力图和弯矩图
q
例题4-2
悬臂梁受均布载荷作用。
x
试写出剪力和弯矩方程,并
q
l
x
FS
M x
FS x
画出剪力图和弯矩图。
解:任选一截面x ,写出
剪力和弯矩方程
ql FS x=qx
变形特点——杆轴线由直线变为一条平面的曲线。
P
主要产生弯曲变形的杆--- 梁。
q
M
二、平面弯曲的概念:
RA
NB
3
F1
q
F2
M
纵向对称面
平面弯曲 受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在
材料力学——4梁的弯曲内力

21
例题1 图所示,悬臂梁受集中力F作用, 试作此梁的剪力图和弯矩图 解: 1.列剪力方程和弯矩方程
FQ ( x) F
(0<x<l ) (0≤x<l)
M ( x) Fx
2.作剪力图和弯矩图 由剪力图和弯矩图可知:
FQ M
max max
F Fl
22
例题 2简支梁受均布荷载作用,如图示, 作此梁的剪力图和弯矩图。 解:1.求约束反力 由对称关系,可得: 1 FAy FBy ql 2 2.列剪力方程和弯矩方程
Q2 Q1– Q2=P
x
x
梁的内力计算的两个规律:
(1)梁横截面上的剪力FQ,在数值上等于该截 面一侧(左侧或右侧)所有外力在与截面平行方 向投影的代数和。即:
FQ
F
yi
若外力使选取研究对象绕所求截面产生顺时针 方向转动趋势时,等式右边取正号;反之,取 负号。此规律可简化记为“顺转剪力为正”, 或“左上,右下剪力为正”。相反为负。
12
二、例题
[例1]:求图(a)所示梁1--1、2--2截面处的内力。 q 2 解:截面法求内力。 qL 1 1--1截面处截取的分离体 1 a y qL A M1 x1 Q1 图(b) 2 b 如图(b)示。
x
图(a)
Y qL Q1 0 Q1 qL
mA( Fi ) qLx1 M1 0 M1 qLx1
作梁的剪力图 FQB右=4kN/m×2m=8kN,FQD=0
34
35
27
3. 弯矩图与剪力图的关系
(1)任一截面处弯矩图切线的斜率等于该截面 上的剪力。 (2) 当FQ图为斜直线时,对应梁段的M图为二 次抛物线。当FQ图为平行于x轴的直线时,M图 为斜直线。
05第五章 材料力学习题解答(弯曲内力)

a
a
(i)
解:(a) (1) 求约束反力
qa
2qa qa
C
A
B
q
a
a
a
a
(j)
MA
A x
2P
C
M0=Pa
B
RA
∑Y = 0 RA − 2P = 0
RA = 2P
∑ M A = 0 M A − 2Pa + M0 = 0
(2) 列剪力方程和弯矩方程
M A = Pa
Q(x)
⎧= ⎨⎩=
RA RA
= −
2P 2P
q
M2
C
a
求内力
P=qa
B
Q2 = P + qa = 2qa
M2
=
−P
×
a
−
qa
×
a 2
+
M
=
−
1 2
qa 2
(b) (1)求约束反力
P=200N
1
23
A
1C
DB
RA 200
23
200 200
RD
∑ MD = 0 RA × 400 − P × 200 = 0
RA = 100N
(2) 截开 1-1 截面,取左段,加内力
=
x 0
∈ (0,a) x ∈(a,
2a]
上海理工大学 力学教研室
3
M
(x)
⎧= ⎨⎩ =
RA RA
× ×
x x
+ +
MA MA
= −
2Px − Pa 2P × (x − a)
=
Pa
(3) 画 Q 图和 M 图
材料力学习题解答(弯曲变形)

Pl 2
梁的挠曲线方程和转角方程是
D1 = 0
D2
=
−
1 24
Pl 3
⎧⎪⎪⎨⎪⎪⎩ 2EEIvI2'v1'==P2P2xx2212−−PPlxlx2 1+
3 16
Pl
2
⎧⎪⎪⎨⎪⎪⎩ 2EEIvI2v1==P6P6xx2313−−P2Pl2lxx2212+
3 16
Pl 2 x2
−
1 24
Pl 3
(6) 最大挠度和最大转角发生在自由端 令x2=l:
⋅a
=
−
qa4 3EI
上海理工大学 力学教研室
7
θB
= θ B(1)
+ θB(2)
+ θ B(3)
=
−
qa3 4EI
fB
=
f B (1)
+
fB(2)
+
f B ( 3)
= − 5qa4 24EI
7.10. 桥式起重机的最大载荷为 P=20 kN。起重机大梁为 32a 工字钢,E=210 GPa,l=8.7 m。 规定[f]=l/500,试校核大梁刚度。
⎪ ⎪⎩
M
2
(
x2
)
=
−
q
(l
− x2 2
∈
[
l 2
,
l
]
(2) 挠曲线近似微分方程
⎧ ⎪⎪
EIv1"
=
M1( x1)
=
− 3ql 2 8
+
ql 2
x1
⎨
⎪ ⎪⎩
EIv2"
=
M2(x2 )
第5章-弯曲内力例题详解

