直线与圆知识点及练习

合集下载

直线与圆基础知识点+思维导图练习

直线与圆基础知识点+思维导图练习

6、直线方程的几种形式
直线形式
方程形式
已知条件
名称
点斜式
过点 P(x0 , y0 ) ,斜率为 k
适用范围 斜率存在
斜截式
斜率为 k ,在 y 轴上的截距为 b
斜率存在
一般式
A, B 不同时为 0
适用任何直线
两点式 截距式
过点 P1(x1, y1), P2 (x2 , y2 )
x1 x2 , y1 y2
在 x 轴、 y 轴上的截距分别是 a 、 b 不垂直与坐标轴,
不过原点
30
7、特殊位置的直线方程
(1)若直线垂直于 x 轴,且过点 P(x0 , y0 ) ,则直线方程是

(2)若直线垂直于 y 轴,且过点 P(x0 , y0 ) ,则直线方程是
.
8、两条直线的位置关系 两直线方程
l1 : y k1x b1
时,
两圆相离;当
时,两圆外切;当

时,两圆内切;当
时,两圆内含.
时,两圆相交;
*17、过圆 (x a)2 ( y b)2 r 2 外一点 P(x0 , y0 ) 作圆的两条切线,切点分别为 A, B ,则
A, B 所在直线方程为 (x0 a)(x a) ( y0 b)( y b) r2 .
外切:d=R+r
外离:d>R+r
例 1、点 A(3, 0) 与点 B(7, 2) 的中点坐标为
.
例 2、已知点 A(2, 1) ,点 B(1, 3) ,则| AB |
.
例 3、求直线 l 经过以下两点的斜率及倾斜角.
(1) A(1, 3), B(1,3 3)
(2) A(2, 2), B(2, 2)

(完整版)学生版高中数学必修2直线和圆的位置关系知识点总结经典例题和习题

(完整版)学生版高中数学必修2直线和圆的位置关系知识点总结经典例题和习题

高中数学必修2直线与圆的位置关系【一】、圆的定义及其方程.(1)圆的定义:平面内与定点距离等于定长的点的集合(轨迹)叫做圆,定点叫做圆心,定长就是半径;(圆心是定位条件,半径是定型条件) (2)圆的标准方程: ;圆心),(b a圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x ;圆心 ,半径为 ;【二】、点与圆的位置关系(仅以标准方程为例,其他形式,则可化为标准式后按同样方法处理)设),(00y x P 与圆222)()(r b y a x =-+-;若P 到圆心之距为d ; ①P 在在圆C 外 ; ②P 在在圆C 内 ; ③P 在在圆C 【三】、直线与圆的位置关系:设直线0:=++C By Ax l 和圆222)()(:r b y a x C =-+-,圆心C 到直线l 之距为d ,由直线l 和圆C 联立方程组消去x (或y )后,所得一元二次方程的判别式为∆,则它们的位置关系如下:相离 ;相切 ;相交 ; 注意:这里用d 与r 的关系来判定,称为几何法,只有对圆才实用,也是最简便的方法;利用∆判定称为代数法,对讨论直线和二次曲线的位置关系都适应。

【四】、两圆的位置关系:(1)代数法:解两个圆的方程所组成的二元二次方程组;若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离。

(2)几何法:设圆1O 的半径为1r ,圆2O 的半径为2r①两圆外离 ; ②两圆外切 ; ③两圆相交 ; ④两圆内切 ⑤两圆内含 ;(五)已知圆C:(x-a)2+(y-b)2=r2(r>0),直线L:Ax+By+C=01.位置关系的判定:判定方法1:联立方程组得到关于x(或y)的方程(1)△>0相交;(2)△=0相切;(3)△<0相离。

判定方法2:若圆心(a,b)到直线L的距离为d(1)d<r相交;(2)d=r相切;(3)d>r相离。

人教版数学九年级上册24.2《点和圆、直线和圆的位置关系》知识点+例题+练习(精品)

人教版数学九年级上册24.2《点和圆、直线和圆的位置关系》知识点+例题+练习(精品)

