华师大版八年级数学下册第六章 特殊平行四边形 测试题

合集下载

华师大版八年级下学期数学平行四边形单元测试卷(含参考答案和评分标准)

华师大版八年级下学期数学平行四边形单元测试卷(含参考答案和评分标准)

新华师大版八年级下册数学平行四边形单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 在四边形ABCD 中,CD AB //,再添加下列一个条件,四边形ABCD 不一定是平行四边形的是 【 】 (A )CD AB = (B )BC AD = (C )BC AD // (D )C A ∠=∠2. 如图所示,在□ABCD 中,︒=∠︒=∠115,25A DBC ,则=∠BDC 【 】 (A )︒25 (B )︒30 (C )︒40 (D )︒65第 2 题图ADBC第 3 题图EBACD3. 如图所示,在△ABC 中,BC AB A ⊥︒=∠,40,点D 在AC 边上,以CB 、CD 为边作□BCDE ,则E ∠的度数为 【 】 (A )︒40 (B )︒50 (C )︒60 (D )︒704. 如图所示,EF 过□ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若□ABCD 的周长是30,3=OE ,则四边形ABFE 的周长是 【 】 (A )18 (B )21 (C )24 (D )27第 4 题图F ODBCAE第 5题图5. 如图,在□ABCD 中,AB BE ⊥交对角线AC 于点E ,若︒=∠201,则2∠的度数为 【 】 (A )︒120 (B )︒100 (C )︒110 (D )︒906. 如图所示,□ABCD 的周长周长为24,AC 、BD 相交于点O ,BD OE ⊥交AD 于点E ,则△ABE 的周长为 【 】 (A )8 (B )10 (C )12 (D )16第 6 题图EODBCA第 7 题图FECABD7. 如图所示,在□ABCD 中,E 、F 是对角线BD 上不同的两点,若添加下列条件,不能得出四边形AECF 一定是平行四边形的为 【 】 (A )DF BE = (B )CE AF // (C )DCF BAE ∠=∠ (D )CF AE =8. 如图,平行四边形OABC 的顶点A 、C 的坐标分别为()0,5,()3,2,则顶点B 的坐标为 【 】 (A )()3,7 (B )()7,3 (C )()7,4 (D )()4,7yx第 8 题图BCAO第 9 题图9. 如图所示,已知□AOBC 的顶点()0,0O ,()2,1-A ,点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径作弧,分别交边OA 、OB 于点D 、E ;②分别以点D 、E 为圆心,大于DE 21的长为半径作弧,两弧交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为 【 】 (A )()2,5 (B )()2,53- (C )()2,25- (D )()2,15-第 15 题图EF CABDP10. 如图所示,在□ABCD 中,点E 、F 在对角线BD 上,连结AE 、CE 、CF 、AF ,添加下列条件中的一个:①DE BF =;②AF AE =;③CF AE =;④CFD AEB ∠=∠;⑤BD CF BD AE ⊥⊥,.其中,能使四边形AECF 为平行四边形的有 【 】 (A )2个 (B )3个 (C )4个 (D )5个第 10 题图FEDBCA第 11 题图D二、填空题(每小题3分,共15分)11. 如图,在□ABCD 中,AB CE ⊥,若︒=∠65D ,则=∠BCE _________.12. 已知□ABCD 的周长为10,对角线AC 、BD 交于点O ,△AOD 的周长比△AOB 的周长多1,则AB 的长为_________.13. 如图所示,四边形AEDF 是平行四边形,△CED 和△DFB 的周长分别为5和10,则△ABC 的周长为_________.第 13 题图F DABCE第 14 题图ADEBC14. 如图所示,在□ABCD 中,ABC ∠和BCD ∠的平分线交AD 边于同一点E ,且3,4==CE BE ,则AB 的长是_________.15. 如图所示,四边形ABCD 是平行四边形,点E 是CD 上一点,且EC BC =,BE CF ⊥交AB 于点 F ,P 是EB 延长线上的一点,下列结论:①BE 平分CBF ∠; ②CF 平分DCB ∠; ③BC BF =; ④PC PF =. 其中,正确结论的序号是__________.三、解答题(共75分)16.(9分)证明命题“一组对边平行且相等的四边形是平行四边形”,要根据题意,画出图形,并写出已知、求证、证明过程.下面是某同学根据题意画出的图形,并写出了不完整的已知和求证.已知: 如图所示,在四边形ABCD中,CDAB//,__________.求证:___________________________________.请补全已知和求证部分,并写出证明过程.DB CA17.(8分)已知:如图所示,在□ABCD中,点E是BC边的中点,连结DE并延长交AB边的延长线于点F.求证:BFAB .BC EA FD18.(9分)已知:如图所示,在□ABCD 中,点F 在AB 的延长线上,且AB BF =,连结FD ,交BC 于点E .(1)求证:△DCE ≌△FBE ; (2)若3=EC ,求AD 的长.FEDBCA19.(9分)如图所示,点B 、E 、C 、F 在同一条直线上,DE AC DF AB ==,,FC BE =. (1)求证:△ABC ≌△DFE ;(2)连结AF 、BD ,求证:四边形ABDF 是平行四边形.EDBFAC20.(9分)如图所示,AC 、BD 相交于点O ,BC AD CD AB //,//,E 、F 分别是OB 、OD 的中点.求证:四边形AFCE 是平行四边形.FEODBCA21.(10分)如图所示,已知︒=∠=∠90E B ,点B 、C 、F 、E 在一条直线上,EC BF DF AC ==,. 求证:四边形ACDF 是平行四边形.22.(10分)如图所示,在□ABCD 中,E 、F 分别是AB 、CD 的中点,DE 、BF 与对角线AC 分别交于点M 、N ,连结MF 、NE . (1)求证:BF DE //;(2)判断四边形MENF 是何特殊的四边形,并说明理由.NMEFCABD23.(11分)如图所示,在四边形ABCD 中,︒=∠90,//A BC AD ,12=AB ,21=BC ,16=AD .动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长度的速度向点D 运动,当点Q 到达点D 时另一个动点也随之停止运动.设运动的时间为t 秒.(1)填空:=AQ _________,=BP _________,(用含t 的代数式表示),t 的取值范围是__________;(2)设△DPQ 的面积为S ,用含t 的式子表示S ; (3)当=t _________时,PQ PD =;(4)当t 为何值时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形?DABCQP新华师大版八年级下册数学摸底试卷平行四边形单元测试卷 参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. ︒25 12. 2 13. 15 14. 2515. ①②③④ 部分题目答案提示9. 如图所示,已知□AOBC 的顶点()0,0O ,()2,1-A ,点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径作弧,分别交边OA 、OB 于点D 、E ;②分别以点D 、E 为圆心,大于DE 21的长为半径作弧,两弧交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为 【 】 (A )()2,5 (B )()2,53- (C )()2,25- (D )()2,15-第 9 题图解析 本题考查平行四边形的性质和尺规作图的原理,注意角平分线+平行线模型的识别.由尺规作图可知:OF 平分AOB ∠根据角平分线+平行线模型可知:AG OA = ∵()2,1-A∴()52122=+-=OA ∴5=AG ∵x AC //轴 ∴2==A G y y∵()51==--=-AG x x x G A G∴51=+G x ∴15-=G x∴点G 的坐标为()2,15-∴选择答案【 D 】.10. 如图所示,在□ABCD 中,点E 、F 在对角线BD 上,连结AE 、CE 、CF 、AF ,添加下列条件中的一个:①DE BF =;②AF AE =;③CF AE =;④CFD AEB ∠=∠;⑤BD CF BD AE ⊥⊥,.其中,能使四边形AECF 为平行四边形的有 【 】 (A )2个 (B )3个 (C )4个 (D )5个第 10 题图FEDBCA解析 本题主要考查平行四边形的性质以及判定.对于①DE BF =,连结AC ,交BD 于点O ,如图1所示.图 1∵四边形ABCD 为平行四边形 ∴OD OB OC OA ==, ∵DE BF =∴OE OD OF OB +=+ ∴OE OF =∵OF OE OC OA ==, ∴四边形AECF 是平行四边形.对于②AF AE =,不能确定四边形AECF 是平行四边形;对于③CF AE =,不能确定四边形AECF 是平行四边形;对于④CFD AEB ∠=∠,如图2所示.图 2∵CFD AEB ∠=∠ ∴21∠=∠∴CF AE //∵四边形ABCD 为平行四边形 ∴CD AB CD AB =,// ∴43∠=∠在△ABE 和△CDF 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CD AB CFD AEB 43 ∴△ABE ≌△CDF (AAS ) ∴CF AE =∵CF AE //,CF AE = ∴四边形AECF 是平行四边形. 对于⑤BD CF BD AE ⊥⊥,,如图3所示.图 3∵BD CF BD AE ⊥⊥, ∴CF AE //(在同一平面内,垂直于同一条直线的两条直线互相平行) 易证:△ABD ≌△CDB ∴CDB ABD S S ∆∆=∴CF BD AE BD ⋅=⋅2121 ∴CF AE =∵CF AE //,CF AE = ∴四边形AECF 是平行四边形.(或易证:△ABE ≌△CDF ,∴CF AE =) 综上所述,能使四边形AECF 为平行四边形的条件有:①④⑤,共3个. ∴选择答案【 B 】.14. 如图所示,在□ABCD 中,ABC ∠和BCD ∠的平分线交AD 边于同一点E ,且3,4==CE BE ,则AB 的长是_________.第 14 题图ADEBC解析 本题主要考查平行四边形的性质,注意角平分线+平行线模型的识别. 根据角平分线+平行线模型不难确定:△ABE 和△DCE 都是等腰三角形 ∴DC DE AB AE ==, ∵四边形ABCD 为平行四边形 ∴AD BC CD AB CD AB ==,//, ∴︒=∠+∠=180,BCD ABC DE AE ∴AB AE AD BC 22=== ∵BE 平分ABC ∠,CE 平分BCD ∠ ∴22,12∠=∠∠=∠BCD ABC ∴︒=∠+∠1802212 ∴︒=∠+∠9021 ∴︒=∠90BEC在Rt △BCE 中,由勾股定理得:222CE BE BC +=∴53422=+=BC ∴2521==BC AB . 15. 如图所示,四边形ABCD 是平行四边形,点E 是CD 上一点,且EC BC =,BE CF ⊥交AB 于点F ,P 是EB 延长线上的一点,下列结论:①BE 平分CBF ∠; ②CF 平分DCB ∠;③BC BF =; ④PC PF =. 其中,正确结论的序号是__________.第 15 题图EF CABDP解析 本题主要考查平行四边形的性质.图 1对于①,∵四边形ABCD 为平行四边形 ∴CD AB //∴31∠=∠(如图1所示) ∵EC BC = ∴21∠=∠ ∴32∠=∠ ∴BE 平分CBF ∠; 故结论①正确; 对于②,如图1所示. ∵EC BC =,BE CF ⊥ ∴CF 平分DCB ∠(等腰三角形“三线合一”) 故结论②正确; 对于③,如图2所示.图 2由结论②可知: CF 平分DCB ∠ ∴21∠=∠∵四边形ABCD 为平行四边形 ∴CD AB //∴31∠=∠ ∴32∠=∠ ∴BC BF =. 故结论③正确;对于④,∵BC BF =,CF BE ⊥∴直线BE 垂直平分CF ∴PC PF = 故结论④正确.综上所述,正确结论的序号是①②③④. 三、解答题(共75分)16.(9分)证明命题“一组对边平行且相等的四边形是平行四边形”,要根据题意,画出图形,并写出已知、求证、证明过程.下面是某同学根据题意画出的图形,并写出了不完整的已知和求证.已知: 如图所示,在四边形ABCD 中,CD AB //,__________.求证:________________________________. 请补全已知和求证部分,并写出证明过程.CD AB =…………………………………………1分四边形ABCD 为平行四边形…………………………………………2分 证明:连结AC ∵CD AB // ∴21∠=∠在△ABC 和△CDA 中∵⎪⎩⎪⎨⎧=∠=∠=CA AC CD AB 21 ∴△ABC ≌△CDA (SAS ) ∴43∠=∠ ∴BC AD //…………………………………………6分 ∵CD AB //,BC AD // ∴四边形ABCD 为平行四边形…………………………………………9分 点评 要证明平行四边形的判定定理,必须按照平行四边形的定义进行,即证明四边形的两组对边分别平行.17.(8分)已知:如图所示,在□ABCD 中,点E 是BC 边的中点,连结DE 并延长交AB 边的延长线于点F . 求证:BF AB =.BC EAFD证明:∵点E 是BC 边的中点 ∴CE BE =∵四边形ABCD 是平行四边形 ∴CD AB CD AB =,//…………………………………………2分 ∴CD AF // ∴1∠=∠F在△BEF 和△CED 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CE BE F 321 ∴△BEF ≌△CED (AAS ) ∴CD BF =…………………………………………6分 ∵CD BF CD AB ==, ∴BF AB =…………………………………………8分 18.(9分)已知:如图所示,在□ABCD 中,点F 在AB 的延长线上,且AB BF =,连结FD ,交BC 于点E .(1)求证:△DCE ≌△FBE ; (2)若3=EC ,求AD 的长.FEDBCA(1)证明:∵四边形ABCD 是平行四边形 ∴CD AB CD AB =,//…………………………………………2分 ∴CD AF //∴1∠=∠F∵AB BF = ∴CD BF =在△DCE 和△FBE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠BF CD FEB DEC F 1 ∴△DCE ≌△FBE (AAS );…………………………………………5分 (2)解:由(1)可知:△DCE ≌△FBE ∴3==BE CE ∴62==CE BC…………………………………………7分 ∵四边形ABCD 是平行四边形 ∴6==BC AD .…………………………………………9分 19.(9分)如图,点B 、E 、C 、F 在同一条直线上,DE AC DF AB ==,,FC BE =. (1)求证:△ABC ≌△DFE ;(2)连结AF 、BD ,求证:四边形ABDF 是平行四边形.证明:(1)∵FC BE = ∴CE FC CE BE +=+ ∴FE BC =…………………………………………1分EDBFAC在△ABC 和△DFE 中∵⎪⎩⎪⎨⎧===FE BC DE AC DFAB ∴△ABC ≌△DFE (SSS );…………………………………………4分(2)由(1)可知:△ABC ≌△DFE ∴21∠=∠ ∴DF AB //…………………………………………6分 ∵DF AB =∴DF AB =// ∴四边形ABDF 是平行四边形.…………………………………………9分 20.(9分)如图所示,AC 、BD 相交于点O ,BC AD CD AB //,//,E 、F 分别是OB 、OD 的中点.求证:四边形AFCE 是平行四边形.FEODBCA证明:∵BC AD CD AB //,// ∴四边形ABCD 是平行四边形…………………………………………3分 ∴OD OB OC OA ==,…………………………………………5分 ∵E 、F 分别是OB 、OD 的中点 ∴OD OF OB OE 21,21==∴OF OE =…………………………………………6分 ∵OF OE OC OA ==, ∴四边形AFCE 是平行四边形.…………………………………………9分 21.(10分)如图,已知︒=∠=∠90E B ,点B 、C 、F 、E 在一条直线上,EC BF DF AC ==,. 求证:四边形ACDF 是平行四边形.证明:∵EC BF = ∴CF EC CF BF -=- ∴EF BC =…………………………………………1分在Rt △ABC 和Rt △DEF 中∵⎩⎨⎧==EF BC DF AC∴Rt △ABC ≌Rt △DEF (HL )…………………………………………5分 ∴DFE ACB ∠=∠ ∴21∠=∠ ∴DF AC //…………………………………………7分 ∵DF AC //,DF AC = ∴四边形ACDF 是平行四边形.…………………………………………10分 22.(10分)如图所示,在□ABCD 中,E 、F 分别是AB 、CD 的中点,DE 、BF 与对角线AC 分别交于点M 、N ,连结MF 、NE . (1)求证:BF DE //;(2)判断四边形MENF 是何特殊的四边形,并说明理由.NMEFCABD(1)证明:∵四边形ABCD 是平行四边形∴CD AB CD AB =,//…………………………………………2分 ∴BE DF //∵E 、F 分别是AB 、CD 的中点 ∴AB BE CD DF 21,21==∴BE DF =∵BE DF //,BE DF = ∴四边形BEDF 是平行四边形 ∴BF DE //;…………………………………………5分(2)解:四边形MENF 是平行四边形 …………………………………………6分 理由如下:由(1)可知:BF DE // ∴,//NF ME ABF ∠=∠1 ∵CD AB //∴ABF ∠=∠2,43∠=∠ ∴21∠=∠∵E 、F 分别是AB 、CD 的中点 ∴CD CF AB AE 21,21==∴CF AE =在△AME 和△CNF 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠4321CF AE ∴△AME ≌△CNF (ASA )∴NF ME =∵,//NF ME NF ME = ∴四边形MENF 是平行四边形.…………………………………………10分 23.(11分)如图所示,在四边形ABCD 中,︒=∠90,//A BC AD ,12=AB ,21=BC ,16=AD .动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长度的速度向点D 运动,当点Q 到达点D 时另一个动点也随之停止运动.设运动的时间为t 秒.(1)填空:=AQ ________,=BP ________,(用含t 的代数式表示),t 的取值范围是__________;(2)设△DPQ 的面积为S ,用含t 的式子表示S ;(3)当=t _________时,PQ PD =; (4)当t 为何值时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形?DABCQP解:(1)t ,t 2,0≤t ≤16;…………………………………………3分 (2)由题意可知:t AQ AD DQ -=-=16∴()966121621+-=⋅-=t t S ; …………………………………………5分(3)316;…………………………………………7分 提示: 当PQ PD =时,作AD PE ⊥,如图1所示.P由等腰三角形“三线合一”的性质可知:DE QE =易知:四边形ABPE 是矩形(即长方形) ∴t BP AE 2==∴t t t AQ AE QE =-=-=2 t AE AD DE 216-=-= ∵DE QE = ∴t t 216-=解之得:316=t∴当316=t 时,PQ PD =.(4)分为两种情况:图 2P QDABC①当点P 在BC 边上时,四边形PCDQ 是平行四边形,则有DQ PC = ∴t t -=-16221解之得:5=t ;(如图2所示)…………………………………………9分 ②当点P 在BC 边的延长线上时,四边形CPDQ 是平行四边形,则有DQ PC = ∴t t -=-16212解之得:337=t .(如图3所示) 图 3PQDABC综上所述,当5=t 或337=t 时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形.…………………………………………11分学生整理用图。