剪力弯矩最大值: 剪力弯矩最大值
FS max = qa
M max
4. 讨论
作用处, 在 Me 作用处,左右横截面 上的剪力相同, 上的剪力相同,弯矩值突变
单辉祖,材料力学教程
M 右 − M左 = Me
5
例 5-4 载荷可沿梁移动,求梁的最大剪力与最大弯矩 载荷可沿梁移动, 解:1. FS 与 M 图 :
3. 画剪力与弯矩图 剪力图:
FS1 = bF l FS2 = − aF l
弯矩图: 弯矩图
M1 =
bF x1 l
M2 =
aF x2 l Fab = l
最大值: 最大值
FS,max
bF = (b > a 时) l
M max
4. 讨论
作用处, 在 F 作用处 左右横截面上 的弯矩相,
∑M
A
= 0,
∑F
y
=0
FAx = qa, FCy = FAy = qa/2
2. 建立内力方程 BC 段:
qa FS1 = − , 2
qa M1 = x1 2
AB 段:
FS2 = qx 2 ,
qa q 2 M 2 = a − x2 2 2 qa FN2 = 2
单辉祖,材料力学教程
14
3. 画内力图
FSA+ = − FAy = −2F
单辉祖,材料力学教程
M A+ = M e − FAy ⋅ ∆ = Fl
M D− = F ⋅0=0 =
1
FSD− = F
例 题
例 5-2 建立剪力与弯矩方程,画剪力与弯矩图 建立剪力与弯矩方程,
FAy = bF l FBy = aF l
解:1. 支反力计算 : 2. 建立剪力与弯矩方程
材料力学例题及解题指导

图 2-8 解:设在荷载 G 作用下,横梁移动到 AB位置(图 2-8b),则杆 1 的缩短量为 l1,而杆 2、3 的伸长量为 l2、l3。取横梁 AB 为分离体,如图 2-8c,其上除荷载 G 外,还有轴力 N1、N2、N3 以及 X。由于假设 1 杆缩短,2、3 杆伸长,故应将 N1 设为压力,而 N2、N3 设 为拉力。 (1) 平衡方程
例题及解题指导
图 3.6
例 2-5 图 3-6 所示螺钉承受轴向拉力 F,已知许可切 应力[]和拉伸许可应力[]之间的关系为:[]=0.6[],许 可 挤 压 应 力 [bs] 和 拉 伸 许 可 应 力 [] 之 间 的 关 系 为 : [bs]=2[]。试建立 D,d,t 三者间的合理比值。
解:(1) 螺钉的拉伸强度
时单位杆长的分布力 q=A1,此处 是材料单位体积的重量即容重。将 q 代入上式得到
l A l2 Al l Gl
2EA 2EA 2EA 此处 G=Al 是整个杆的重量。上式表明等直杆自重引起的总伸长等于全部重量集中于 下端时伸长的一半。
解题指导:对于轴力为变数的杆,利用虎克定律计算杆件轴向变
N1 得正号说明原先假设拉力是正确的, 同时也就表明轴力是正的。AB 段内任一截 面的轴力都等于+6kN。 再求 BC 段轴力,在 BC 段任一截面 2-2 处 将杆件截开,仍考察左段(图 2-5c),在截 面上仍设正的轴力 N 2,由 X=0 得
-6+18+N2=0
N2=-12kN
N2 得负号说明原先假设拉力是不对的
解:根据强度条件式(4-6)得出:
10
d 3 16MT 3 16 7.64 106 109mm
[ ]
30
11
再根据刚度条件式(4-9b )得出:
刘鸿文材料力学 I 第6版_4_弯取内力

