第十四章 整式的乘法与因式分解全章教案

合集下载

第十四章_整式的乘法与因式分解全章教案

第十四章_整式的乘法与因式分解全章教案

14.1.1同底数幂的乘法第28课教学目标(一)知识与技能1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.(二)过程与方法1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.2.通过“同底数幂的乘法法则”的推导和应用,•使学生初步理解特殊──一般──特殊的认知规律.(三)情感与态度体味科学的思想方法,接受数学文化的熏陶,激发学生探索创新的精神.教学重点正确理解同底数幂的乘法法则.教学难点正确理解和应用同底数幂的乘法法则.教学方法透思探究教学法:利用学生已有的知识、经验对所学内容进行自主探究、发现,在对新知识的再创造和再发现的活动中培养学生的探索创新精神与创新能力.教具准备投影片(或多媒体课件).教学过程一.提出问题,创设情境复习a n 的意义:a n 表示n 个a 相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a 叫做底数,•n 是指数.(出示投影片)提出问题:(出示投影片)问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?[师]能否用我们学过的知识来解决这个问题呢?[生]运算次数=运算速度×工作时间所以计算机工作103秒可进行的运算次数为:1012×103.[师]1012×103如何计算呢?[生]根据乘方的意义可知1012×103=121010)⨯⨯g g g 14243个(10×(10×10×10)=15101010)⨯⨯⨯g g g 1442443个(10=1015. [师]很好,通过观察大家可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.二.导入新课1.做一做出示投影片:你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.[师]根据乘方的意义,同学们可以独立解决上述问题.[生](1)25×22=(2×2×2×2×2)×(2×2)=27=25+2.因为25表示5个2相乘,;22表示2个2相乘,根据乘方的意义,同样道理可得 a 3·a 2=(a ·a ·a )·(a ·a )=a 5=a 3+2. 5m ·5n = (555)⨯⨯⨯g g g 14243m 个5×(555)⨯⨯⨯g g g 14243n 个5=5m+n . (让学生自主探索,在启发性设问的引导下发现规律,并用自己的语言叙述).[生]我们可以发现下列规律:(一)这三个式子都是底数相同的幂相乘.(二)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.2.议一议出示投影片[师生共析]a m ·a n 表示同底数幂的乘法.根据幂的意义可得:a m ·a n =()a a a g gg g g 14243m 个a ·()a a a g gg g g 14243n 个a =a a a g gg g g 14243(m+n)个a=a m+n 于是有a m ·a n =a m+n (m 、n 都是正整数),用语言来描述此法则即为:“同底数幂相乘,底数不变,指数相加”.[师]请同学们用自己的语言解释“同底数幂相乘,底数不变,指数相加”的道理,深刻理解同底数幂的乘法法则.[生]a m 表示n 个a 相乘,a n 表示n 个a 相乘,a m ·a n 表示m 个a 相乘再乘以n 个a 相乘,也就是说有(m+n )个a 相乘,根据乘方的意义可得a m ·a n =a m+n .[师]也就是说同底数幂相乘,底数不变,指数要降一级运算,变为相加.3.例题讲解出示投影片[师]我们先来看例1,是不是可以用同底数幂的乘法法则呢?[生1](1)、(2)、(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则.[生2](3)也可以,先算2个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.[师]同学们分析得很好.请自己做一遍.每组出一名同学板演,•看谁算得又准又快. 生板演:(1)解:x 2·x 5=x 2+5=x 7. (2)解:a ·a 6=a 1·a 6=a 1+6=a 7.(3)解:2×24×23=21+4·23=25·23=25+3=28.(4)解:x m ·x 3m+1=x m+(3m+1)=x 4m+1.[师]接下来我们来看例2.受(3)的启发,能自己解决吗?•与同伴交流一下解题方法.解法一:a m ·a n ·a p =(a m ·a n )·a p =a m+n ·a p =a m+n+p ;解法二:a m ·a n ·a p =a m ·(a n ·a p )=a m ·a n+p =a m+n+p .解法三:a m ·a n ·a p =a a a g gg g g 14243m 个a ·a a a g gg g g 14243n 个a ·a a a g gg g g 14243p 个a=a m+n+p . 评析:解法一与解法二都直接应用了运算法则,同时还用了乘法的结合律;•解法三是直接应用乘方的意义.三种解法得出了同一结果.我们需要这种开拓思维的创新精神.[生]那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,•就一定是底数不变,指数相加.[师]是的,能不能用符号表示出来呢?[生]a m1·a m2·…·a mn=a m1+m2+mn[师]太棒了.那么例1中的第(3)题我们就可以直接应用法则运算了.2×24×23=21+4+3=28.三.随堂练习1.课本P166练习四.课时小结[师]这节课我们学习了同底数幂的乘法的运算性质,•请同学们谈一下有何新的收获和体会呢?[生]在探索同底数幂乘法的性质时,进一步体会了幂的意义.了解了同底数幂乘法的运算性质.[生]同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,•我觉得应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即a m·a n=a m+n(m、n是正整数).五.课后作业1.课本P175习题15.2─1.(1)、(2),2.(1)、8.课题:14.1.2幂的乘方第29课【教学目标】:知识与技能目标:1、了解幂的乘方的运算性质,会进行幂的乘方运算;2、能利用幂的乘方的性质解决一些实际问题。

第十四章整式的乘法与因式分解教案

第十四章整式的乘法与因式分解教案

第十四章整式的乘法与因式分解14.1.1同底数幂的乘法教学目的:1、能归纳同底数幂的乘法法则,并正确理解其意义;2、会运用同底数幂的乘法公式进行计算,对公式中字母所表示“数”的各种可能情形应有充分的认识,并能与加减运算加以区分;了解公式的逆向运用;教学重点:同底数幂的乘法法则教学难点:底数的不同情形,尤其是底数为多项式时的变号过程一、复习提问1.乘方的意义:求n 个相同因数a 的积的运算叫乘方2.指出下列各式的底数与指数:(1)3 4;(2)a 3;(3)(a+b) 2;(4)(-2) 3;(5)-2 3.其中,(-2) 3与-2 3的含义是否相同?结果是否相等?(-2) 4与-24呢?二、讲授新课1.(课本95 页问题) 利用乘方概念计算:1015×103.2、计算观察,探索规律:完成课本第95 页的“探索”,学生“概括”a m× n m+na=⋯=a ;3、观察上式,找出其中包含的特征:左边的底数相同,进行乘法运算;右边的底数与左边相同,指数相加4、归纳法则:同底数的幂相乘,底数不变,指数相加。

三、实践应用例1 、计算:(1)x 2·x5 (2)a ·a6 (3) 2 ×24×23 (4) x m·x3m + 1练习:1. 课本第96 页:(学生板演过程,写出中间步骤以体现应用法则)2.随堂巩固:下面计算否正确?若不正确请加以纠正。

①a6·a6=2a62 4 6 2 4 8②a+a =a ③ a · a =a例 2 (1)填空:⑴若 x m+n ×x m-n =x 9;则 m=;(2)2m=16,2n=8,则 2m+n= 。