华东师大版八年级下册第19章:特殊的平行四边形-正方形的性质基础题和培优题(无答案)

华东师大版八年级下册第19章:特殊的平行四边形-正方形的性质基础题和培优题(无答案)

特殊的平行四边形正方形正方形的性质【基础练习】1.正方形具有而菱形不一定具有的性质是( )A.内角和为360°B.对角线相等C.对角线平分内角D.对角线互相垂直平分2.正方形具有而矩形不一定具有的性质是( )A.四个角都相等B.四条边相等C.对角线相等D.对角线互相平分3.下列结论中,正确的有( )①正方形具有平行四边形的一切性质;②正方形具有矩形的一切性质;③正方形具有菱形的一切性质;④正方形有两条对称轴;⑤正方形有四条对称轴.A.1个B.2个C.3个D.4个4.一个正方形和一个等腰三角形有相同的周长,等腰三角形的边长分别为5.6cm和13.2cm ,则这个正方形的面积为( )A.24B.36C.48D.645. 正方形ABCD 的边长为1,它的两条对角线相交于点O ,则△ABO 的周长为_____, 面积为_______6. 正方形具有而矩形不一定具有的性质是( )。

A .四个角都是直角B .对角线互相平分C .对角线相等D .对角线互相垂直7. 正方形具有而菱形不一定具有的性质是( )。

A 、对角线相等B 、对角线互相垂直平分C 、四条边相等D 、一条对角线平分一组对角8. 在四边形中,是对角线的交点,能判定四边形是正方形的条件是( )。

A 、,B 、,C 、 ,D 、,,9. 正方形ABCD 的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )A. 4 B .34 C .36 D .40ABCD O BD AC =CD AB //BC AD //C A ∠=∠DO CO BO AO ===BD AC ⊥CO AO =DO BO =BC AB =10.如图,将一块正方形纸片沿对角线折叠一次,•然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是()11.如图,正方形ABCD中,对角线AC,BD交于点O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G,F,若AC=10,则EG+EF为()A.10 B.C.5 D.2512.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB为()A.22.5°B.45°C.30°D.135°B C D EF AM GH ABCD 13. 如图,已知正方形ABCD ,M 是AB 的中点,N 是BC 的中点,AN 和CM 相交于O ,•那么四边形AOCD 和四边形ABCD 的面积之比是( )A .5:6B .3:4C .2:3 D214. 若正方形面积缩小为原来的13,则它的边长是原来边长的______ 15. 以正方形ABCD 的对角线AC 为一边作菱形AEFC ,则∠FAB = 。