(3) 在剪力Q为零处, 弯矩M取极值。
注意: 以上结论只在该 段梁上无集中力 或集中力偶作用 时才成立。
44
(4) 在集中力作用点: 剪力图有突变,突变值 即为集中力的数值,突 变的方向沿着集中力的 方向(从左向右观察); 弯矩图在该处为折点。
(5) 在集中力偶作用点: 对剪力图形状无影响; 弯矩图有突变,突变值 即为集中力偶的数值。
2
AC段: N 1 qa Q qa qy 2
M qa y 1 qy2
2
(3) 轴力图
(4) 剪力图
35
(4) 剪力图
(5) 弯矩图
BC段:
M 1 qa x
2
qa
AC段:
M qa y 1 qy2
特点: 2
在刚节点处,弯矩值连续 ;
Q
1 qa 2
36
特点: 在刚节点处,弯矩值连续; 可以利用刚节点的平衡, 对内力图进行校核。
(2) 求剪力方程和弯矩方程
需分段求解。
分为两段:AC和CB段。 AC段 取x截面,左段受力如图。
由平衡方程,可得:
Q(x) Pb l
(0 x a)
M (x) Pb x
(0 x a)
l
CB段 取x截面,
x
Q
M
17
CB段 取x截面, 左段受力如图。 由平衡方程,可得:
外侧均可,但需标出正 负号; (3) 弯矩画在受压侧。
32
例 5 刚架
已知:q,a。
求:内力图。
解:(1) 求支反力 结果如图。
(2) 求内力 BC段:
X 0
MQ
N Dx
N 0
材料力学答案4弯曲内力

