2020_2021学年高中数学第二章随机变量及其分布2.1.1离散型随机变量课件新人教A版选修2_
2020_2021学年高中数学第二章随机变量及其分布2.2.1条件概率学案含解析新人教A版选修2_3

2.2 二项分布及其应用2.2.1 条件概率内容 标 准学 科 素 养 1.理解条件概率的定义. 2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.利用数学抽象 发展数学建模 提升数学运算授课提示:对应学生用书第32页[基础认识]知识点 条件概率预习教材P 51-53,思考并完成以下问题(1)三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小?提示:如果三张奖券分别用X 1,X 2,Y 表示,其中Y 表示那张中奖奖券,那么三名同学的抽奖结果共有六种可能:X 1X 2Y ,X 1YX 2,X 2X 1Y ,X 2YX 1,YX 1X 2,YX 2X 1.用B 表示事件“最后一名同学抽到中奖奖券”,则B 仅包含两个基本事件:X 1X 2Y ,X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为P (B )=26=13.(2)如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是多少?提示:因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有X 1X 2Y ,X 1YX 2,X 2X 1Y 和X 2YX 1.而“最后一名同学抽到中奖奖券”包含的基本事件仍是X 1X 2Y 和X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为24,即12.知识梳理 1.条件概率 (1)事件个数法:P (B |A )=n AB n A(2)定义法:P (B |A )=P AB P A(1)0≤P (B |A )≤1.(2)如果B 和C 是两个互斥的事件,则P (B ∪C |A )=P (B |A )+P (C |A ).[自我检测]1.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A.8225B.12C.38D.34 答案:C2.某人一周晚上值班2次,在已知他周日一定值班的条件下,他在周六晚上或周五晚上值班的概率为________.答案:13授课提示:对应学生用书第32页探究一 求条件概率[阅读教材P 53例1]在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率. 题型:求事件的概率及条件概率方法步骤:(1)先计算出不放回地依次抽2次的试验结果总数; (2)分别计算出第1次抽到理科题和两次都抽到的试验结果总数; (3)由概率的计算公式得出所求概率.[例1] 盒内装有除型号和颜色外完全相同的16个球,其中6个是E 型玻璃球,10个是F 型玻璃球.E 型玻璃球中有2个是红色的,4个是蓝色的;F 型玻璃球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是E 型玻璃球的概率是多少?[解析] 由题意得球的分布如下:E 型玻璃球F 型玻璃球总计 红 2 3 5 蓝 4 7 11 总计61016设A ={取得蓝球法一:∵P (A )=1116,P (AB )=416=14,∴P (B |A )=P AB P A =141116=411. 法二:∵n (A )=11,n (AB )=4, ∴P (B |A )=n AB n A=411. 方法技巧 求条件概率P (B |A )的关键就是抓住事件A 为条件和A 与B 同时发生这两点,公式P (B |A )=n AB n A=P AB P A既是条件概率的定义,也是求条件概率的公式,应熟练掌握.跟踪探究 1.集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下.(1)求乙抽到的数比甲抽到的数大的概率; (2)求乙抽到偶数的概率;(3)集合A ={1,2,3,4,5,6},甲乙两人各从A 中任取一球.若甲先取(放回),乙后取,若事件A :“甲抽到的数大于4”;事件B :“甲、乙抽到的两数之和等于7”,求P (B |A ).解析:(1)设“甲抽到奇数”为事件C , “乙抽到的数比甲抽到的数大”为事件D ,则事件C 包含的基本事件总数为C 13·C 15=15个,事件CD 同时发生包含的基本事件总数为5+3+1=9个, 故P (D |C )=915=35.(2)在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P =915=35.(3)甲抽到的数大于4的情形有:(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有:(5,2),(6,1),共2个.所以P (B |A )=212=16.