四、归纳小结1、同底数幂相乘的法则;2、法则适用于三个以上的同底数幂相乘的情形;3、相同的底数可以是单项式,也可以是多项式;4、要注意与加减运算的区别。

五、布置作业14.1.2 幂的乘方教学目标 :1、经历探索幂的乘方的运算性质的过程,进一步体会幂的意义;2、了解幂的乘方的运算性质,并能解决一些实际问题 .教学重点 :幂的乘方的运算性质及其应用 . 教学难点 :幂的运算性质的灵活运用 . 一:知识回顾1 .讲评作业中出现的错误2 .同底数幂的乘法的应用的练习:新课引入探究:根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律:引导学生归纳同底数幂的乘法法则: 幂的乘方,底数不变,指数相乘 . 即:(a m )n =a mn(m 、n 都是正整数).1) (32)3= 32 × 2 232 × 3 2= 2) (a 2)3= a 2 · 2 2 ﹝ a · a = a ﹝ 3) (a m )3 m = m ma · a = amm 4(a m )n = a a ﹝﹞n 个 mm mm m a = aa . mn可以转化为指数的乘法运观察结果,三、知识应用例题 :(1)(103)5;(2)(a 4)4; (3)(a m )2;(4)-( x 4)3; 说明:-( x 4)3表示( x 4)3的相反数练习:课本第 97 页 ( 学生黑板演板) 补充例题:2 3 2 6 3 4 2 31)(y 2)3· y (2)2(a 2)6-(a 3)4 (3)(ab 2)3(4) - ( - 2a 2b )4说明:(1) (y 2)3·y 中既含有乘方运算,也含有乘法运算,按运算顺序, 应先乘方,再做乘法,所以, (y 2)3·y = y2×3·y = y 6+1= y 7;(2) 2(a 2)6-(a 3)4按运算顺序应先算乘方,最后再化简.所以, 2(a 2)6 3 42× 6 3× 4 12 12 12-(a ) =2a × -a ×=2a -a =a . 四、 幂的乘方法则的逆用(1)x 13· x 7=x ( )=( 2m 2(2)a 2m = ( )2= ( 练习:1.已知 3×9n =37,求 n 的值. 2.已知 a 3n=5,b 2n=3,求 a 6nb 4n的值.3.设 n 为正整数,且 x 2n=2,求 9(x 3n)2的值.五、归纳小结小结:幂的乘方法则. 六、布置作业14.1.3 积的乘方教学目标 :1、经历探索积的乘方的运算性质的过程,进一步体会幂的意义;2、了解积的乘方的运算性质,并能解决一些实际问题.教学重点 :积的乘方的运算性质及其应用.mn m n n ma (a )(a ) .5 4 10) =( ) =( ) ;)m(m 为正整数).教学难点:积的乘方运算性质的灵活运用.由上面三个式子可以发现积的乘方的运算性质:积的乘方,等于把每一个因式分别乘方 , 再把所得的幂相乘. 即: ( ab) n=a n· b n、知识应用 例题 3 计算说明: (5)意在将 (ab) n =a n b n 推广,得到了 (abc) n =a n b n c n判断对错:下面的计算对不对?如果不对,应怎样改正?教学过程 : 、复习导入1.前面我们学习了同底数幂的乘法、幂的乘方这两个运算性质, 请同学们通过完成一组练习,来回顾一下这两个性质:2) 1)3)4) 1) (3×5)7——积的乘方=(3 5) (3 5)(3 5)——幂的意义7个 (3 5)=(3 33) × (5 5 5)——乘法交换结合律7个37个5=37×57;——乘方的意义2) (ab )2= (ab) · (ab) = (a · a) · (b · b) = a ( )b ( ) 3) (a 2b 3)3= (a 2b 3) 23 · ( a 2b 3·( a 2b 3) = (a 2 · a 2· a 2 ) ·(b 3 = a ( )4) ( ab) n=(ab) (ab) (ab)n 个 ab=(a a a a) ·(b bn 个a幂的意义nn=abbn 个b) 乘法交换律、结合律 乘方的意义1) (2a ) 3;2) (-5b)3; 3) ( xy 2 ) 2;4)(- 2 /3x 3)4. 5)( -2xy)46)(2×103)22.探索新知,讲授新课b 3·b 3)b( )练习:课本第98 页三、综合尝试补充例题:计算:(1)2)四、逆用公式:2)预备题:(1)例题:(1)0.12516·(-8)17;2)已知2m=3,2n=5,求23m+2n的值.注解):23m+2n=23m·22n=(2m) 3· (2 n) 2=33·52=27×25=675.五、布置作业14.1.4整式的乘法(单项式乘以单项式)教学目标:经历探索单项式与单项式相乘的运算法则的过程,会进行整式相乘的运算。

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案第一章:整式的乘法1.1 整式乘法的基本概念理解整式的定义及表示方法掌握整式乘法的基本原理1.2 整式的乘法法则学习整式乘法的基本法则练习整式乘法的计算方法1.3 多项式乘多项式理解多项式乘多项式的概念掌握多项式乘多项式的计算方法1.4 单项式乘多项式理解单项式乘多项式的概念掌握单项式乘多项式的计算方法第二章:平方差公式与完全平方公式2.1 平方差公式推导平方差公式练习应用平方差公式解题2.2 完全平方公式推导完全平方公式练习应用完全平方公式解题2.3 平方根与乘方理解平方根与乘方的概念掌握平方根与乘方的计算方法第三章:因式分解3.1 因式分解的概念理解因式分解的定义及意义掌握因式分解的基本方法3.2 提取公因式法学习提取公因式法的方法练习提取公因式法解题3.3 公式法学习公式法的方法练习公式法解题3.4 分组分解法学习分组分解法的方法练习分组分解法解题第四章:应用题与综合练习4.1 应用题解法学习应用题的解法练习解决实际问题4.2 综合练习综合运用所学知识解决实际问题提高解题能力与思维水平第五章:复习与总结5.1 复习重点知识复习整式的乘法与因式分解的重点知识巩固所学内容5.2 总结全章内容总结整式的乘法与因式分解的主要概念和方法提高学生的综合运用能力第六章:多项式的乘法与除法6.1 多项式乘多项式理解多项式乘多项式的概念掌握多项式乘多项式的计算方法6.2 单项式乘多项式与多项式乘单项式理解单项式乘多项式与多项式乘单项式的概念掌握单项式乘多项式与多项式乘单项式的计算方法6.3 多项式除以单项式理解多项式除以单项式的概念掌握多项式除以单项式的计算方法6.4 多项式除以多项式理解多项式除以多项式的概念掌握多项式除以多项式的计算方法第七章:分式与分式方程7.1 分式的概念与性质理解分式的定义及表示方法掌握分式的基本性质7.2 分式的运算学习分式的运算规则练习分式的计算方法7.3 分式方程理解分式方程的定义及解法掌握解分式方程的方法7.4 应用题与综合练习学习解决实际问题中涉及分式与分式方程的问题提高解决实际问题的能力第八章:二次三项式的因式分解8.1 二次三项式的概念理解二次三项式的定义及表示方法掌握二次三项式的性质8.2 二次三项式的因式分解学习二次三项式的因式分解方法练习二次三项式的因式分解技巧8.3 应用题与综合练习学习解决实际问题中涉及二次三项式的因式分解的问题提高解决实际问题的能力第九章:方程的解法与应用9.1 方程的解法学习方程的解法掌握解一元二次方程的方法9.2 方程的应用理解方程在实际问题中的应用练习解决实际问题中涉及方程的问题9.3 应用题与综合练习学习解决实际问题中涉及方程的问题提高解决实际问题的能力第十章:复习与总结10.1 复习重点知识复习本章的重点知识巩固所学内容10.2 总结全章内容总结本章的主要概念和方法提高学生的综合运用能力重点和难点解析1. 整式乘法的基本概念和原理:理解整式乘法的定义和表示方法,掌握整式乘法的原理是学习整式乘法的基础,需要重点关注。