华师大版初中数学八年级下册《18.1 平行四边形的性质》同步练习卷(含答案解析

华师大版初中数学八年级下册《18.1 平行四边形的性质》同步练习卷(含答案解析

华师大新版八年级下学期《18.1 平行四边形的性质》同步练习卷一.选择题(共23小题)1.如图,在▱ABCD中,对角线AC、BD相交于O,α=60°.若AB=OD=2,则▱ABCD 的面积是()A.8B.C.2D.42.如图,▱ABCD中,AB=3cm,BC=5cm,BF平分∠ABC交AD于F点,CE平分∠BCD交AD于E点,则EF的长为()A.1cm B.2cm C.3cm D.4cm3.如图,在平行四边形ABCD中,对角线AC和BD相交于O,∠BCD的平分线CE与边AB相交于E,若EB=EA=EC,那么下列结论正确的个数有()①∠ACE=30°②OE∥DA ③S▱ABCD=AC•AD ④CE⊥DBA.1B.2C.3D.44.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S△BEC <2S△CEF;④∠DFE=4∠AEF.A.①②③④B.①②③C.①②D.①②④5.如图,平行四边形纸片ABCD和CEFG上下叠放(G在CD上),CE∥AD且CE=AD,连结AF、CF.已知▱ABCD的面积为10,▱CEFG的面积为4,则图中阴影部分△AFC的面积为()A.4B.6C.7D.86.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2B.3C.4D.67.如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF 相交于点G.下列结论错误的是()A.∠BAD=2∠DFC B.若BC=4EF,则AB:BC=3:8C.AF=DE D.∠BGC=90°8.如图,已知点M为▱ABCD边AB的中点,线段CM角BD于点E,S△BEM=1,则图中阴影部分的面积为()A.2B.3C.4D.59.如图,▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD=S△AEF;④∠上,连接EF、AF,下列结论:①2∠BAF=∠C;②EF=AF;③S△ABF BFE=3∠CEF中,一定成立的是()A.只有①②B.只有②③C.只有①②④D.①②③④10.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A.1个B.2个C.3个D.4个11.如图,平行四边形ABCD的对角线AC,BD相交于点O,CE平分∠DCB交BD 于点F,且∠ABC=60°,AB=2BC,连接OE,下列结论:①∠ACD=30°②S▱ABCD=AC•BC③OE:AC=1:4④S=2S△OEF△OCF其中正确的有()A.1个B.2个C.3个D.4个12.已知▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD上,连结EF、AF,下列结论:①2∠BAF=∠BAD;②EF=AF;③S△ABF ≤S△AEF.中一定成立的是()A.①②B.①③C.②③D.①②③13.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个14.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A.①②③B.①②④C.②③④D.①②③④15.如图所示,在▱ABCD中,BC=6,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F为边AD的中点,AG⊥BE于点G,若AG=2,则BE的长度是()A.10B.8C.4D.416.如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为()A.3B.5C.2D.6.517.如图,已知□ABCD的对角线AC、BD交于点O,DE平分∠ADC交BC于点E,交AC于点F,且∠BCD=60°,BC=2CD,连结OE.下列结论:①OE∥AB;=BD•CD;②S平行四边形ABCD③AO=2BO;④S=2S△EOF.△DOF其中成立的个数有()A.1个B.2个C.3个D.4个18.如图,点P是▱ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S3=S2+S4②如果S4>S2,则S3>S1③若S3=2S1,则S4=2S2④若S1﹣S2=S3﹣S4,则P点一定在对角线BD上.其中正确结论的个数是()A.1B.2C.3D.419.如图,E是平行四边形内任一点,若S平行四边形ABCD=8,则图中阴影部分的面积是()A.3B.4C.5D.620.如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=()A.50°B.40°C.80°D.100°21.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°.①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是5+;④四边形ACEB的面积是16.则以上结论正确的是()A.①②B.②④C.①②③D.①③④22.如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于E,BF⊥CD 于F,DE、BF相交于H,直线BF交线段AD的延长线于G,下面结论:①BD= BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG;其中正确的个数是()A.1B.2C.3D.423.如图,F是▱ABCD的边AD上一点,连接BD,BF,BF的延长线与CD的延长线交于点E.若∠E=∠A,∠BDC=90°,则下列结论中不正确的是()A.2DF=BC B.BE=BCC.∠ADE=∠CBE D.D是CE的中点二.填空题(共4小题)24.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE交于点P,BF 与CE交于点Q,若S=20cm2,S△BQC=30cm2,则图中阴影部分的面积为△APDcm2.25.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,OE⊥BD交边AD于点E,若平行四边形ABCD的周长为20,则△ABE的周长等于.26.已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,AF⊥DC于F,则DF的长是.27.如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,如果AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,那么DP:DC等于.三.解答题(共23小题)28.如图,在平行四边形中,AE⊥BC于E,AF⊥CD于F,∠EAF=60°,BE=2,DF=3,求AB,BC的长及平行四边形ABCD的面积?29.如图,平行四边形ABCD中,AE平分∠BAD,交CD于点F,交BC的延长线于点E,连结BF.(1)求证:BE=CD;(2)若点F是CD的中点.①求证BF⊥AE;②若∠BEA=60°,AB=4,求平行四边形ABCD的面积.30.如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E 为AC的中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:DF=AE.31.如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.32.在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F.(1)求证:BE=BF;(2)若∠ADC=90°,G是EF的中点,连接AG、CG.求证:AG=CG;AG⊥CG.33.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.34.如图,在▱ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分线相交于点E,F为AE上一点,EF=EB,G为BD延长线上一点,BG=AB,连接GE.(1)若▱ABCD的面积为9,求AB的长;(2)求证:AF=GE.35.如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠F=60°,BE=2,求AB的长.36.如图,在平行四边形ABCD中,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F恰好为边AD的中点.(1)求证:△ABF≌△DEF;(2)若AG⊥BE于G,BC=4,AG=1,求BE的长.37.已知,在平行四边形ABCD中,E为AD上一点,且AB=AE,连接BE交AC 于点H,过点A作AF⊥BC于F,交BE于点G.(1)若∠D=50°,求∠EBC的度数;(2)若AC⊥CD,过点G作GM∥BC交AC于点M,求证:AH=MC.38.如图,在▱ABCD中,M、N分别是AD、BC的中点,∠AND=90°,连结CM交DN于点O.(1)求证:△ABN≌△CDM;(2)猜想:四边形CDMN是什么特殊四边形?并证明你的猜想;(3)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.39.已知如图,▱ABCD,AD=a,AC为对角线,BM∥AC,过点D作DE∥CM,交AC的延长线于F,交BM的延长线于E.(1)求证:△ADF≌△BCM;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求四边形ABED的面积(用含a的代数式表示).40.如图所示,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2.(1)求证:CG=CD;(2)若CF=2,AE=3,求BE的长.41.如图,在▱ABCD中,E为AB中点,EF与CF分别平分∠AEC与∠DCE,G为CE中点,过G作GH∥EF交CF于点O,交CD于点H.(1)猜想四边形CGFH是什么特殊的四边形?并证明你的猜想;(2)当AB=4,且FE=FC时,求AD长.42.已知E为平行四边形ABCD中AB边上一点,且BE=AB,连接DE交BC于F,交AC于G.(1)求证:△BEF≌△CDF;(2)试探究OF与AB有什么位置关系和数量关系,并说明理由.43.已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.44.如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:CF=CD;(2)若AD=2AB,连接DE,试判断DE与AF的位置关系,并说明理由.45.如图,在▱ABCD中,∠BCD=120°,分别以BC和CD为边作等边△BCE和等边△CDF.求证:AE=AF.46.已知:如图,▱ABCD中,对角线AC,BD相交于点O,延长BC至E,使CE=BC,连接AE交CD于点F.(1)求证:CF=FD;(2)若AD=DC=6,求:∠BDE的度数和OF的长.47.在平行四边形ABCD中,E是BC上任意一点,延长AE交DC的延长线与点F.(1)在图 中当CE=CF时,求证:AF是∠BAD的平分线.(2)根据(1)的条件和结论,若∠ABC=90°,G是EF的中点(如图‚),请求出∠BDG的度数.(3)如图 ,根据(1)的条件和结论,若∠BAD=60°,且FG∥CE,FG=CE,连接DB、DG,求出∠BDG的度数.48.在平行四边形ABCD中,∠BAD的平分线交直线BC于E,交直线DC于F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),讨论线段DG与BD的数量关系.49.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=120°,FG∥CE,FG=CE,分别连结DB、DG(如图2),求∠BDG 的度数.50.如图,已知平行四边形ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD,CE=3,AB=5.(1)求线段CF的长度;(2)求证:AB=DG+CE.华师大新版八年级下学期《18.1 平行四边形的性质》同步练习卷参考答案与试题解析一.选择题(共23小题)1.如图,在▱ABCD中,对角线AC、BD相交于O,α=60°.