探究二 条件概率的性质及应用[阅读教材P 53例2]一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 题型:互斥事件的条件概率方法步骤:(1)不超过2次就按对包含“第1次按对”和“第1次没按对,第2次按对”两事件的和事件;(2)分别求出“第1次按对”和“第1次没按对,第2次按对”的概率; (3)由互斥事件概率的计算公式得出所求概率.[例2] 在某次考试中,要从20道题中随机抽出6道题,若考生至少能答对其中4道题即可通过,至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.[解析] 记事件A 为“该考生6道题全答对”,事件B 为“该考生答对了其中5道题,另一道答错”,事件C 为“该考生答对了其中4道题,另2道题答错”,事件D 为“该考生在这次考试中通过”,事件E 为“该考生在这次考试中获得优秀”,则A ,B ,C 两两互斥,且D =A ∪B ∪C ,E =A ∪B ,可知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12 180C 620, P (AD )=P (A ),P (BD )=P (B ), P (E |D )=P (A |D )+P (B |D )=P A P D+P BPD =210C 62012 180C 620+2 520C 62012 180C 620=1358. 故获得优秀成绩的概率为1358.方法技巧 当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用P (B ∪C |A )=P (B |A )+P (C |A )便可求得较复杂事件的概率.跟踪探究 2.在一个袋子中装有除颜色外其他都相同的10个球,其中有1个红球,2个黄球,3个黑球,4个白球,从中依次不放回地摸2个球,求在摸出的第一个球是红球的条件下,第二个球是黄球或黑球的概率.解析:法一:设“摸出的第一个球为红球”为事件A ,“摸出的第二个球为黄球”为事件B ,“摸出的第二个球为黑球”为事件C ,则P (A )=110,P (AB )=1×210×9=145,P (AC )=1×310×9=130.∴P (B |A )=P AB P A =145110=1045=29, P (C |A )=P AC P A =130110=13. ∴P (B ∪C |A )=P (B |A )+P (C |A )=29+13=59.故所求的条件概率为59.法二:∵n (A )=1×C 19=9,n [(B ∪C )∩A ]=C 12+C 13=5,∴P (B ∪C |A )=59.故所求的条件概率为59.授课提示:对应学生用书第33页[课后小结](1)条件概率:P (B |A )=P AB P A=n AB n A.(2)概率P (B |A )与P (AB )的区别与联系:P (AB )表示在样本空间Ω中,计算AB 发生的概率,而P (B |A )表示在缩小的样本空间ΩA 中,计算B 发生的概率.用古典概型公式,则P (B |A )=AB 中样本点数ΩA 中样本点数,P (AB )=AB 中样本点数Ω中样本点数.[素养培优]1.因把基本事件空间找错而致错一个家庭中有两名小孩,假定生男、生女是等可能的.已知这个家庭有一名小孩是女孩,问另一名小孩是男孩的概率是多少?易错分析:解决条件概率的方法有两种,第一种是利用公式P (B |A )=P AB P A.第二种为P (B |A )=n AB n A,其中找对基本事件空间是关键.考查数学建模的学科素养.自我纠正:法一:一个家庭的两名小孩只有4种可能:{两名都是男孩},{第一名是男孩,第二名是女孩},{第一名是女孩,第二名是男孩},{两名都是女孩}.由题意知这4个事件是等可能的,设基本事件空间为Ω,“其中一名是女孩”为事件A ,“其中一名是男孩”为事件B ,则Ω={(男,男),(男,女),(女,男),(女,女)},A ={(男,女),(女,男),(女,女)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)}.∴P (AB )=24=12,P (A )=34.∴P (B |A )=P AB P A =1234=23. 法二:由方法一可知n (A )=3,n (AB )=2. ∴P (B |A )=n AB n A =23. 2.“条件概率P (B |A )”与“积事件的概率P (A ·B )”混同袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.易错分析:本题错误在于P (AB )与P (B |A )的含义没有弄清,P (AB )表示在样本空间S 中,A 与B 同时发生的概率;而P (B |A )表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率.考查数学建模的学科素养.自我纠正:P (C )=P (AB )=P (A )·P (B |A )=410×69=415.。