人教版八年级上数学说课稿《第14章整式的乘法与因式分解》

人教版八年级上数学说课稿《第14章整式的乘法与因式分解》

人教版八年级上数学说课稿《第14章整式的乘法与因式分解》一. 教材分析《人教版八年级上数学》第14章整式的乘法与因式分解,是在学生掌握了有理数的运算、整式的加减、幂的运算等知识的基础上进行学习的。

这一章的内容包括整式的乘法运算、平方差公式、完全平方公式、因式分解等。

整式的乘法与因式分解在数学中占有重要的地位,它不仅在初中数学中有着广泛的应用,而且对高中数学的学习也有很大的帮助。

二. 学情分析八年级的学生已经具备了一定的数学基础,对整式的加减、幂的运算等知识有一定的了解。

但是,学生在学习这一章的内容时,可能会觉得比较困难,因为这一章的内容既有运算,又有公式的记忆,还有因式分解的方法,需要学生对知识进行深入的理解和掌握。

三. 说教学目标1.知识与技能目标:使学生掌握整式的乘法运算,理解并掌握平方差公式、完全平方公式,学会因式分解的方法。

2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学的美。

四. 说教学重难点1.教学重点:整式的乘法运算,平方差公式、完全平方公式的记忆,因式分解的方法。

2.教学难点:平方差公式、完全平方公式的推导,因式分解的方法的灵活运用。

五. 说教学方法与手段在本节课的教学中,我将采用自主学习、合作交流、教师讲解等教学方法。

同时,利用多媒体教学手段,如PPT、网络资源等,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过复习整式的加减、幂的运算等知识,引导学生进入整式的乘法与因式分解的学习。

2.教学新课:讲解整式的乘法运算,引导学生推导平方差公式、完全平方公式,教授因式分解的方法。

3.练习巩固:布置相关的练习题,让学生进行自主练习,巩固所学知识。

4.课堂小结:对本节课的内容进行总结,帮助学生加深对知识的理解。

5.布置作业:布置适量的作业,让学生在课后进行复习和巩固。

人教版八年级上册第十四章《整式的乘法与因式分解》14.1.4整式的乘法(教案)

人教版八年级上册第十四章《整式的乘法与因式分解》14.1.4整式的乘法(教案)
-例如:5x * (2x + 3) = 10x^2 + 15x,强调5x要分别与2x和3相乘。
-多项式乘以多项式的分配律综合应用:一个多项式的每一项乘以另一个多项式的每一项,并将结果相加。
-例如:(x + 3) * (x + 4) = x^2 + 4x + 3x + 12,强调每一项都要相乘并相加。
五、教学反思
今天我们在课堂上学习了整式的乘法,回顾整个教学过程,我觉得有几个地方值得反思和改进。
首先,我发现学生在理解整式乘法的基本概念时,对分配律的应用还不够熟练。在单项式乘以多项式的例子中,部分同学容易忽略对常数项的乘法,导致答案出错。针对这个问题,我考虑在下一节课中增加一些基础练习,让学生反复练习分配律的应用,帮助他们更好地掌握这个重点。
-将实际问题转化为整式乘法运算:学生需要掌握如何将实际问题的描述转化为数学表达式,并运用整式乘法进行计算。
-例如:将矩形的面积计算问题转化为(x + 2) * (x + 3)的乘法运算。
在教学过程中,教师应针对这些重点和难点,通过直观的示例、反复的练习和及时的反馈,帮助学生理解并掌握整式乘法的核心知识,确保学生能够透彻理解和正确应用。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式乘法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对整式乘法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案

整式的乘法与因式分解全章教案一、教学目标:1. 理解整式乘法的基本概念和方法,能够熟练进行整式的乘法运算。

2. 掌握因式分解的基本原理和方法,能够对简单的一元二次方程进行因式分解。

3. 能够应用整式的乘法与因式分解解决实际问题。

二、教学内容:1. 整式乘法的基本概念和方法。

2. 整式乘法的运算规则。

3. 因式分解的基本原理和方法。

4. 因式分解的运算规则。

5. 应用整式的乘法与因式分解解决实际问题。

三、教学重点与难点:1. 整式乘法的运算规则。

2. 因式分解的方法和技巧。

3. 应用整式的乘法与因式分解解决实际问题。

四、教学方法:1. 采用讲解法,讲解整式乘法与因式分解的基本概念和方法。

2. 采用示范法,示范整式乘法与因式分解的运算过程。

3. 采用练习法,让学生通过练习来巩固所学知识。

4. 采用问题解决法,引导学生应用整式的乘法与因式分解解决实际问题。

五、教学准备:1. 教案、教材、PPT等教学资源。

2. 练习题、测试题等教学资料。

3. 教学黑板、粉笔等教学工具。

4. 投影仪、电脑等教学设备。

六、教学进程:1. 导入:通过复习整式的加减法,引出整式乘法的重要性,激发学生的学习兴趣。

2. 讲解:讲解整式乘法的基本概念和方法,重点讲解运算规则。

3. 示范:示范整式乘法的运算过程,让学生理解并掌握运算规则。

4. 练习:布置练习题,让学生通过练习巩固所学知识。

5. 总结:对本节课的内容进行总结,强调整式乘法的重要性。

七、作业布置:1. 完成练习题,巩固整式乘法的运算规则。

2. 预习下一节课的内容,为学习因式分解做准备。

八、课堂反馈:1. 课堂提问:通过提问了解学生对整式乘法的掌握情况。

2. 练习批改:及时批改学生的练习题,指出错误并给予讲解。

3. 学生反馈:听取学生的意见和建议,调整教学方法。

九、课后反思:1. 总结本节课的教学效果,反思教学方法的优缺点。

2. 根据学生的反馈,调整教学策略,提高教学质量。

整式的乘法与因式分解教案

整式的乘法与因式分解教案

整式的乘法与因式分解教案一、整式的乘法1.1 基本概念整式是由常数和变量按照一定的规律组成的代数式,例如3x2+2xy−5就是一个整式。

整式的乘法就是将两个或多个整式相乘的运算。

1.2 乘法法则整式的乘法法则有以下几种:1.2.1 乘法分配律对于任意的整数a,b,c,有a(b+c)=ab+ac。

例如:2(x+3)=2x+6。

1.2.2 乘法结合律对于任意的整数a,b,c,有(ab)c=a(bc)。

例如:(2x)(3y)=(2⋅3)(x⋅y)=6xy。

1.2.3 乘法交换律对于任意的整数a,b,有ab=ba。

例如:2x⋅3y=3y⋅2x。

1.3 例题解析例题1将(2x+3)(x−4)相乘。

解:按照乘法分配律展开,得到:(2x+3)(x−4)=2x⋅x+2x⋅(−4)+3⋅x+3⋅(−4)=2x2−5x−12例题2将(3x2−2xy+5)(x+2y)相乘。