若AB=OD=2,则▱ABCD 的面积是()A.8B.C.2D.4【分析】根据等边三角形的判定得出△DOC是等边三角形,再根据平行四边形的性质和的面积公式即可求解.【解答】解:∵在▱ABCD中,∴AB=DC,∵α=60°.AB=OD=2,∴△DOC是等边三角形,∴△DOC的面积=,∴▱ABCD的面积=4△DOC的面积=4,故选:D.【点评】本题考查了平行四边形的性质和面积,解此题的关键是熟练掌握平行四边形的性质.2.如图,▱ABCD中,AB=3cm,BC=5cm,BF平分∠ABC交AD于F点,CE平分∠BCD交AD于E点,则EF的长为()A.1cm B.2cm C.3cm D.4cm【分析】根据平行四边形的性质可知∠AEB=∠EBC,又因为BE平分∠ABC,所以∠ABE=∠EBC,则∠ABE=∠AEB,则AB=AE=3,同理可证FD=3,继而可求得EF=AE+DE﹣AD.【解答】解:∵四边形ABCD是平行四边形,∴∠AEB=∠EBC,AD=BC=5cm,∵BE平分∠ABC,∴∠ABE=∠EBC,则∠ABE=∠AEB,∴AB=AE=3cm,同理可证:DF=DC=AB=3cm,则EF=AE+FD﹣AD=3+3﹣5=1cm.故选:A.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.3.如图,在平行四边形ABCD中,对角线AC和BD相交于O,∠BCD的平分线CE与边AB相交于E,若EB=EA=EC,那么下列结论正确的个数有()①∠ACE=30°②OE∥DA ③S▱ABCD=AC•AD ④CE⊥DBA.1B.2C.3D.4【分析】想办法证明∠ACB=90°,△BCE是等边三角形即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,OD=DB,∴∠DCA=∠CEB,∵∠DCA=∠BCE,∴∠BCE=∠CEB,∴BC=EC,∵EB=EA=EC,∴∠ACB=90°,EC=BC=EB,∴△BEC是等边三角形,∴∠ABC=60°,∴∠CAB=30°,故①正确,∵OD=DB,AE=EB,∴OE∥AD,故②正确,∵AD∥BC,∴∠DAC=∠ACB=90°,∴AD⊥AC,∴S▱ABCD=AC•AD,故③正确,假设CE⊥BD,则推出四边形ABCD是菱形,显然不可能,故④错误,故选:C.【点评】本题考查平行四边形的性质、直角三角形的判定和性质、等边三角形的判定和性质、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S△BEC <2S△CEF;④∠DFE=4∠AEF.A.①②③④B.①②③C.①②D.①②④【分析】分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【解答】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故①正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴CF=EF,故②正确;③∵EF=FM,∴S=S△CFM,△EFC∵MC>BE,∴S△BEC <2S△EFC故③正确;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④错误.故选:B.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DMF是解题关键.5.如图,平行四边形纸片ABCD和CEFG上下叠放(G在CD上),CE∥AD且CE=AD,连结AF、CF.已知▱ABCD的面积为10,▱CEFG的面积为4,则图中阴影部分△AFC的面积为()A.4B.6C.7D.8【分析】作EN⊥AB,延长DC交EN与M,由S阴影=S四边形FEBA﹣S△EFC﹣S△ABC可求阴影部分面积.【解答】解:如图作EN⊥AB,延长DC交EN与M∵AB∥CD,AN⊥EN∴CM⊥EN∵AB∥CD∴且EC=AD=BC ∴EM=MN∵S阴影=S四边形FEBA﹣S△EFC﹣S△ABC=﹣EF×EM﹣AB×MN∴S阴影=(EF+AB)×EM﹣﹣EF×EM﹣AB×MN=EF×EM+AB×MN=S四边形EFGC +S四边形ABCD且S四边形EFGC=4,S四边形ABCD=10∴S阴影=7故选:C.【点评】本题考查了平行四边形的性质,关键是作出平行四边形的高,用已知面积表示阴影部分面积.6.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2B.3C.4D.6【分析】想办法证明S阴=S△ADE+S△DEC=S△AEC,再由EF∥AC,可得S△AEC=S△ACF解决问题;【解答】解:连接AF、EC.∵BC=4CF,S△ABC=12,∴S△ACF=×12=3,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥AC,∴S△DEB=S△DEC,∴S阴=S△ADE+S△DEC=S△AEC,∵EF∥AC,∴S△AEC=S△ACF=3,∴S阴=3.故选:B.【点评】本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.7.如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF 相交于点G.下列结论错误的是()A.∠BAD=2∠DFC B.若BC=4EF,则AB:BC=3:8C.AF=DE D.∠BGC=90°【分析】求出AB=CD,AD∥BC,根据平行线性质和角平分线性质求出∠ABE=∠AEB,推出AB=AE,同理求出DF=CD,求出AE=DF可知选项C正确,由∠A=∠BCD=2∠FDC,可知选项A正确,由∠GBC=∠ABC,∠GCB=∠BCD,又∠ABC+∠BCD=180°,推出∠GBC+∠GCB=90°,可知D正确;【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠A=∠BCD,∴∠AEB=∠EBC,∠BCF=∠DFC,∵BE平分∠ABC,CF平分∠BCD,∴∠ABE=∠CBE,∠BCF=∠DCF,∴∠ABE=∠AEB,∴∠BAD=2∠DFC,故A正确∴AB=AE,同理DF=CD,∴AE=DF,即AE﹣EF=DF﹣EF,∴AF=DE.故C正确∵∠GBC=∠ABC,∠GCB=∠BCD,又∠ABC+∠BCD=180°,∴∠GBC+∠GCB=90°,∴∠BGC=90°,故D正确,故选:B.【点评】本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.如图,已知点M为▱ABCD边AB的中点,线段CM角BD于点E,S△BEM=1,则图中阴影部分的面积为()A.2B.3C.4D.5【分析】由四边形ABCD是平行四边形,推出AB=CD,AB∥CD,由AM=BM,推=2S△EBM,S△EBC=2S△EBM,由此即可解决问题;出===,可得S△DEM【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AM=BM,∴===,=2S△EBM,S△EBC=2S△EBM,∴S△DEM=1,∵S△BEM=S△EBC=2,∴S△DEM=2+2=4,∴S阴故选:C.【点评】本题考查平行四边形的性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD=S△AEF;④∠上,连接EF、AF,下列结论:①2∠BAF=∠C;②EF=AF;③S△ABF BFE=3∠CEF中,一定成立的是()A.只有①②B.只有②③C.只有①②④D.①②③④【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△MBF≌△ECF,利用全等三角形的性质得出对应线段之间关系进而得出答案.【解答】解:①∵F是BC的中点,∴BF=FC,∵在▱ABCD中,AD=2AB,∴BC=2AB=2CD,∴BF=FC=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠FAB,∴2∠BAF=∠BAD,∵∠BAD=∠C,∴∠BAF=2∠C故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,,∴△MBF≌△ECF(ASA),∴FE=MF,∠CEF=∠M,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AEF=S△AFM,∴S△ABF <S△AEF,故③错误;④设∠FEA=x,则∠FAE=x,∴∠BAF=∠AFB=90°﹣x,∴∠EFA=180°﹣2x,∴∠EFB=90°﹣x+180°﹣2x=270°﹣3x,∵∠CEF=90°﹣x,∴∠BFE=3∠CEF,故④正确,故选:C.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△AEF≌△DME.10.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A.1个B.2个C.3个D.4个【分析】如图延长EF交BC的延长线于G,取AB的中点H连接FH.想办法证明EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;【解答】解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,=S△CFG,∵S△DFE=S△EBG=2S△BEF,故③正确,∴S四边形DEBC∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.【点评】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.11.如图,平行四边形ABCD的对角线AC,BD相交于点O,CE平分∠DCB交BD 于点F,且∠ABC=60°,AB=2BC,连接OE,下列结论:①∠ACD=30°②S▱ABCD=AC•BC③OE:AC=1:4=2S△OEF④S△OCF其中正确的有()A.1个B.2个C.3个D.4个【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,得到S▱ABCD=AC•BC,故②正确,根据直角三角形的性质得到AC=BC,根据三角形的中位线的性质得到OE=BC,于是得到OE:AC=:6;故③错误;根据相似三角形的性=2S△OEF;故④正确.质得到=2,求得S△OCF【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=AC•BC,故②正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6;故③错误;∵AO=OC,AE=BE,∴OE∥BC,∴△OEF∽△BCF,∴=2:1,∴S△OCF :S△OEF==2,∴S△OCF=2S△OEF;故④正确.故选:C.【点评】此题考查了相似三角形的判定和性质,平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE是等边三角形,OE 是△ABC的中位线是关键.12.已知▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD上,连结EF、AF,下列结论:①2∠BAF=∠BAD;②EF=AF;③S△ABF ≤S△AEF.中一定成立的是()A.①②B.①③C.②③D.①②③【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△MBF≌△ECF,利用全等三角形的性质得出对应线段之间关系进而得出答案.【解答】解:①∵F是BC的中点,∴BC=2BF,∵在▱ABCD中,AD=2AB,∴BC=2AB,∴BF=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠FAB,∴2∠BAF=∠BAD,故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,,∴△MBF≌△ECF(ASA),∴FE=MF,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AFE=S△AFM,∴S△ABF ≤S△AEF,故③正确;故选:D.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△MBF≌△ECF.13.