高中数学人教A版选修2-3_第二章_随机变量及其分布_211_离散型随机变量(2)

高中数学人教A版选修2-3 第二章随机变量及其分布 2.1.1 离散型随机变量(2)一、单选题1. 抛掷一枚质地均匀的硬币一次,随机变量为()A.掷硬币的次数B.出现正面向上的次数C.出现正面向上或反面向上的次数D.出现正面向上与反面向上的次数之和2. 下列随机变量是离散型随机变量的是()抛5颗骰子得到的点数和;某人一天内接收到的电话次数;某地一年内下雨的天数;某机器生产零件的误差数.A.(1)(2)(3)B.(4)C.(1)(4)D.(2)(3)3. 已知下列随机变量:①10件产品中有2件次品,从中任选3件,取到次品的件数X;②一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分;③刘翔在一次110米跨栏比赛中的成绩X;④在体育彩票的抽奖中,一次摇号产生的号码数X.其中X是离散型随机变量的是()A.①②③B.②③④C.①②④D.③④4. 下列变量中不是随机变量的是().A.某人投篮6次投中的次数B.某日上证收盘指数C.标准状态下,水在100时会沸腾D.某人早晨在车站等出租车的时5. 下列随机变量中不是离散型随机变量的是().A.掷5次硬币正面向上的次数MB.某人每天早晨在某公共汽车站等某一路车的时间TC.从标有数字1至4的4个小球中任取2个小球,这2个小球上所标的数字之和YD.将一个骰子掷3次,3次出现的点数之和X6. 下列随机变量中,不是离散型随机变量的是()A.某无线寻呼台1分钟内接到的寻呼次数XB.某水位监测站所测水位在(0, 18]这一范围内变化,该水位监测站所测水位HC.从装有1红、3黄共4个球的口袋中,取出2个球,其中黄球的个数ξD.将一个骰子掷3次,3次出现的点数和X参考答案与试题解析高中数学人教A版选修2-3 第二章随机变量及其分布 2.1.1 离散型随机变量(2)一、单选题1.【答案】B【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】出现正面向上的次数为0或1,是随机变量【解答】此题暂无解答2.【答案】A【考点】离散型随机变量及其分布列【解析】由离散型随机变量的定义知((1)(2)(3)均是离散型随机变量,而(4)不是,由于这个误差数几乎都是在0附近的实数,无法——列出.【解答】此题暂无解答3.【答案】C【考点】离散型随机变量及其分布列【解析】③中X的值可在某一区间内取值,不能——列出,故不是离散型随机变量【解答】此题暂无解答4.【答案】C【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】由随机变量的概念可知.标准状态下,水在100∘C时会沸腾不是随机变量【解答】此题暂无解答5.【答案】B【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】f】由随机变量的概念可知.某人每天早晨在某公共汽车站等某一路车的时间T不能——举出,故不是离散型随机变量【解答】此题暂无解答6.【答案】B【考点】离散型随机变量及其分布列【解析】利用离散型随机变量的定义直接求解.【解答】解:水位在(0,18]内变化,不能一一举出,故不是离散型随机变量.其余都可以一一举出,故是离散型随机变量.故选B.。
第二章__1_随机变量及其分布

f ( x)
当x b时,由于{X x} {a X b},于是 ba F ( x) P{ X x} P{a X b} 1 ba xa 0, xa 综上,可得X 的分布函数为 F ( x) , a xb b a xb 1,
2、分布函数的性质
为更好地揭示随机现象的规律性并利 用数学工具描述其规律, 有必要引入随机 变量来描述随机试验的不同结果. 例 抛掷一枚硬币可能出现 1, =正面 的两个结果 , 可以用一个 X () 0 , =反面
变量来描述.
例
{1, 2, 3,4,5,6}
. . . .
A .
定义: X ()
0, 9 , 19 F ( x) 15 , 19 1, x1 1 x 2 2 x3 x3
1
6 19
F ( x)
4 19
9 19
o
1
2
3
x
求随机变量X的概率分布
9 6 4 解 P{ X 1} , P{ X 2} , P{ X 3} 19 19 19
为给出X取值 于任意区间上的概率 ,实 际上只要 给出所有X取值于形如(- ∞,x] 区间上的概率P{X ≤ x}即可。记 F(x)=P{X ≤ x} 当x取遍(- ∞ ,+∞)上的一切实数时, F(x)便成为定义 在(- ∞ ,+∞)上的函数, 一旦知道了这个函数 ,我们便可得到 相应的随机变量取值于任何区间的概率。
三、分布函数的概念
为了对随机变量r.v.(random variable) 取值的统计规律性给出一种统一的描述 方法,下面引进分布函数 (distribution function)的概念.
高中数学—— 离散随机变量及其分布

上”.
问题 1. 你能说出下列各试验的结果吗? 各试验 结果是否能用数量表示?