解:按照乘法分配律展开,得到:(3x2−2xy+5)(x+2y)=3x2⋅x+3x2⋅(2y)−2xy⋅x−2xy⋅(2y)+5⋅x+5⋅(2y)=3x3+4xy2+5x−4y2x+10y二、整式的因式分解2.1 基本概念整式的因式分解就是将一个整式分解成若干个整式的乘积的形式,例如6x2+9x可以分解成3x(2x+3)的形式。

2.2 因式分解法则整式的因式分解法则有以下几种:2.2.1 公因式法如果一个整式的每一项都有一个公因式,那么可以将这个公因式提取出来,得到一个公因式和一个新的整式,再对新的整式进行因式分解。

例如:6x2+9x可以提取出3x,得到3x(2x+3)。

2.2.2 分组分解法如果一个整式中有两个或多个项可以分成一组,那么可以将这些项分成一组,然后将每组的公因式提取出来,得到一个公因式和一个新的整式,再对新的整式进行因式分解。

例如:3x2+5xy+2y2可以分成(3x2+3xy)+(2xy+2y2),然后提取出公因式得到3x(x+y)+2y(x+y),再将公因式(x+y)提取出来,得到(x+y)(3x+2y)。

整式的乘法与因式分解全章教案(最新整理)

整式的乘法与因式分解全章教案(最新整理)