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个【分析】①只要证明DF=DC,利用平行线的性质可得∠DCF=∠DFC=∠FCB;②延长EF和CD交于M,根据平行四边形的性质得出AB∥CD,根据平行线的性质得出∠A=∠FDM,证△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD=∠CFD,根据三角形的外角性质求出即可;③④求出∠ECD=90°,根据平行线的性质得出∠BEC=∠ECD,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC=∠FCB,∴CF平分∠BCD,故①正确,延长EF和CD交于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠FDM,在△EAF和△MDF中,,∴△EAF≌△MDF(ASA),∴EF=MF,∵EF=CF,∴CF=MF,∴∠FCD=∠M,∵由(1)知:∠DFC=∠FCD,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M +∠FCD=2∠CFD ;故②正确,∵EF=FM=CF ,∴∠ECM=90°,∵AB ∥CD ,∴∠BEC=∠ECM=90°,∴CE ⊥AB ,故③④正确,故选:D .【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定,等腰三角形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.14.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB=AE ,延长AB 与DE 的延长线交于点F .下列结论中:①△ABC ≌△EAD ;②△ABE 是等边三角形;③AD=AF ;④S △ABE =S △CEF 其中正确的是( )A .①②③B .①②④C .②③④D .①②③④【分析】由平行四边形的性质得出AD ∥BC ,AD=BC ,由AE 平分∠BAD ,可得∠BAE=∠DAE ,可得∠BAE=∠BEA ,得AB=BE ,由AB=AE ,得到△ABE 是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS 证明△ABC ≌△EAD ,①正确;由△FCD 与△ABD 等底(AB=CD )等高(AB 与CD 间的距离相等),得出S △FCD =S △ABD ,由△AEC 与△DEC 同底等高,所以S △AEC =S △DEC ,得出S △ABE =S △CEF .④正确.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE,BC=AD,∴△ABC≌△EAD(SAS);①正确;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),=S△ABC,∴S△FCD又∵△AEC与△DEC同底等高,=S△DEC,∴S△AEC∴S=S△CEF;④正确.△ABE若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不一定正确;∴①②④正确,故选:B.【点评】此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.15.如图所示,在▱ABCD中,BC=6,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F为边AD的中点,AG⊥BE于点G,若AG=2,则BE的长度是()A.10B.8C.4D.4【分析】根据平行四边形的性质和角平分线的定义可求出AB=AF,再根据等腰三角形的性质可求出BG的长,进而可求出BF的长,根据全等三角形的性质得到BF=EF,所以BE=2BF,问题得解.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABF=∠E,∵点F恰好为边AD的中点,∴AF=DF,在△ABF与△DEF中,,∴△ABF≌△DEF,∴BF=EF,BE=2BF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6,∵∠AFB=∠FBC,∵∠ABC的平分线与CD的延长线相交于点E,∴∠ABF=∠FBC,∴∠AFB=∠ABF,∴AB=AF,∵点F为AD边的中点,AG⊥BE.∴BG==,∴BF=2,∴BE=2BF=4.故选:C.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、角平分线的定义、等腰三角形的判定和性质、勾股定理的运用,题目的综合性较强,难度中等.16.如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为()A.3B.5C.2D.6.5【分析】根据作图过程可得得AE平分∠DAB;再根据角平分线的性质和平行四边形的性质可证明∠DAE=∠DEA,证出AD=DE=5,即可得出CE的长.【解答】解:根据作图的方法得:AE平分∠DAB,∴∠DAE=∠EAB,∵四边形ABCD是平行四边形,∴DC∥AB,AD=BC=5,∴∠DEA=∠EAB,∴∠DAE=∠DEA,∴AD=DE=5,∴CE=DC﹣DE=8﹣5=3;【点评】此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AD=DE是解决问题的关键.17.如图,已知□ABCD的对角线AC、BD交于点O,DE平分∠ADC交BC于点E,交AC于点F,且∠BCD=60°,BC=2CD,连结OE.下列结论:①OE∥AB;=BD•CD;②S平行四边形ABCD③AO=2BO;=2S△EOF.④S△DOF其中成立的个数有()A.1个B.2个C.3个D.4个【分析】①证明BE=CE,OA=OC,根据三角形中位线定理可得结论正确;②证明BD⊥CD,可得结论正确;③设AB=x,分别表示OA和OB的长,可以作判断;④先根据平行线分线段成比例定理可得:DF=2EF,由同高三角形面积的比等于对应底边的比可作判断.【解答】解:①∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠ADC+∠BCD=180°,∵∠BCD=60°,∴∠ADC=120°,∵DE平分∠ADC,∴∠CDE=60°=∠BCD,∴△CDE是等边三角形,∴CE=CD,∵BC=2CD,∴BE=CE,∴OE∥AB;故①正确;②∵△DEC是等边三角形,∴∠DEC=60°=∠DBC+∠BDE,∵BE=EC=DE,∴∠DBC=∠BDE=30°,∴∠BDC=30°+60°=90°,∴BD⊥CD,∴S=BD•CD;平行四边形ABCD故②正确;③设AB=x,则AD=2x,则BD=x,∴OB=,由勾股定理得:AO==x,故③不正确;④∵AD∥EC,∴=,∴DF=2EF,=2S△EOF.∴S△DOF故④正确;故选:C.【点评】此题考查了平行线分线段成比例定理,平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE是等边三角形,OE 是△ABC的中位线是关键.18.如图,点P是▱ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S3=S2+S4②如果S4>S2,则S3>S1③若S3=2S1,则S4=2S2④若S1﹣S2=S3﹣S4,则P点一定在对角线BD上.其中正确结论的个数是()A.1B.2C.3D.4【分析】根据平行四边形的对边相等可得AB=CD,AD=BC,设点P到AB、BC、CD、DA的距离分别为h1、h2、h3、h4,然后利用三角形的面积公式列式整理即可判断出①正确;根据三角形的面积公式即可判断②③错误;根据已知进行变形,求出S1+S4=S2+S3=S△ABD=S△BDC=S平行四边形ABCD,即可判断④.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,设点P到AB、BC、CD、DA的距离分别为h1、h2、h3、h4,则S1=ABh1,S2=BCh2,S3=CDh3,S4=ADh4,∵ABh1+CDh3=AB•h AB,BCh2+ADh4=C•h BC,又∵S=AB•h AB=BC•h BC平行四边形ABCD∴S2+S4=S1+S3,故①正确;根据S4>S2只能判断h4>h2,不能判断h3>h1,即不能得出S3>S1,∴②错误;根据S3=2S1,能得出h3=2h1,不能推出h4=2h2,即不能推出S4=2S2,∴③错误;∵S1﹣S2=S3﹣S4,∴S1+S4=22+S3=S平行四边形ABCD,此时S1+S4=S2+S3=S△ABD=S△BDC=S平行四边形ABCD,即P点一定在对角线BD上,∴④正确;故选:B.【点评】本题考查了平行四边形的性质,三角形的面积,以及平行四边形对角线上点的判定的应用,用平行四边形的面积表示出相对的两个三角形的面积的和是解题的关键,也是本题的难点.19.如图,E 是平行四边形内任一点,若S 平行四边形ABCD =8,则图中阴影部分的面积是( )A .3B .4C .5D .6【分析】根据三角形面积公式可知,图中阴影部分面积等于平行四边形面积的一半.所以S 阴影=S 四边形ABCD .【解答】解:设两个阴影部分三角形的底为AD ,CB ,高分别为h 1,h 2,则h 1+h 2为平行四边形的高,∴S △EAD +S △ECB=AD•h 1+CB•h 2=AD (h 1+h 2)=S 四边形ABCD=4.故选:B .【点评】本题主要考查了三角形的面积公式和平行四边形的性质(平行四边形的两组对边分别相等).要求能灵活的运用等量代换找到需要的关系.20.如图,在平行四边形ABCD 中,DE 平分∠ADC 交BC 于E ,AF ⊥DE ,垂足为F ,已知∠DAF=50°,则∠B=( )A .50°B .40°C .80°D .100°【分析】由平行四边形的性质及角平分线的性质可得∠ADC 的大小,进而可求解∠B 的度数.【解答】解:在Rt △ADF 中,∵∠DAF=50°,∴∠ADE=40°,又∵DE平分∠ADC,∴∠ADC=80°,∴∠B=∠ADC=80°.故选:C.【点评】本题主要考查平行四边形的性质及角平分线的性质,应熟练掌握,并能做一些简单的计算问题.21.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°.①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是5+;④四边形ACEB的面积是16.则以上结论正确的是()A.①②B.②④C.①②③D.①③④【分析】证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.【解答】解:①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°,∴AC∥DE,∵CE∥AD,∴四边形ACED是平行四边形,故①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB==2,∴四边形ACEB的周长是10+2故③错误;④四边形ACEB的面积:×2×4+×4×2=8,故④错误,故选:A.【点评】本题主要考查了平行四边形的判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法.等腰三角形的判定方法,属于中考常考题型.22.如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于E,BF⊥CD 于F,DE、BF相交于H,直线BF交线段AD的延长线于G,下面结论:①BD= BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG;其中正确的个数是()A.1B.2C.3D.4【分析】通过判断△BDE为等腰直角三角形,得到BE=DE,BD=BE,则可对①进行判断;根据等角的余角相等得到∠BHE=∠C,再根据平行四边形的性质得到∠A=∠C,则∠A=∠BHE,于是可对②进行判断;根据“AAS”可证明△BEH≌△DEC,得到BH=CD,接着由平行四边形的性质得AB=CD,则AB=BH,运算可对③进行判断;因为∠BDH=90°+∠EBH,∠BDG=90°+∠BDE,由∠BDE>∠EBH,推出∠BDG>∠BHD,所以④错误;【解答】解:∵∠DBC=45°,DE⊥BC,∴△BDE为等腰直角三角形,∴BE=DE,BD=BE,所以①正确;∵BF⊥CD,∴∠C+∠CBF=90°,而∠BHE+∠CBF=90°,∴∠BHE=∠C,∵四边形ABCD为平行四边形,∴∠A=∠C,∴∠A=∠BHE,所以②正确;在△BEH和△DEC中,∴△BEH≌△DEC,∴BH=CD,∵四边形ABCD为平行四边形,∴AB=CD,∴AB=BH,所以③正确;∵∠BDH=90°+∠EBH,∠BDG=90°+∠BDE,∵∠BDE>∠EBH,∴∠BDG>∠BHD,所以④错误;故选:C.。