A
C
B 出剪力图和弯矩图。
x1
x2
解:1.确定约束力
FAy
l
FBy
M /l
M A=0, MB=0
Fs:
Ma / l
M:
FAy=M / l FBy= -M / l
2.写出剪力和弯矩方程
AC FS x1=M / l 0 x1 a
M x1=Mx1 / l 0 x1 a
剪力图和弯矩图
例1
1kN.m
A
C D B 解法2:1.确定约束力
FAY
Fs( kN) 0.89
1.5m
1.5m
2kN
1.5m
FBY
1.11
(+)
FAy=0.89 kN FFy=1.11 kN
(-)
2.确定控制面为A、C 、D、B两侧截面。
3.从A截面左侧开始画
剪力图。
19
剪力图和弯矩图
例1
x 5.确定控制面上的 弯矩值,并将其标在
M-x中。
22
剪力图和弯矩图
例2
q
D 解法2:1.确定约束力
A
B
FAy
9qa/4
4a
a qa FBy
FAy=
9 4
qa
,
FBy=
3 4
qa
Fs (+)
(-) qa
7qa/4
2.确定控制面,即A 、B、D两侧截面。
3.从A截面左测开始画
剪力图。
23
剪力图和弯矩图
Mb / l
CB FS x2 =M / l 0 x2 b
M x2 = Mx2 / l 0 x2 b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弯曲内力
典型习题解析
1 作图示简支梁的剪力图和弯矩图,并求出max
S
F 和max
M。
解题分析:作剪力、弯矩图的基本方法是写出每一段梁上的剪力、弯矩方程,根据方程描点作图。
在能熟练地作剪力、弯矩图后,可采用如下简便作图法:在表中列出特殊截面(如有位移约束的截面、集中力作用截面等的剪力、弯矩值,再根据载荷集度与剪力、弯矩之间的微分关系判断各区段的内力图形状,连线相邻特殊截面对应的点。
下面按两种方法分别作图。
解I :1、求支反力
qa F Ay =,
qa F Cy 2=2、将梁分成AB 、BC 和CD 三个区段 以A 为原点,向右取x 坐标。
AB 段,如图d :
qa F F Ay ==S ,()
a x <<0
2qa
(c)
(b)
(a)
M
(d)
(e)
M
S
S
S
M
(f)
题1图
qax x F M Ay ==,()
a x ≤≤0BC 段,如图e:
)2()(S x a q a x q F F Ay −=−×−=,(a x a 2<<)
)/2()/2)((22a x q a x a x q x F M Ay +=−−+=,(a x a 2≤≤)
CD 段,如图f:
)()(S x a q F a x q F F Ay −=−−×−=,(a x a 32<<)
)/2()/2)((22a x q a x a x q x F M Ay +=−−+=,(a x a 32≤≤)
3、按照步骤2所得各段梁的剪力、弯矩方程画出剪力图和弯矩图,如图b 和图c。
4、计算剪力和弯矩的最大值
qa F 2max
S
=, 2max
2
3qa M
=
解II :1、计算支反力
qa F Ay =,
qa F Cy
2=2、将梁分为AB 、BC 、CD 三个区段,计算每个区段起点和终点的力值。
3、根据载荷情况及微分关系,判断各力区的内力图形状,并以相应的图线连接起来,得到剪力图和弯矩图。
力区 A 截面 AB B 截面 BC C 截面 CD D 截面 载荷 F Ay 向上 q =0
无集中力q =负常数 F 向下 q =负常数 F Dy 向上F S
突跳F Ay
水平(+)
连续 下斜线(+) 突减F 下斜线(-) 突跳F Dy
M 0 上斜线 相切
上凸抛物线
转折
上凸抛物线
4、计算剪力弯矩最大值
qa F 2max
S
=, 2
max
2
3qa M
=
讨论:利用剪力弯矩方程作图时,注意坐标轴x 的正向一般由左至右。
有时候根据需要,可
以取为由右至左,但此时必须注意q ,F S 和M 之间的微分关系在正负号上有变化。
2 作图示梁的剪力图和弯矩图。
解题分析:不分段列剪力、弯矩方程,只计算特殊截面处的剪力、弯矩值,根据规律连线。
解:1、求支反力
qa F qa F Cy Ay 5
4
,43==
2、计算特殊截面剪力值
将梁分为三个区段计算每个截面的值。
集中力作用截面的左、右两侧值不同。
S F S F qa F F A A 4
3
0S S ==右左, qa F qa F B B 41
43S S −==
右左, qa F qa F C C =−=右左,S S 4
1
0S =D F
3、计算特殊截面弯矩值
计算前述特殊截面处的M 值。
集中力偶作用截面的左、右两侧的M 值不同。
0=A M 224
1
43qa M qa M B B −==
右左, 题2图
22
1qa M C −
= 0=D M
CD 段是二次抛物线,抛物线上有极值时应求出。
4、计算最大剪力和弯矩值
qa F =max
S
, 2max
4
3qa M
=
讨论:采用上述作图法不能遗漏代表点,包括载荷变化点、约束点。
计算极值弯矩时,可以先找出该区段剪力为零的截面,该截面处的弯矩即为极值弯矩。
也可以借助该区段的弯矩方程计算极值。
3 作图示梁的剪力图和弯矩图,并求出max
S
F 及max
析:梁上有中间铰时M
,B 处是中间铰。
解题分,先自铰处将梁拆分。
中矩一定为零。
解: 1、求支反力
间铰可以传递力,但不能传递弯矩,所以中间铰处弯在中间铰B 处将梁拆开两部分,铰处互相作用
力用By F 代替,如图b 所示。
24
7
,47,1qa F F qa F By Ay ==4qa M A Dy ==
2、将梁分为AB 、BC 、CD 三个区段,计算A B 、
C D 截面处的内力值。
3、集度与剪力、弯矩之间的微分关系,
4、CD 段剪力有零点,根据左负右正,判断弯矩图有极小值。
、、根据载荷判断各区段的内力图形状,并用图线连接。
令041)(S x F =−=
qx qa ,得a x 4
1
=,代入弯矩方程
2232
1)4(2141)(qa a q a F x M D =+×−=
5、计算最大剪力、弯矩值
qa F 4
max
S
=
, 7
2max
4
M =
7qa F S
(d) M
题3图
4 试作图示梁的剪力图和弯矩图
解题分析:对于三角形()q 0的关系,再列出剪力、弯矩方程。
结构和载荷均对称时,弯矩图对称,剪力图反对称。
所以,只须取左半边作图,然后根据上述对称解: 1、求支反力
分布载荷,先列出q x 和反对称关系,画出另一半剪力、弯矩图。
l q F F Cy Ay =
=04
1
2、列、S F M 方程
l
x q x q (0
= 2))20(41)(21
41)(20
00l −S1l
x l x q l q x x q q x F <<−==
)2
l
0(3432)(41)(30001x x l
q lx q
x x x q lx q x M ≤≤−=⋅−=
2
l
x =
处M 为极大值。
2030)()(1l q l l M −=
0max 12
1
2324l q l q = 3、作、S F M 图
AB 段, 图为二次抛物线,S F M 图为三次抛物线。
BC 段,图与AB 段反对称,S F M 图与AB 段对称。
4、计算最大剪力弯矩值
q 0l /4
(+)
q 0l 2/12
(+)
(-)
题4q 0l /4
图
4
0l
q =
max
S
F ,21
l q M =
0max
12
5 作图示刚架的内力图
C 铰处拆开,得:
解题分析:刚架有中间铰,自铰处拆开,先求支反力,然后根据对称规律作剪力、弯矩图。
铰处无集中载荷时,铰两侧轴力、剪力图连续,弯矩为零。
解:1、求支反力
由于对称 qa F F Ey Ay == 在Ex Ax F qa
F ==
4
2、作F 图
N AB 力区,直线; ,区,qa F −=N ,BC CD 力4
N qa
F −
=,直线; 力区,,直线。
3、DE qa F −=N 作S F 图
AB 力区,0=q ,4
S qa
−
=直线F
D 2/2
题5图
qa
BD 力区,等于负常数,图为斜线,q S F qa F =max
S
DE 力区,,0=q 4
S qa
F =直线 4、作M 图
AB 力区,S F 为负常数,M 图为斜线。
BC 力区,为斜线,正值,S F M 图为二次抛物线,C 处M 值等于零。
CD 力区,为斜线,负值,S F M 图为二次抛物线。
2
2
DE 力区,为正常数,M 图为斜线。
S F max
M
=。
qa 讨论:作称性或反对称性可以大大降低工作量。
刚架内力图时充分利用刚架的几何对称性、载荷的对。