十四章整式的乘除与因式分解14.1.1同底数幂的乘法教学目标1.知识与技能在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.2.过程与方法经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.3.情感、态度与价值观在小组合作交流中,培养协作精神、探究精神,增强学习信心.重、难点与关键1.重点:同底数幂乘法运算性质的推导和应用.2.难点:同底数幂的乘法的法则的应用.3.关键:幂的运算中的同底数幂的乘法教学,要突破这个难点, 必须引导学生,循序渐进,合作交流,获得各种运算的感性认识,进而上各项到理性上来,提醒学生注意-a2与(-a)2的区别.教学方法采用“情境导入──探究提升”的方法,让学生从生活实际出发,认识同底数幂的运算法则.教学过程一、创设情境,故事引入【情境导入】“盘古开天壁地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.【教师提问】盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒, 你能计算出地球距离太阳大约有多远呢?【学生活动】开始动笔计算,大部分学生可以列出算式:3×105×5×102=15 ×105×102=15×?(引入课题)【教师提问】到底105×102=?同学们根据幂的意义自己推导一下,现在分四人小组讨论.【学生活动】分四人小组讨论、交流,举手发言,上台演示. 计算过程:105×102=(10×10×10×10×10)×(10×10) =10×10×10×10×10×10×10=107【教师活动】下面引例.1.请同学们计算并探索规律.(1)23×24=(2×2×2)×(2×2×2×2)=2( );(2)53×54=_____________=5( );(3)(-3)7×(-3)6=___________________=(-3)( );(4)(110)3×(110)=___________=(110)( ); (5)a 3·a 4=________________a ( ).提出问题:①这几道题目有什么共同特点?②请同学们看一看自己的计算结果,想一想,这些结果有什么规律?【学生活动】独立完成,并在黑板上演算.【教师拓展】计算a·a=?请同学们想一想.【学生总结】a·a=()()()()m a a m n aa a a a a a a a a a +=A A A A A A A A A A A A A A个n 个个=a m+n 这样就探究出了同底数幂的乘法法则.二、范例学习,应用所学【例】计算:(1)103×104; (2)a·a 3; (3)a·a 3·a 5; (4)x·x 2+x 2·x【思路点拨】(1)计算结果可以用幂的形式表示.如(1)103×104=103+4=107,但是如果计算较简单时也可以计算出得数.(2)注意a 是a 的一次方, 提醒学生不要漏掉这个指数1,x 3+x 3得2x 3,提醒学生应该用合并同类项.(3)上述例题的探究, 目的是使学生理解法则,运用法则,解题时不要简化计算过程,要让学生反复叙述法则.【教师活动】投影显示例题,指导学生学习.【学生活动】参与教师讲例,应用所学知识解决问题.三、随堂练习,巩固深化课本练习题.【探研时空】据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34×1019个水分子,那么,每个人每年要用去多少个水分子?四、课堂总结,发展潜能1.同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系, 使用方法:乘积中,幂的底数不变,指数相加.2.应用时可以拓展,例如含有三个或三个以上的同底数幂相乘,仍成立, 底数和指数,它既可以取一个或几个具体数,由可取单项式或多项式.3.运用幂的乘法运算性质注意不能与整式的加减混淆.五、布置作业,专题突破1.课本P96习题14.1第1(1),(2),2(1)题.2.选用课时作业设计.板书设计14.1.1同底数幂的乘法1、同底数幂的乘法法则例:练习:教学反思本节课的教学过程是探索发现性学习过程,注意同底数幂的乘法法则的推导过程,而不单单是要求记住结论,在导出的过程中,从具体到抽象,有层次地进行概括,归纳推理,学生不是被动地接受,而是在已有经验的基础上创新,从而培养学生的动手能力和创新意识.14.1.2 幂的乘方教学目标1.知识与技能理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.2.过程与方法经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.3.情感、态度与价值观培养学生合作交流意义和探索精神,让学生体会数学的应用价值.重、难点与关键1.重点:幂的乘方法则.2.难点:幂的乘方法则的推导过程及灵活应用.3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导, 要求对性质深入地理解.教学方法采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则.教学过程一、创设情境,导入新知【情境导入】大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你, 木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么, 请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=43πr3)【学生活动】进行计算,并在黑板上演算.解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为V木星=43π·(102)3=?(引入课题).【教师引导】(102)3=?利用幂的意义来推导.【学生活动】有些同学这时无从下手.【教师启发】请同学们思考一下a3代表什么?(102)3呢?【学生回答】a3=a×a×a,指3个a相乘.(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×102×102=102+2+2=106, 因此(102)3=106.【教师活动】下面有问题:利用刚才的推导方法推导下面几个题目:(1)(a2)3;(2)(24)3;(3)(b n)3;(4)-(x2)2.【学生活动】推导上面的问题,个别同学上讲台演示.【教师推进】请同学们根据所推导的几个题目,推导一下(a)的结果是多少?【学生活动】归纳总结并进行小组讨论,最后得出结论:(a m)n== a mn.评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.二、范例学习,应用所学【例】计算:(1)(103)5;(2)(b3)4;(3)(x n)3;(4)-(x7)7.【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.【教师活动】启发学生共同完成例题.【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则:解:(1)(103)5=103×5=1015;(3)(x n)3=x n×3=x3n;(2)(b3)4=b3×4=b12;(4)-(x7)7=-x7×7=-x49.三、随堂练习,巩固练习课本P97练习.【探研时空】计算:-x2·x2·(x2)3+x10.【教师活动】巡视、关注中等、中下的学生,媒体显示练习题.【学生活动】书面练习、板演.四、课堂总结,发展潜能1.幂的乘方(a m)n=a mn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,可以是字母, 也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”, 一个是“指数相加”.五、布置作业,专题突破课本P104习题14.1第1、2题.板书设计14.1.2 幂的乘方1、幂的乘方的乘法法则例:练习:教学反思由于幂的乘方较抽象,引入课题时也可以从国情教育引入,搜集关于希望工程的图片展示给学生,如:有一个棱长为102cm的正方体,我们计算一下,可以装长为20cm,宽为15cm,厚为2cm的书多少本?14.1.3 积的乘方教学目标1.知识与技能通过探索积的乘方的运算性质,进一步体会和巩固幂的意义,在推理得出积的乘方的运算性质的过程中,领会这个性质.2.过程与方法经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.3.情感、态度与价值观通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.重、难点与关键1.重点:积的乘方的运算.2.难点:积的乘方的推导过程的理解和灵活运用.3.关键:要突破这个难点,教师应该在引导这个推导过程时,步步深入, 层层引导,而不该强硬地死记公式,只有在理解的情况下,才可以对积的乘方的运算性质灵活地应用.教学方法采用“探究──交流──合作”的方法,让学生在互动中掌握知识.教学过程一、回顾交流,导入新知【教师活动】提问学生在前面学过的同底数幂的运算法则;幂的乘方运算法则的内容以及区别.【学生活动】踊跃举手发言,解说老师的提问.【课堂演练】计算:(1)(x4)3(2)a·a5(3)x7·x9(x2)3【学生活动】完成上面的演练题,并从中领会这两个幂的运算法则.【教师活动】巡视,关注学生的练习,并请3位学生上台演示, 然后再提出下面的问题.同学们思考怎样计算(2a3)4,每一步的根据是什么?【学生活动】先独立完成上面的问题,再小组讨论.(2a3)4=(2a3)·(2a3)·(2a3)·(2a3)(乘方的含义)=(2·2·2·2)·(a3·a3·a3·a3)(乘法交换律、结合律)=24·a12(乘方的意义与同底数幂的乘法运算)=16a12【教师活动】提出应用以上分析问题的过程,再计算(ab)4,说出每一步的根据是什么?【学生活动】独立思考之后,再与同学交流.(ab)4=(ab)·(ab)·(ab)·(ab)(乘方的含义)=(aaaa)·(bbbb)(交换律、结合律)=a4·b4(乘方的含义)【教师提问】(1)请同学们通过计算,观察乘方结果之后, 你能得出什么规律?(2)如果设n为正整数,将上式的指数改成n,即:(ab)n,其结果是什么?【学生活动】回答出(ab)n=a n b n.【师生共识】我们得到了积的乘方法则:(ab)n=a n b n(n为正整数),这就是说,积的乘方等于积的每个因式分别乘方,再把所得的幂相乘.(ab)n==a n b n【教师活动】拓展训练:三个或三个以上的积的乘方,如(abc)n,【学生活动】回答出结果是(abc)n =a n b n c n.二、范例学习,应用所学【例】计算:(1)(2b)3;(2)(2×a3)2;(3)(-a)3;(4)(-3x)4.【教师活动】组织、讲例、提问.【学生活动】踊跃抢答.三、随堂练习,巩固深化课本P98练习.