第6章 平行四边形- 北师大版数学八年级下册教材习题课件

第6章 平行四边形- 北师大版数学八年级下册教材习题课件

边数
3
4
5
6…
多边形的内角和 180° 360° 540° 720°
正多边形内角的度数 60° 90° 108° 120°
知识技能
13. 过多边形某个顶点的所有对角线,将这个多边形分 成7个三角形,这个多边形是几边形? 解:过n边形某个顶点的对角线,将这个多边形分 成(n-2)个三角形,根据题意,得n-2=7,解得n=9. 所以这个多边形是九边形.
位线定理可知连接各边的中点得到的三角形的三边长
分别是 1 a, 1 b, 1 c,所以此三角形的周长为 1(a+b+c),
222
同理,再次得到的三角形的周长为
2A
1 (a+b+c).
4
B
C
知识技能
12. 分别确定一般三角形、四边形、五边形、六边 形……的内角和,以及正三角形、正四边形、正五 边形、正六边形……内角的度数,并填入下表:
于点E,∠BCD的平分线交AD于点F,交BE于点G.
求证:AF=DE.
AF
ED
证明:∵四边形ABCD是平行四边形, G
∴AB=DC,AD∥BC.
B
C
∴∠AEB=∠EBC,∠DFC=∠FCB.
∵BE平分∠ABC,CF平分∠BCD,
知识技能
∴∠ABE=∠EBC,∠DCF=∠FCB.
∴∠AEB=∠ABE,∠DFC=∠DCF.
A
F
∴AB=AE,DF=DC.
ED
∵AB=DC,
G
∴AE=DF.
B
C
∴AE-EF=DF-EF,即AF=DE.
知识技能
11. 如图,△ABC的三边长分别为a,b,c,以它的三边 中点为顶点组成一个新三角形,再以这个新三角形

(完整word版)新北师大版八年级下册第六章平行四边形练习题

(完整word版)新北师大版八年级下册第六章平行四边形练习题

15、平行四边形 ABCD 中,∠ A=50°,则∠ D=( )A. 40 °B. 50 °C. 130 °D. 不能确定16、 用两个形状大小相同的三角形按不同的方式拼成的平行四边形有( )个 A. 1 B. 2 C. 3 D. 417、平行四边形 ABCD 中,∠A :∠B :∠ C :∠D 的值可以是( ) A .1:2:3:4B. 3 :4:4:3C. 3 :3:4:4D. 3 :4:3:4 新北师大版八年级下册第六章平行四边形练习题 一、填空题 1、如图, □ ABCD 中,∠ A=120°,则∠ 1= ° 2、□ABCD 中,∠A 比∠B 大 20°,则∠ C 的度数为 __ 3、如图,平行四边形 ABCD 中, AB =6,BC =4,∠A =60°要用一块矩 形铝板切割出这样的平行四边形, 使废料最少, 则所需铝板的面积最小 应是 _____4、在 ABCD 中,对角线 AC 、BD 相交于点 0,点 E 在边 AD 上,且 AE :DE=1: 3,连结 BE ,BE 与 AC 相交于点M,若 AC=6 ,则 M0的长 是 .5、如图所示, E 、F 分别是平行四边形 的边 、 上 的点, 与 相交于点 , 与 相交于点 ,若 △APD , △ BQC ,则阴影部分的面积为 .6、□ ABCD 中, AB :BC=1:2,周长为 24cm, 则 AB= ____ c m, AD= ____ cm7、巳知 □ABCD ,周长为 36,相邻两边的差为 4,则相邻两边的 长分别为 _______ 8、平行四边形两个邻角的平分线互相 ____ ,两个对角的平分 第四题图线互相 _____ (填“平行”或“垂直”) 9、□ ABCD 中,∠ A=150°, AB=15cm ,则 AD 与 BC 间的距离为 _____ cm10、如图,在 □ABCD 中, BC=12, AD 与 BC 间的距离为 5,AC 与 BD 交于点 O ,则△ BOC 的面积为 11、如图 , 在□ABCD 中, 过其对角线的交点 O ,引一条 直线交 BC 于 E ,交 AD 于 F 。

2020—2021学年北师大版八年级下册第六章《平行四边形》常考综合题专练(一)

2020—2021学年北师大版八年级下册第六章《平行四边形》常考综合题专练(一)

北师大版八年级下册第六章《平行四边形》常考综合题专练(一)1.如图1,在平行四边形ABCD中,过点A作AE⊥BC交BC于点E,连接ED,且ED平分∠AEC.(1)求证:AE=BC;(2)如图2,过点C作CF⊥DE交DE于点F,连接AF,BF,猜想△ABF的形状并证明.2.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC=,CD=BD,求AD的长.3.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.4.【教材呈现】如图是华师版九年级上册数学教材第80页的第3题,请完成这道题的证明.【结论应用】(1)如图②,在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F.求证:∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.5.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.6.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.7.如图,在平行四边形ABCD中,M、N分别是AD,BC的中点,连接AN、CM.(1)求证:△ABN≌△CDM;(2)连接MN,过点C作CE⊥MN于点E,连接DN,交OM于点O交CE于点P,若∠AND=90°,PE=1,∠1=∠2,求AN的长.8.已知:在▱ABCD中,点E是边AD上一点,点F是线段AE的中点,连接BF并延长BF至点G,使FG=BF,连接DG、EG.(1)如图1,求证:四边形CDGE是平行四边形;(2)如图2,当DA平分∠CDG时,在不添加任何辅助线的情况下,请直接写出图2中与AB相等的线段(AB除外).9.如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF(填“是”或“不是”)平行四边形.10.如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:BM=DN;(2)求证:四边形AECF为平行四边形.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵AE⊥BC,∴∠AEC=90°,又∵ED平分∠AEC,∴∠ADE=∠CED=45°,∴∠AED=∠ADE,∴AE=AD,∴AE=BC;(2)△ABF是等腰直角三角形,证明:∵CF⊥DE,∴∠CFE=90°,又∵∠CEF=45°,∴∠ECF=45°,∴∠FEC=∠FCE=∠AEF,∴EF=CF,在△AEF和△BCF中,,∴△AEF≌△BCF(SAS),∴AF=BF,∠AFE=∠BFC,∴∠AFE﹣∠BFE=∠BFC﹣∠BFE,即∠AFB=∠EFC=90°,∴△ABF是等腰直角三角形.2.(1)证明:∵AB∥CE,∴∠CAD=∠ACE,∠ADE=∠CED.∵F是AC中点,∴AF=CF.在△AFD与△CFE中,.∴△AFD≌△CFE(AAS),∴AD=CE,∴四边形ADCE是平行四边形;(2)解:过点C作CG⊥AB于点G.∵CD=BD,∠B=30°,∴∠DCB=∠B=30°,∴∠CDA=60°.在△ACG中,∠AGC=90°,,∠CAG=45°,∴.在△CGD中,∠DGC=90°,∠CDG=60°,,∴GD=1,∴.3.(1)证明:∵AE为∠BAD的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DFA.∴∠DAF=∠DFA.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.4.【教材呈现】证明:∵P是BD的中点,M是DC的中点,∴PM=BC,同理,PN=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM,【结论应用】(1)证明:∵P是BD的中点,M是DC的中点,∴PM∥BC,∴∠PMN=∠F,同理,∠PNM=∠AEN,∵∠PMN=∠PNM,∴∠AEN=∠F;(2)解:∵PN∥AD,∴∠PNB=∠A,∵∠DPN是△PNB的一个外角,∴∠DPN=∠PNB+∠ABD=∠A+∠ABD,∵PM∥BC,∴∠MPD=∠DBC,∴∠MPN=∠DPN+∠MPD=∠A+∠ABD+∠DBC=∠A+∠ABC=122°,∵PM=PN,∴∠PMN=×(180°﹣122°)=29°,∴∠F=∠PMN=29°,故答案为:29°.5.(1)根据平行四边形的性质得到AO=OC,BO=OD,AB∥CD,AD∥BC,由三角形的中位线的性质得到MO∥BC,NO∥CD,∴MO∥AN,NO∥AM,∴四边形AMON是平行四边形;(2)解:∵AC=6,BD=4,∴AO=3,BO=2,∵∠AOB=90°,∴AB===,∴OM=AM=MB=,∴NO=AN=,四边形AMON的周长=AM+OM+AN+NO=2.6.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴AG=AD=2,∴DG==2,∴BD===2.7.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠CDM,∵M、N分别是AD,BC的中点,∴BN=DM,在△ABN和△CDM中,,∴△ABN≌△CDM(SAS);(2)解:∵M是AD的中点,∠AND=90°,∴MN=MD=AD,∴∠1=∠MND,∵AD∥BC,∴∠1=∠CND,∵∠1=∠2,∴∠MND=∠CND=∠2,∴PN=PC,∵CE⊥MN,∴∠CEN=90°,∴∠2=∠PNE=30°,∵PE=1,∴PN=2PE=2,∴CE=PC+PE=3,∴CN==,∵N是BC的中点,∴AD=BC=CN=,∴AN=AD×sin∠1=4=.8.解:(1)∵点F是线段AE的中点,∴AF=EF,在△ABF和△EGF中,,∴△ABF≌△EGF(SAS),∴AB=GE,∠ABF=∠FGE,∴AB∥GE,又∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴GE=CD,GE∥DC,∴四边形CDGE是平行四边形;(2)图2中与AB相等的线段为:GE,GD,DC,CE.理由:∵DA平分∠CDG,∴∠CDE=∠GDE,由(1)可得,GE∥CD,∴∠CDE=∠GED,∴∠GDE=∠GED,∴GE=GD,又∵四边形CDGE是平行四边形,∴四边形CDGE是菱形,∴CD=DG=GE=CE,又∵AB=CD,∴图2中与AB相等的线段为:GE,GD,DC,CE.9.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA)(2)解:四边形AECF是平行四边形,理由如下:由(1)得:△AOF≌△COE,∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形;故答案为:是.10.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AM⊥BC,CN⊥AD,∴AM∥CN,∴四边形AMCN为平行四边形,∴CM=AN,∴BC﹣CM=AD﹣AN,即BM=DN;(2)∵AD∥BC,∴∠ADB=∠CBD,∵AM⊥BC,CN⊥AD,∴∠EMB=∠FND=90°,在△BME和△DNF中,,∴△BME≌△DBF(ASA),∴EM=DF,∵四边形AMCN为平行四边形,∴AM=CN,AM∥CN,∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形.。