(1) 掷一枚骰子; (2) 掷一枚硬币; (3) 测一病人体温.
(3) 测一病人体温的试验, 可能出现的结果有很多, 这些结果不能一一举出.
(1) 抛掷两枚骰子, 所得点数之和; (2) 某足球队在 5 次点球中射进的球数; (3) 任意抽取一瓶某种标有 2500 ml 的饮料, 其实际量 与规定量之差. 解: (2) 能用离散型随机变量表示. 随机变量的可能取 值为 Y{0, 1, 2, 3, 4, 5}.
{Y=0} 表示一次都没射进.
如果我们只关心其体温是否正常, 还是低热, 还是 高烧, 那么试验结果有: 正常, 低热, 高烧三个结果.
我们可用数字 0 表示 “正常”,用 1 表示 “低热”, 用 2 表示 “高烧”.
问题 1. 你能说出下列各试验的结果吗? 各试验 结果是否能用数量表示?
(1) 掷一枚骰子; (2) 掷一枚硬币; (3) 测一病人体温.
对于上面的三个试验, 我们得到三个对应:
出现点数
1
1
2 3
2 3
正面 向上
正常
0
1
低热
1
4 5
4 5
反面 向上
0
高烧
2
6
6
出现点数
1
1
2 3
2 3
正面 向上
正常
0
1
低热
1
4 5
4 5
反面 向上
0
高烧
2
6
6
2020_2021学年高中数学第2章随机变量及其分布2.1.1离散型随机变量课件新人教A版选修2_3

2.随机变量与函数的关系 随机变量与函数都是一种__映__射____,随机变量把试验结果 映射为___实__数___.函数把实数映射为__实__数____.随机变量的取 值范围相当于函数的__值__域____,__试__验__结__果__的范围相当于函数 的定义域.
1.(多选)下列各个量是随机变量的是( ) A.北京国际机场候机厅中未来一天的旅客数量 B.某市下个月某一天从0时至24时感染新冠肺炎的人数 C.广州到北京的某次动车到北京站的时间 D.体积为1 000 cm3的球的半径长 【答案】ABC
码,现在在有放回抽取的条件下依次取出两个球,设两个球号
码之和为随机变量ξ,则ξ所有可能取值的个数是( )
A.5
B.9
C.10D.25【来自案】B【解析】号码之和可能为2,3,4,5,6,7,8,9,10共9种.
4.有5把钥匙,其中只有一把能打开锁,某人依次尝试开
锁,若打不开就把该钥匙扔掉,直到打开为止,则试验次数ξ
①任意掷一枚均匀硬币5次,出现正面向上的次数; ②投一颗质地均匀的骰子出现的点数(最上面的数字); ③某个人的属相随年龄的变化; ④在标准状况下,水在0 ℃时结冰. 【解题探究】利用随机变量的定义去分析相应的实例.
【解析】①任意掷一枚硬币1次,可能出现正面向上也可 能出现反面向上,因此投掷5次硬币,出现正面向上的次数可 能是0,1,2,3,4,5,而且出现哪种结果是随机的,是随机变量.
上述问题中的X是离散型随机变量的是( )
A.①②③
B.①②
C.①③
D.②③
【答案】A
随机变量的综合应用
【例3】 写出下列随机变量可能取的值,并说明随机变量 所取的值表示的随机试验的结果.