【探研时空】计算下列各式:(1)(-35)2·(-35)3;(2)(a-b)3·(a-b)4;(3)(-a5)5;(4)(-2xy)4;(5)(3a2)n;(6)(xy3n)2-[(2x)2] 3;(7)(x4)6-(x3)8;(8)-p·(-p)4;(9)(t m)2·t;(10)(a2)3·(a3)2.四、课堂总结,发展潜能本节课注重课堂引入,激发学生兴趣,“良好开端等于成功一半”.1.积的乘方(ab)n=a n b n(n是正整数),使用范围:底数是积的乘方.方法:把积的每一个因式分别乘方,再把所得的幂相乘.2.在运用幂的运算法则时,注意知识拓展,底数和指数可以是数, 也可以是整式,对三个以上因式的积也适用.3.要注意运算过程,注意每一步依据,还应防止符号上的错误.4.在建构新的法则时应注意前面学过的法则与新法则的区别和联系.五、布置作业,专题突破1.课本P104习题15.1第1、2题.板书设计14.1.3 积的乘方1、积的乘方的乘法法则例:练习:教学反思计算(-2x)3学生易错误得出-2x3,本题错误在于:括号内应看成-2·x两个因式,而上述结论显然结积的乘方意义缺乏理解,-2漏乘方,正确的应是(-2)3·x3=-8x3.14.1.4 单项式乘以单项式教学目标1.知识与技能理解整式运算的算理,会进行简单的整式乘法运算.2.过程与方法经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.3.情感、态度与价值观培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.重、难点与关键1.重点:单项式乘法运算法则的推导与应用.2.难点:单项式乘法运算法则的推导与应用.3.关键:通过创设一定的问题情境, 推导出单项式与单项式相乘的运算法则,可以采用循序渐进的方法突破难点.教学方法采用“情境──探究”的教学方法,让学生在创设的情境之中自然地领悟知识.教学过程一、创设情境,操作导入【手工比赛】让学生在课前准备一张自己最满意的照片,自己制作一个美丽的像框.上课之后,首先来做游戏,“才艺大献”,把自己的照片加一个美丽的像框,看谁在10分钟之内,可以装饰出美丽的照片,谁的最好,老师就送他个好礼物.【教师活动】组织学生参加“才艺比赛”.【学生活动】完成上述手工制作,与同伴交流.【教师引导】在学生完成之后,教师拿出一张美丽的风景照片,提出问题:你们看这幅美丽的风景图片,如何装饰它会更漂亮?【学生回答】加一个美丽的像框.【引入课题】假如要加一个美丽的像框,需要知道这幅图片的大小,现在告诉你,图片的长为mx,宽为x,你能计算出图片的面积吗?【学生活动】动手列式,图片的面积为mx·x=?【教师提问】对于mx·x=?的问题,前面我们已学习了乘法的运算律以及幂的运算法则,现在请你运用已学知识推导出它的结果.【学生活动】先独立思考,再与同伴交流.实际上mx·x=m(x·x)=m·x2=mx2.【拓展延伸】请同学们继续计算mx·54x=?【学生活动】先独立完成,再与同伴交流,踊跃上台演示.mx·54x=m·54x·x=m·54x2=54mx2.【教师活动】请部分学生上台演示,然后大家共同讨论.【继续探究】计算:(1)x·mx;(2)2a2b·3ab3;(3)(abc)·b2c.【学生活动】独立完成,再与同学交流.【教师活动】总结新知:我们根据自己做的题目的原则,得到单项式与单项式相乘的运算法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,放在积的因式中.二、范例学习,应用所学【例1】计算.(1)3x2y·(-2xy3)(2)(-5a2b3)·(-4b2c)【思路点拨】例1的两个小题,可先利用乘法交换律、 结合律变形成数与数相乘,同底数幂与同底数幂相乘的形式,单独一个字母照抄.【例2】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103米/秒, 则卫星运行3×102秒所走的路程约是多少?【教师活动】:引导学生参与到例1,例2的解决之中.【学生活动】参与到教师的讲例之中,巩固新知.三、问题讨论,加深理解【问题牵引】1.a·a可以看作是边长为a的正方形的面积,a·ab又怎样理解呢?2.想一想,你会说明a·b,3a·2a以及3a·5ab的几何意义吗?【教师活动】问题牵引,引导学生思考,提问个别学生.【学生活动】分四人小组,合作学习.四、随堂练习,巩固深化课本P145练习第1、2题.五、课堂总结,发展潜能本节内容是单项式乘以单项式,重点是放在对运算法则的理解和应用上.提问:(1)请同学们归纳出单项式乘以单项式的运算法则.(2)在应用单项式乘以单项式运算法则时应注意些什么?六、布置作业,专题突破1.课本P149习题15.1第3题.2.选用课时作业设计.板书设计14.1.4 单项式乘以单项式1、单项式乘以单项式的乘法法则例:练习:教学反思【思路点拨】对于单项式与单项式相乘的应用问题,首先要依据题意,列出算式,含10的幂相乘同样用单项式与乘法法则进行计算,还应将所得的结果用科学记数法表示.14.1.5 单项式与多项式相乘教学目标1.知识与技能让学生通过适当尝试,获得一些直接的经验,体验单项式与多项式的乘法运算法则,会进行简单的整式乘法运算.2.过程与方法经历探索单项式与多项式相乘的运算过程,体会乘法分配律的作用和转化思想,发展有条理地思考及语言表达能力.3.情感、态度与价值观培养良好的探究意识与合作交流的能力,体会整式运算的应用价值.重、难点与关键1.重点:单项式与多项式相乘的法则.2.难点:整式乘法法则的推导与应用.3. 关键:应用乘法分配律把单项式与多项式相乘转化到单项式与单项式相乘上来,注意知识迁移.教学方法采用“情境──探究”教学方法,让学生直观地理解单项式与多项式相乘的法则.教学过程一、回顾交流,课堂演练1.口述单项式乘以单项式法则.2.口述乘法分配律.3.课堂演练,计算:(1)(-5x)·(3x)2(2)(-3x)·(-x)(3)1 3xy·23xy2(4)-5m2·(-13mn)(5)-15x4y6-2x2y·(-12x2y5)【教师活动】组织练习,关注中下水平的学生.【学生活动】先独立完成上述“演练题”,再相互交流,部分学生上台演示.二、创设情境,引入新课小明作了一幅水彩画,所用纸的大小如图1,她在纸的左右两边各留了16a米的空白,请同学们列出这幅画的画面面积是多少?【学生活动】小组合作,讨论.【教师活动】在学生讨论的基础上,提问个别学生.【情境问题2】夏天将要来临,有3家超市以相同价格n (单位:元/台)销售A牌空调,他们在一年内的销售量(单位:台)分别是x,y,z, 请你采用不同的方法计算他们在这一年内销售这种空调的总收入.【学生活动】分四人小组,与同伴交流,寻求不同的表示方法.方法一:首先计算出这三家超市销售A牌空调的总量(单位:台), 再计算出总的收入(单位:元).即:n(x+y+z).方法二:采用分别计算出三家超市销售A牌空调的收入, 然后再计算出他们的总收入(单位:元).即:nx+ny+nz.由此可得:n(x+y+z)=nx+ny+nz.【教师活动】引导学生在不同的代数式呈现中,找到规律:单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加.三、范例学习,应用所学【例1】计算:(-2a2)·(3ab2-5ab3).解:原式=(-2a2)(3ab2)-(-2a2)·(5ab3)=-6a3b2+10a3b3【例2】化简:-3x2·(13xy-y2)-10x·(x2y-xy2)解:原式=-x3y+3x2y2-10x3y+10x2y2=-11x3y+13x2y2【例3】解方程:8x(5-x)=19-2x(4x-3)40x-8x2=19-8x2+6x40x-6x=1934x=19x=1934四、随堂练习,巩固深化课本P146练习.【探研时空】计算:(1)5x2(2x2-3x3+8)(2)-16x(x2-3y)(3)-2a2(12ab2+b4)(4)(23x2y3-16xy)·12xy2【教师活动】巡视,关注中差生.五、课堂总结,发展潜能1.单项式与多项式相乘法则:单项式与多项式相乘, 就是用单项式去乘多项式的每一项,再把所得的积相加.2.单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号”.六、布置作业,专题突破课本P104习题14.1第4、6题.板书设计14.1.5 单项式乘以多项式1、单项式乘以多项式的乘法法则例:练习:教学反思教学中,应紧扣法则,注意多项式的各项是带着前面的符号的.在实施“情境──探究”教学过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神.14.1.6 多项式与多项式相乘教学目标1.知识与技能让学生理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.2.过程与方法经历探索多项式与多项式相乘的运算法则的推理过程,体会其运算的算理.3.情感、态度与价值观通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯.重、难点与关键1.重点:多项式与多项式的乘法法则的理解及应用.2.难点:多项式与多项式的乘法法则的应用.3. 关键:多项式的乘法应先转化为单项式与多项式相乘而后再应用已学过的运算法则解决.教学方法采用“情境──探索”教学方法,让学生在设置的情境中,通过操作感知多项式与多项式乘法的内涵.教学过程一、创设情境,操作感知【动手操作】首先,在你的硬纸板上用直尺画出一个矩形,并且分成如下图1 所示的四部分,标上字母.【学生活动】拿出准备好的硬纸板,画出上图1,并标上字母.【教师活动】要求学生根据图中的数据,求一下这个矩形的面积.【学生活动】与同伴交流,计算出它的面积为:(m+b)×(n+a).【教师引导】请同学们将纸板上的矩形沿你所画竖着的线段将它剪开,分成如下图两部分,如图2.剪开之后,分别求一下这两部分的面积,再求一下它们的和.【学生活动】分四人小组,合作探究,求出第一块的面积为m (n+a),第二块的面积为b(n+a),它们的和为m(n+a)+b(n+a).【教师活动】组织学生继续沿着横的线段剪开,将图形分成四部分,如图3, 然后再求这四块长方形的面积.【学生活动】分四人小组合作学习,求出S1=mn;S2=nb;S3=am;S4=ab, 它们的和为S=mn+nb+am+ab.【教师提问】依据上面的操作,求得的图形面积,探索(m+b)(n+a)应该等于什么?【学生活动】分四人小组讨论,并交流自己的看法.(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab,因为我们三次计算是按照不同的方法对同一个矩形的面积进行了计算,那么,两次的计算结果应该是相同的,所以(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.【师生共识】多项式与多项式相乘,用第一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.