新北师大版八年级数学下册第六章平行四边形测试题(含有答案)(20200623151501)

新北师大版八年级数学下册第六章平行四边形测试题(含有答案)(20200623151501)

B、30°
C、50°
D、70°
8、(2014?河南)如图, □ABCD的对角线 AC与 BD相交于点 O,AB⊥AC,若 BD=10, AC=6,则
AB的长是(
) A 、2 B 、4
C 、6
D 、8
第 6题
第 7题
第 8题
9、(2014?宜昌)如图, A、B 两地被池塘隔开,小明通过下列方法测出了
A、B 间的距离:先在
22、(2014?广州)如图, □ABCD的对角线 AC、 BD相交于点 O,EF 过点 O且与 AB, CD分别相交于点 E、 F,求证:△ AOE≌△ COF。
23、一个多边形的内角各等于外角和的 3 倍,请问这是个多少边形。
24、分别确定一般三角形、四边形、五边形、六边形…… n 边形的内角和,以及正 三角形、正四边形、正五边形、正六边形…… n 边形内角的度数,并填入下表:
新北师大版 14~ 15 南庄中学八年级(下)数学单元测试卷
一、选择题: (3 分× 10=30 分,请把你的正确答案填入表格中
) (全卷 100 分)
题号
1
2
3
4
5
6
7
8
9
10
答案
1、(2014?长沙)平行四边形的对角线一定具有的性质是(

A、相等
B
、互相平分
C 、互相垂直
D、互相垂直且相等
2、在 □ABCD中,∠ A∶∠ B∶∠ C= 2∶ 3∶2,则∠ D 的度数为(

A、36°
B 、60°
C 、72°
D 、108°
3、如图,在 □ABCD中,下列各式不一定正确的是(

A、 1 2 180 B 、 2 3 180 C 、 3 4 180 D 、 2 4 180

小学数学西师大版第八册第六单元 平行四边形和梯形平行四边形的认识-章节测试习题(1)

小学数学西师大版第八册第六单元 平行四边形和梯形平行四边形的认识-章节测试习题(1)