(1)一个袋中装有2个白球和5个黑球,从中任取3个,其中 所含白球的个数为ξ;
概率论与数理统计 第二章 随机变量及其分布 第二节 离散型随机变量及其概率分布

以X记“第1人维护的20台中同一时刻发生故障的台 数”以Ai ( i 1,2,3,4)表示事件“第i人维护的20台中 ,
发生故障时不能及时维修”, 则知80台中发生故障
而不能及时维修的概率为
三、几种常见离散型随机变量的概率分布
P ( A1 A2 A3 A4 ) P ( A1 )
三、几种常见离散型随机变量的概率分布
3、独立重复试验与二项分布 (1)独立重复试验
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
练习1 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用10ห้องสมุดไป่ตู้0小时已坏的灯泡数 . 把观察一个灯泡的使用 时数看作一次试验, “使用到1000小时已坏” P{X 1} =P{X=0}+P{X=1} 视为事件A .每次试验, A )3+3(0.8)(0.2)2 =(0.2出现的概率为0.8
本例中,n=20,p=0.2, 所以,(n+1)p=4.2, 故k0=4。
三、几种常见离散型随机变量的概率分布
练习3 设有80台同类型设备,各台工作是相互独立 的发生故障的概率都是 0.01,且一台设备的故障能 由一个人处理. 考虑两种配备维修工人的方法 , 其 一是由四人维护,每人负责20台; 其二是由3人共同 维护台80.试比较这两种方法在设备发生故障时不 能及时维修的概率的大小. 解 按第一种方法
高二数学选修2-3第二章 随机变量及其分布

§2.1.1离散型随机变量一、教学目标1.复习古典概型、几何概型有关知识。
2.理解离散型随机变量的概念,学会区分离散型与非离散型随机变量。
3. 理解随机变量所表示试验结果的含义,并恰当地定义随机变量.重点:离散型随机变量的概念,以及在实际问题中如何恰当地定义随机变量.难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究.二、复习引入:1.试验中不能的随机事件,其他事件可以用它们来,这样的事件称为。
所有基本事件构成的集合称为,常用大写希腊字母表示。
2.一次试验中的两个事件叫做互斥事件(或称互不相容事件)。
互斥事件的概率加法公式。
3. 一次试验中的两个事件叫做互为对立事件,事件A的对立事件记作,对立事件的概率公式4.古典概型的两个特征:(1) .(2) .5.概率的古典定义:P(A)= 。
6.几何概型中的概率定义:P(A)= 。
三、预习自测:1.在随机试验中,试验可能出现的结果,并且X是随着试验的结果的不同而的,这样的变量X叫做一个。
常用表示。
2.如果随机变量X的所有可能的取值,则称X为。
四、典例解析:例1写出下列各随机变量可能取得值:(1)抛掷一枚骰子得到的点数。
(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。
(3)抛掷两枚骰子得到的点数之和。
(4)某项试验的成功率为0.001,在n次试验中成功的次数。
(5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值例2随机变量X为抛掷两枚硬币时正面向上的硬币数,求X的所有可能取值及相应概率。
变式训练一只口袋装有6个小球,其中有3个白球,3个红球,从中任取2个小球,取得白球的个数为X,求X的所有可能取值及相应概率。
例3△ABC中,D,E分别为AB,AC的中点,向△ABC内部随意投入一个小球,求小球落在△ADE 中的概率。
五、当堂检测1.将一颗均匀骰子掷两次,不能作为随机变量的是:()(A)两次出现的点数之和;(B)两次掷出的最大点数;(C)第一次减去第二次的点数差;(D)抛掷的次数。
高中数学随机变量及其分布内容简介

高中数学随机变量及其分布内容简介
随机变量是概率论中的重要概念,指的是一个变量的取值由随机试验的结果决定。
在高中数学中,我们常常接触到一些常见的随机变量及其分布,这些内容是数学学习中的重要一环。
首先,我们要了解离散随机变量及其分布。
离散随机变量是指只取有限个或可数无限个可能值的随机变量。
在离散随机变量的分布中,最常见的是二项分布和泊松分布。
二项分布是指在n次独立重复的伯努利试验中成功的次数的概率分布,而泊松分布则是用于描述单位时间(或单位面积、单位体积)内随机事件发生的次数的分布。
另外,连续随机变量及其分布也是我们需要了解的内容。
连续随机变量是指取值在一段或多段连续区间内的随机变量。
在连续随机变量的分布中,最常见的是正态分布和指数分布。
正态分布是一种在数学、物理、工程领域中非常常见的分布,其形状呈钟形曲线,具有均值和标准差这两个参数。
而指数分布则是描述独立随机事件发生的时间间隔的分布。
在学习高中数学中的随机变量及其分布时,我们需要掌握如何计算随机变量的期望值、方差以及概率分布等重要性质。
通过学习随机变量及其分布,我们可以更好地理解概率论中的概念,为后续的数学学习打下坚实的基础。
总的来说,高中数学中的随机变量及其分布是一项重要的内容,通过学习这一部分知识,我们可以更好地理解概率论的相关概念,提高数学分析和问题解决的能力。
希望同学们能够认真学习这一部分内容,掌握其中的关键知识点,为未来的学习和发展打下良好的基础。