字母呈现:=ma+mb+na+nb.二、范例学习,应用所学【例1】计算:(1)(x+2)(x-3)(2)(3x-1)(2x+1)【例2】计算:(1)(x-3y)(x+7y)(2)(2x+5y)(3x-2y)【例3】先化简,再求值:(a-3b)2+(3a+b)2-(a+5b)2+(a-5b)2,其中a=-8,b=-6.【教师活动】例1~例3,启发学生参与到例题所设置的计算问题中去.【学生活动】参与其中,领会多项式乘法的运用方法以及注意的问题.三、随堂练习,巩固新知课本P148练习第1、2题.【探究时空】一块长m米,宽n米的玻璃,长宽各裁掉a 米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?四、课堂总结,发展潜能1.多项式与多项式相乘, 应充分结合导图中的问题来理解多项式与多项式相乘的结果,利用乘法分配律来理解(m+n)与(a+b)相乘的结果,导出多项式乘法的法则.2.多项式与多项式相乘,第一步要先进行整理, 在用一个多项式的每一项去乘另一个多项式的每一项时,要“依次”进行,不重复,不遗漏,且各个多项式中的项不能自乘,多项式是几个单项式的和,每一项都包括前面的符号,在计算时要正确确定积中各项的符号.五、布置作业,专题突破课本P104习题14.1第5、6、7(2)、9、10题.板书设计14.1.6 多项式乘以多项式1、多项式乘以多项式的乘法法则例:练习:教学反思在实施情境探究教学过程中,应注意让学生感知问题的生成、发展与变化,培养学生善于发现的科学精神以及合作交流的精神和创新意识.14.2.1平方差公式(二)教学目标1.知识与技能探究平方差公式的应用,熟练地应用于多项式乘法之中.2.过程与方法经历平方差公式的运用过程,体会平方差公式的内涵.3.情感、态度与价值观培养良好的运算能力,以及观察事物的特征的能力,感受到学习数学知识的实际价值.重、难点与关键1.重点:运用平方差公式进行整式计算.2.难点:准确把握运用平方差公式的特征.3.关键:弄清平方差公式的结构特点,左边:(1)两个二项式的积;(2) 两个二项式中一项相同,另一项互为相反数.右边:(1)二项式;(2)两个因式中相同项平方减去互为相反数的项的平方.教学方法采用“精讲.精练”分层递推的教学方法,让学生在训练中,熟练掌握平方差的特征.教学过程一、回顾交流,课堂演练1.用平方差公式计算:(1)(-9x-2y)(-9x+2y)(2)(-0.5y+0.3x)(0.5y+0.3x)(3)(8a2b-1)(1+8a2b)(4)20082-2009×20072.计算:(a+12b)(a-12b)-(3a-2b)(3a+2b)【教师活动】请部分学生上讲台“板演”,然后组织学生交流.【学生活动】先独立完成课堂演练,再与同学交流.二、范例学习,巩固深化【例1】计算:(1)(34y+212x)(212x-34y);(2)(-56x-0.7a2b)(56x-0.7a2b);(3)(2a-3b)(2a+3b)(4a2+9b2)(16a4+81b4).解:(1)原式=(52x+34y)(52x-34y)=2259416x y2(2)原式=(-0.7a2b-56x)(-0.7a2b+56x)=(-0.7a 2b )2-(56x )2=0.4 9a 4b 2-2536x 2 (3)原式=(4a 2-9b 2)(4a 2+9b 2)(16a 4+81b 4)=(16a 4-81b 4)(16a 4+81b 4)=256a 8-6561b 8【例2】运用乘法公式计算:734×814 【思路点拨】因为734可改写为8-14,814可改写成8+14,这样可用平方差公式计算.解:734×814=(8-14)(8+14)=82-(14)2=64-116=631516. 【教师活动】边讲例边引导学生学会应用平方差公式.【学生活动】参与到例1~2的学习中去.三、课堂演练,拓展思维【演练题1】想一想:(1)计算下列各组算式,并观察它们的共同特征.68?1315?6163?5961?77?1414?6262?6060?⨯=⨯=⨯=⨯=⎧⎧⎧⎧⎨⎨⎨⎨⨯=⨯=⨯=⨯=⎩⎩⎩⎩(2)从以上的过程中,你能寻找出什么规律?(3)请你用字母表现你所发现的规律,并得出结论.【演练题2】1.计算:(1)118×122 (2)105×95 (3)1007×9932.求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.【教师活动】组织学生进行课堂演练,并适时归纳.【学生活动】先独立完成上面的演练题,再与同伴交流.四、随堂练习,巩固提升【探研时空】1.计算:[2a 2-(a+b )(a -b )][(-a -b )(-a+b )+2b 2];2.解不等式:(3x+4)(3x -4)<9(x -2)(x+3);3.利用平方差公式计算:1.97×2.03;4.化简求值:x 4-(1-x )(1+x )(1+x 2)其中x=-2.【教师活动】引导学生通过探究,领会平方差公式的真正意义. 【学生活动】分四人小组合作学习,互相交流.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.1.1同底数幂的乘法教学目标(一)知识与技能1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.(二)过程与方法1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.2.通过“同底数幂的乘法法则”的推导和应用,•使学生初步理解特殊──一般──特殊的认知规律.(三)情感与态度体味科学的思想方法,接受数学文化的熏陶,激发学生探索创新的精神.教学重点正确理解同底数幂的乘法法则.教学难点正确理解和应用同底数幂的乘法法则.教学方法透思探究教学法:利用学生已有的知识、经验对所学内容进行自主探究、发现,在对新知识的再创造和再发现的活动中培养学生的探索创新精神与创新能力.教具准备投影片(或多媒体课件).教学过程一.提出问题,创设情境复习a n的意义:a n表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,•n是指数.(出示投影片)提出问题:(出示投影片)问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算? [师]能否用我们学过的知识来解决这个问题呢?[生]运算次数=运算速度×工作时间所以计算机工作103秒可进行的运算次数为:1012×103.[师]1012×103如何计算呢?[生]根据乘方的意义可知1012×103=121010)⨯⨯个(10×(10×10×10)=15101010)⨯⨯⨯个(10=1015.[师]很好,通过观察大家可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法. 二.导入新课 1.做一做 出示投影片:你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.[师]根据乘方的意义,同学们可以独立解决上述问题. [生](1)25×22=(2×2×2×2×2)×(2×2) =27=25+2.因为25表示5个2相乘,;22表示2个2相乘,根据乘方的意义,同样道理可得 a 3·a 2=(a·a·a )·(a·a )=a 5=a 3+2. 5m ·5n = (555)⨯⨯⨯m 个5×(555)⨯⨯⨯n 个5=5m+n .(让学生自主探索,在启发性设问的引导下发现规律,并用自己的语言叙述). [生]我们可以发现下列规律:(一)这三个式子都是底数相同的幂相乘.(二)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和. 2.议一议 出示投影片[师生共析] a m ·a n 表示同底数幂的乘法.根据幂的意义可得: a m ·a n =()a aa m 个a·()a aa n 个a=a aa (m+n)个a=a m+n于是有a m ·a n =a m+n (m 、n 都是正整数),用语言来描述此法则即为: “同底数幂相乘,底数不变,指数相加”.[师]请同学们用自己的语言解释“同底数幂相乘,底数不变,指数相加”的道理,深刻理解同底数幂的乘法法则.[生]a m表示n个a相乘,a n表示n个a相乘,a m·a n表示m个a相乘再乘以n个a相乘,也就是说有(m+n)个a相乘,根据乘方的意义可得a m·a n=a m+n.[师]也就是说同底数幂相乘,底数不变,指数要降一级运算,变为相加.3.例题讲解出示投影片[师]我们先来看例1,是不是可以用同底数幂的乘法法则呢?[生1](1)、(2)、(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则. [生2](3)也可以,先算2个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.[师]同学们分析得很好.请自己做一遍.每组出一名同学板演,•看谁算得又准又快.生板演:(1)解:x2·x5=x2+5=x7.(2)解:a·a6=a1·a6=a1+6=a7.(3)解:2×24×23=21+4·23=25·23=25+3=28.(4)解:x m·x3m+1=x m+(3m+1)=x4m+1.[师]接下来我们来看例2.受(3)的启发,能自己解决吗?•与同伴交流一下解题方法.解法一:a m·a n·a p=(a m·a n)·a p=a m+n·a p=a m+n+p;解法二:a m·a n·a p=a m·(a n·a p)=a m·a n+p=a m+n+p.解法三:a m·a n·a p=a a am个a ·a a an个a·a a ap个a=a m+n+p.评析:解法一与解法二都直接应用了运算法则,同时还用了乘法的结合律;•解法三是直接应用乘方的意义.三种解法得出了同一结果.我们需要这种开拓思维的创新精神. [生]那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,•就一定是底数不变,指数相加.[师]是的,能不能用符号表示出来呢?[生]a m1·a m2·…·a mn=a m1+m2+mn[师]太棒了.那么例1中的第(3)题我们就可以直接应用法则运算了.2×24×23=21+4+3=28.三.随堂练习1.课本P166练习四.课时小结[师]这节课我们学习了同底数幂的乘法的运算性质,•请同学们谈一下有何新的收获和体会呢?[生]在探索同底数幂乘法的性质时,进一步体会了幂的意义.了解了同底数幂乘法的运算性质.[生]同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,•我觉得应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即a m·a n=a m+n(m、n是正整数).五.课后作业1.课本P175习题15.2─1.(1)、(2),2.(1)、8.课题:14.1.2幂的乘方【教学目标】:知识与技能目标:1、了解幂的乘方的运算性质,会进行幂的乘方运算;2、能利用幂的乘方的性质解决一些实际问题。