章节测试题1.【题文】作出下面平行四边形的高.【答案】【分析】从平行四边形的一个顶点向对边引垂线,这一点到垂足之间的线段就是平行四边形的高,据此画图.【解答】2.【题文】动手操作.(1)画出梯形的一条高.(2)画一条线段,把这个梯形分成一个三角形和一个平行四边形.【答案】【分析】(1)梯形两底间的距离叫做梯形的高,梯形也有无数条高,通常过上底的一个顶点作下底的垂线,用三角板的直角可以画出梯形的一条高.(2)利用过直线外一点作已知直线的平行线的方法,过梯形的上底的一个顶点D,作腰AB的平行线DE即可.【解答】如图所示:3.【题文】一个长方形的长是15厘米,宽是10厘米.把它拉成一个平行四边形后,这个平行四边形的周长是多少厘米?【答案】这个平行四边形的周长是50厘米.【分析】把长方形拉成平行四边形后,面积变小,周长不变,根据长方形的周长公式:C=(a+b)×2,把数据代入公式解答.【解答】(15+10)×2=25×2=50(厘米).答:这个平行四边形的周长是50厘米.4.【题文】已知一个平行四边形的周长是38厘米,其中一条边长10厘米,另外三条边长分别是多少厘米?【答案】平行四边形另外三条边分别是10厘米,9厘米,9厘米.【分析】根据平行四边形的特点,对边相等可得,平行四边形的周长的求解方法与长方形相似,都是相邻两条边的和的2倍,由此先用周长38厘米除以2,求出相邻两边的和,再减去其中的一条边10厘米,即可求出另一条边.【解答】如下图的平行四边形中,AD=BC=10厘米.38÷2-10=19-10=9(厘米).答:平行四边形另外三条边分别是10厘米,9厘米,9厘米.5.【答题】下图中有()个平行四边形.A.2B.3C.4【答案】A【分析】本题考查的是认识平行四边形.【解答】图中的平行四边形有:平行四边形ABDC、平行四边形ABED,共有2个.选A.6.【答题】平行四边形有()种不同的高.A.1B.2C.无数【答案】B【分析】本题考查的是认识平行四边形的高.【解答】平行四边形有两组对边,每组对边平行且相等,对应一条高,所以平行四边形有2种不同的高.选B.7.【答题】下图中,AB表示平行四边形的().A.底B.高【答案】B【分析】本题考查的是认识平行四边形的高.【解答】从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.选B.8.【答题】下图中共有______个平行四边形.【答案】6【分析】平行四边形的特征:两组对边分别平行且相等.【解答】从图中能直接看到1个最外面的最大的平行四边形,然后是3个小的平行四边形,相邻的2个小平行四边形还可以组成1个稍大的平行四边形,共可以组成2个稍大的平行四边形.所以图中一共有平行四边形:1+3+2=6(个).9.【答题】下图中,共有______个平行四边形带.【答案】8【分析】两条对边平行且相等的四边形叫平行四边形.【解答】一共有:,因此有8个平行四边形带.10.【答题】两组对边分别平行的四边形是().A. 平行四边形B. 梯形【答案】A【分析】此题考查的是认识平行四边形.【解答】两组对边分别平行的四边形是平行四边形.选A.11.【答题】下面的两个图形都是().A.正方形B.长方形C.平行四边形【答案】C【分析】本题考查的是平行四边形的认识.【解答】平行四边形的特征:4条边都是直直的,其中一组对边是倾斜的.题中的两个图形都是平行四边形.选C.12.【答题】平行四边形的()相等.A. 四条边B. 四个角 C. 对边和对角【答案】C【分析】此题考查的是认识平行四边形.【解答】平行四边形的对边和对角相等.选C.13.【答题】平行四边形的四条边().A. 都相等B. 全都不相等 C. 对边相等【答案】C【分析】此题考查的是平行四边形的特征.【解答】平行四边形的对边相等.选C.14.【答题】两组对边()的四边形是平行四边形.A.分别平行B.交叉【答案】A【分析】本题考查的是认识平行四边形.【解答】两组对边分别平行的四边形是平行四边形.选A.15.【答题】正方形、长方形、平行四边形都有().A.锐角B.直角C.钝角D.四条边【答案】D【分析】本题考查的是认识四边形.【解答】长方形的特征:有4条边,每条边都是直的,对边相等;正方形的特征:有4条边,每条边都是直的,4条边都相等;平行四边形的特征:4条边都是直的,其中一组对边是倾斜的,所以正方形、长方形、平行四边形都有四条边.选D.16.【答题】下图被分成______个平行四边形.【答案】2【分析】此题考查的是认识平行四边形.【解答】平行四边形的特征:4条边都是直直的,其中一组对边是倾斜的.由图可知,分成2个平行四边形.故此题答案为2.17.【答题】下图中一共有______个平行四边形.【答案】6【分析】此题考查的是有序地数出四边形的个数.【解答】将图中的三个区域编号如下图:由图中可以数出6个平行四边形,分别是:编号1的平行四边形、编号2的平行四边形、编号3的平行四边形、编号1与编号2组成的平行四边形、编号2和编号3组成的平行四边形、编号1与编号2与编号3组成的平行四边形.故此题答案为6.18.【答题】下图中共有______个平行四边形.【答案】9【分析】两组对边分别平行的四边形是平行四边形.数个数的时候,可以分类计数.【解答】观察图片可知,1、2、3、4是4个平行四边形,1、2组成一个平行四边形,1、3组成一个平行四边形,2、4组成一个平行四边形,3、4组成一个平行四边形,1、2、3、4组成一个平行四边形.故图中共有9个平行四边形.故本题的答案是9.19.【答题】下图中有______个长方形,______个正方形,______个三角形,______个平行四边形.【答案】2,2,2,3【分析】长方形特征:长长方方的,有4条边,每条边都是直直的.正方形特征:四四方方的,有4条边,每条边都是直直的,并且一样长.平行四边形特征:4条边都是直直的,对边相等,其中一组对边是倾斜的.三角形特征:有3条直直的边.【解答】图中有2个长方形,2个正方形,2个三角形,3个平行四边形.20.【答题】下图中一共有______个平行四边形.【答案】60【分析】此题考查的是数平行四边形.【解答】由图可知,单独1个的小平行四边形有12个,由2个组成的有17个,由3个组成的有10个,由4个组成的有9个,由6个组成的有7个,由8个组成的有2个,由9个组成的有2个,由12个组成的有1个,一共有:12+17+10+9+7+2+2+1=60(个).故此题答案为60.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章特殊平行四边形测试题一、选择题(每小题3分,共30分)1. 矩形、菱形、正方形都具有的性质是()A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直2.小刚和小东在做一道习题,若四边形ABCD是平行四边形,请补充条件,使得四边形ABCD是矩形.小刚补充的条件是:∠A=∠B;小东补充的条件是:∠A+∠C=180°.你认为下列说法正确的是()A.小刚和小东都正确B.仅小刚正确C.仅小东正确D.小刚和小东都错误3. (2015年玉林、防城港)如图1,在□ABCD中,BM平分∠ABC,交CD于点M,且MC=2,□ABCD的周长是14,则DM的长为()A.1 B.2 C.3 D.44. (2015年徐州)如图2,在菱形ABCD中,对角线AC,BD交于点O,E为边AD的中点,菱形ABCD的周长为28,则OE的长为()A.3.5 B.4 C.7 D.145. (2015年日照)小明在学习了正方形之后,给同桌小文出了道题.从下列四个条件:①AB =BC;②∠ABC=90°;③AC=BD;④AC⊥BD中选两个作为补充条件,使□ABCD成为正方形(如图3).现有下列四种选法,你认为其中错误..的是()A.①②B.②③C.①③D.②④6. (2015年安顺)如图4,点O是矩形ABCD对角线的交点,E是AB上的点,折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.23B.323C.3D.67. 如图5,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°8. 如图6,在△ABC中,BD,CE是△ABC的中线,BD与CE相交于点O,点F,G分别是BO,CO的中点,连接AO.若AO=6 cm,BC=8 cm,则四边形DEFG的周长是()A.14 cm B.18 cm C.24 cm D.28 cm9. 如图7,两条笔直的公路l 1,l 2相交于点O ,村庄C 的村民在公路的旁边建三个加工厂 A ,B ,D ,已知AB=BC=CD=DA=5 km ,村庄C 到公路l 1的距离为4 km ,则村庄C 到公路l 2的距离是( )A. 3 kmB. 4 kmC. 5 kmD. 6 km10. (2015年丹东)如图8,过矩形ABCD 的对角线AC 的中点O 作EF ⊥AC ,交BC 边于点E ,交AD 边于点F ,分别连接AE ,CF .若AB=3,∠DCF=30°,则EF 的长为( )A. 2B. 3C. 23D. 3二、填空题(每小题4分,共32分)11. 如图9,四边形ABCD 是菱形,对角线AC 和BD 相交于点O ,AC=4 cm ,BD=8 cm ,则这个菱形的面积是 cm 2.12. 如图10,□ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC +BD =24 cm ,△OAB 的周长是18 cm ,则EF = cm .13. 如图11,矩形ABCD 的对角线相交于O ,AB=2,∠AOB=60°,则对角线AC 的长为 .14. 如图12,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C ,D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是______.15. 如图13,平行四边形ABCD 的对角线AC ,BD 相交于点O ,BC=9,AC=8,BD=14,则△AOD 的周长为________.16. (2015年吉林)如图14,在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为_______.17. (2015年贵港)如图15,在正方形ABCD 的外侧,作等边三角形CDE ,连接AE ,BE ,则∠AEB 的度数为 .18. 如图16,将矩形ABCD 沿对角线AC 剪开,再把△ACD 沿CA方向平移得到△A 1C 1D 1,连接AD 1,BC 1.若∠ACB =30°,AB =1,CC 1=x ,则下列结论:①△A 1AD 1≌△CC 1B ;②当x =1时,四边形ABC1D1是菱形;③当x=2时,△BDD1为等边三角形.其中正确的是.(填序号)三、解答题(共58分)19. (8分)如图17,四边形ABCD是矩形,E是AB上一点,且DE=AB,过点C作CF⊥DE 于点F.(1)猜想AD与CF的大小关系;(2)请证明上面的结论.20. (9分)(2015年河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图18所示的四边形ABCD,并写出了如下不完整的已知和求证.(1)在方框中填空,补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为______________________.21. (9分)(2015年郴州)如图19,AC是□ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.⑴求证:△AOE≌△COF;⑵当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.22. (10分)如图20,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.(1)求证:四边形AODE是菱形;(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE是矩形吗?为什么?23.(10分)在一张长12 cm、宽5 cm的长方形纸片内,要折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH(如图21-①),小明同学沿长方形的对角线AC折出∠CAE=∠CAD,∠ACF=∠ACB的方法得到菱形AECF(如图21-②).请问小颖和小明同学的折法中,哪个菱形面积较大?24. (12分)如图22-①,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图22-②,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,那么MP与NQ是否相等?并说明理由.附加题(15分,不计入总分)如图,在△ABC中,点O是边AC上一个动点,过点O作直线MN∥BC,设MN交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F.(1)探究线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,请说明理由;(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?参考答案一、1. C 2.A 3. C 4. A 5. B 6. A 7. C 8. A 9. B 10. A二、11. 16 12. 3 13. 4 14. 菱形 15. 2016.(4,4) 17. 30° 18. ①②③三、19.(1)解:AD =CF .(2)证明:因为四边形ABCD 是矩形,所以AB ∥DC.所以∠AED =∠FDC ,AB =CD .又DE =AB ,所以DE =CD .因为CF ⊥DE ,所以∠CFD =∠A =90°.所以△ADE ≌△FCD .所以AD =CF .20. 解:(1)CD 平行(2)证明:如图,连接BD .在△ABD 和△CDB 中,AB =CD ,AD =CB ,BD =DB ,所以△ABD ≌△CDB.所以∠1=∠2,∠3=∠4.所以AB ∥CD ,AD ∥CB.所以四边形ABCD 是平行四边形.(3)平行四边形的对边相等21.(1)证明:因为四边形ABCD 是平行四边形,所以AD ∥BC.所以∠EAO=∠FCO.因为O 是AC 的中点,所以AO=CO.又∠EOA=∠FOC ,所以△AOE ≌△COF.(2)解:当EF ⊥AC 时,四边形AFCE 是菱形.理由:由(1)知△AOE ≌△COF ,所以OE=OF.又AO=CO ,所以四边形AFCE 是平行四边形.所以当EF ⊥AC 时,平行四边形AFCE 是菱形.22.(1)证明:因为DE ∥CA ,AE ∥BD ,所以四边形AODE 是平行四边形.因为四边形ABCD 是矩形,所以OA=OC ,OD=OB ,AC=BD.所以OA=OD.所以四边形AODE 是菱形.(2)解:四边形AODE 是矩形.理由:因为DE ∥CA ,AE ∥BD ,所以四边形AODE 是平行四边形.因为四边形ABCD 是菱形,所以AC ⊥BD ,即∠AOD=90°.所以四边形AODE 是矩形.23. 解:小颖的折法:S 菱形EFGH =21×12×5=30(cm 2); 小明的折法:设BE =x cm ,则AE =CE=(12-x )cm. 在Rt △ABE 中,由勾股定理,得(12-x )2=52+x 2,解得x =24119,则EC =24169. 所以S 菱形AECF =24169×5=24845(cm 2). 因为30<24845,所以小明折出的菱形面积较大. 24.(1)证明:在正方形ABCD 中,AB=AD ,∠BAE=∠D=90°.所以∠DAF+∠BAF=90°.因为AF ⊥BE ,所以∠ABE+∠BAF=90°.所以∠ABE=∠DAF.所以△ABE ≌△DAF.所以AF=BE.(2)解:MP=NQ .理由:过点A 作AF ∥MP 交CD 于点F ,过点B 作BE ∥NQ 交AD 于点E ,则与(1)的情况完全相同,可得AF=BE ,从而MP=NQ.附加题解:(1)OE=OF.证明:因为CE是∠ACB的平分线,所以∠1=∠2.因为MN∥BC,所以∠1=∠3.所以∠2=∠3.所以OE=OC.同理可证OC=OF.所以OE=OF.(2)四边形BCFE不可能是菱形.理由:若四边形BCFE为菱形,则BF⊥EC,而由已知易得FC⊥EC,在平面内过同一点F不可能有两条直线同时垂直于一条直线,所以四边形BCFE不可能是菱形.(3)当点O运动到AC中点时,OE=OF,OA=OC,则四边形AECF为平行四边形,易证∠ECF=90°,所以四边形AECF为矩形.要使AECF为正方形,必须EF⊥AC.因为EF∥BC,所以只要AC⊥BC即可,所以△ABC应是以∠ACB为直角的直角三角形.所以当点O为AC中点且△ABC是以∠ACB为直角的直角三角形时,四边形AECF是正方形.初中数学试卷灿若寒星制作。

相关文档
最新文档