过程与分析目标:经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

【教学重点】:了解幂的乘方的运算性质,会进行幂的乘方、积的乘方运算【教学难点】:幂的乘方与同底数幂的乘法运算性质区别,发展推理能力和有条理的表达能力。

关键是利用教材内容安排的特点,把幂的乘方的学习与同底数幂的乘法紧密结合起来。

【教学过程】:一、回顾1、什么叫做乘方?什么叫幂?2、口述幂的乘法法则二、计算观察,探索规律做一做:根据乘方的意义及同底数幂的乘法填空:(1)(23)2=23×23=2();(2)(32)3=32×32×32=3();(3)(a3)4=a3•a3•a3•a3=a();提出问题:(1)同学们通过上述这几道题的计算?观察一下,这几道题目有什么共同特点?(2)请同学们看一看自己的计算结果,想一想,这些结果有什么规律?教师活动:组织学生进行思考与交流,让学生通过讨论、争议、探求出规律。

学生活动:书合作学习。

教学方法:合作探究点评:学生通过“做一做”以及探索规律,充分应用乘方的意义和同底数幂的乘法法则导出规律:()62323222==⨯,()==⨯32323362,()124343aaa==⨯。

提出问题:根据上述的探索所得的规律,完成下面的填空:()n m a=()a概括(am)n=个)(n mmm aaa⋅⋅⋅⋅⋅⋅⋅=a个+++nm...mm=amn有()mnnm aa=(m、n为正整数)教师活动:提出问题,引导、启发。

学生活动:自主探索、讨论、回答。

教学方法:合作交流。

点评:通过问题的提出,再依据“做一做”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动构建,获得新的知识:幂的乘方,底数不变,指数相篛。

三、举例应用:例2 计算:(1)(103)5 (2)(b3)4解:(1)(103)5=103×5=1015(2)(b3)4=b3×4=b12思路点拨:要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算。

四、随堂练习,巩固新知1、P74练习1、2题。

补充练习:()103222xxxx+••-思路点拨:准确应用幂的运算法则中的幂的乘法与幂的乘方,并注意这两者之间的区别。

五、作业布置:P75 习题14.1 第2、3题。

六、小结幂的乘方()mnnm aa=(m、n为正整数)使用范围是:幂的乘方。

方法:底数不变,指数相乘。

知识拓展:这里的底数、指数可以是数,也可以是字母,也可以是单项式和多项式。

幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,一个是“指数相加”。

14.1.3积的乘方教学目标(一)教学知识点1.经历探索积的乘方的运算法则的过程,进一步体会幂的意义.2.理解积的乘方运算法则,能解决一些实际问题.(二)能力训练要求1.在探究积的乘方的运算法则的过程中,发展推理能力和有条理的表达能力. 2.学习积的乘方的运算法则,提高解决问题的能力. (三)情感与价值观要求在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美. 重 点 积的乘方运算法则及其应用. 难 点 幂的运算法则的灵活运用. 教学过程一、顾与思考1、 口述同底数幂的运算法则。

2、 口述幂的乘方运算法则。

3、计算: (1) ()34x (2) a 2a • (3) 34x x •二、计算观察,探索规律做一做:(1)()2ab =(ab)·(ab)=(aa)·(bb)=()()b a(2) ()3ab = = =()()b a (3) ()4ab = = =()()b a提出问题:(1)同学们通过上述这几道题的计算 、观察一下,你能得到什么规律? (2)如果设n 为正整数,将上述的指数改成n 即:()nab ,其结果是什么呢?教师活动:提出问题,引导,启发。

学生活动:计算、观察、讨论、回答。

教学方法与媒体:投影显示问题,学生自主探索,讨论交流。

点评:积的乘方是幂的第三个运算法则,也是整式乘法的基础,在内空处理上仍然先通过数字的指数为例让学生计算,而后引导学生自主探索,讨论交流,归纳出一般指数情形的性质,即,概括出:(ab )n = 个)(n ab (ab)(ab)⋅⋅⋅⋅⋅⋅⋅=个)(n a a a ⋅⋅⋅⋅ • 个)(n b b b ⋅⋅⋅⋅= a n b n 有 (ab )n = a n b n (n 为正整数)尽可能地让学生主动建构,获得新知,通过脑筋,动口,动手提高自我总结能力。

相关文档
最新文档