点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。

点直线与圆的位置关系知识点

点直线与圆的位置关系知识点

点直线与圆的位置关系知识点
1. 点与圆的位置关系呀,这可太有意思了!就像你站在一个操场中间(点),操场就是那个圆。

如果你的脚刚好在圆的边上,那就是点在圆上呀!比如你拿着飞盘站在圆形场地边上,这就是点在圆上啦!
2. 当点在圆内的时候呢,就好像你躲在一个帐篷里(圆),这不是很形象嘛!比如说一只小老鼠在一个圆形的碗里面,这就是点在圆内喽!
3. 而点在圆外呢,就像你在操场外面玩耍呀!好比一只小鸟在圆形花园的上方飞翔,这就是点在圆外呀,是不是很容易懂呢?
4. 再来说说直线与圆的位置关系吧!当直线和圆相切的时候,就如同汽车沿着圆形环岛的边缘开过,“唰”地一下,刚刚好!像用圆规画圆时,铅笔沿着边缘走,可不就是相切嘛!
5. 直线与圆相交呢,就好像一根绳子穿过一个圆环,有两个交点哦!比如一根晾衣绳从圆形晾衣架中间穿过,嘿,这不就是相交嘛!
6. 还有直线在圆外的时候呀,就好像路在园子外面延伸。

就好比一条大路离圆形公园远远的,它们没碰上,这就是直线在圆外啦!
我的观点结论就是:点直线与圆的位置关系其实就在我们生活中处处可见,只要用心观察,就能轻松理解和掌握呀!。

直线与圆知识点及经典例题(含答案)

直线与圆知识点及经典例题(含答案)

圆的方程、直线和圆的位置关系【知识要点】一、 圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程222()()x a y b r -+-= 这个方程叫做圆的标准方程。

说 明:1、若圆心在坐标原点上,这时0a b ==,则圆的方程就是222x y r +=。

2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要,,a b r 三个量确定了且r >0,圆的方程就给定了。

就是说要确定圆的方程,必须具备三个独立的条件确定,,a b r ,可以根据条件,利用待定系数法来解决。

(二)圆的一般方程将圆的标准方程222)()(r b y a x =-+-,展开可得02222222=-++--+r b a by ax y x 。

可见,任何一个圆的方程都可以写成 :220x y Dx Ey F ++++= 问题:形如220x y Dx Ey F ++++=的方程的曲线是不是圆? 将方程022=++++F Ey Dx y x 左边配方得:22224()()222D E D E Fx x +-+++=(1)当F E D 422-+>0时,方程(1)与标准方程比较,方程022=++++F Ey Dx y x 表示以(,)22D E--为圆 心,以2242D E F+-为半径的圆。

,(3)当F E D 422-+<0时,方程022=++++F Ey Dx y x 没有实数解,因而它不表示任何图形。

圆的一般方程的定义:当224D E F +->0时,方程220x y Dx Ey F ++++=称为圆的一般方程. 圆的一般方程的特点:(1)2x 和2y 的系数相同,不等于零; (2)没有xy 这样的二次项。

(三)直线与圆的位置关系 1、直线与圆位置关系的种类(1)相离---求距离; (2)相切---求切线; (3)相交---求焦点弦长。

2、直线与圆的位置关系判断方法: 几何方法主要步骤:(1)把直线方程化为一般式,利用圆的方程求出圆心和半径 (2)利用点到直线的距离公式求圆心到直线的距离(3)作判断: 当d>r 时,直线与圆相离;当d =r 时,直线与圆相切;当d<r 时,直线与圆相交。

直线和圆知识点总结

直线和圆知识点总结

直线和圆知识点总结(总11页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除练习一(直线和圆部分)知识梳理1.直线的倾斜角α的范围是 ;求直线斜率的两种方法:①定义:k = ()2πα≠;②斜率公式:k =2121y y x x --12()x x ≠.答案)0,180︒︒⎡⎣ 2.直线方程的几种形式:①点斜式 ,适用范围:不含直线0x x =;特例:斜截式 ,适用范围:不含垂直于x 轴的直线;②两点式 ,适用范围:不含直线112()x x x x =≠和直线112()y y y y =≠;特例:截距式 ,适用范围:不含垂直于坐标轴和过原点的直线; ③一般式 ,适用范围:平面直角坐标系内的直线都适用.3.求过111(,)P x y ,222(,)P x y 的直线方程时:(1)若12x x =,且12y y ≠时,直线垂直于x 轴,方程为1x x =;(2)若12x x ≠,且12y y =时,直线垂直于y 轴,方程为1y y =;(3)若120x x ==,且12y y ≠时,直线即为y 轴,方程为0x =;(4)若12x x ≠,且120y y ==时,直线即为x 轴,方程为0y =。

4.已知直线1l :11y k x b =+,直线2l :22y k x b =+,则①1l 与2l 相交⇔ ; ②1l 与2l 平行⇔ ;③1l 与2l 重合⇔ ; ④1l 与2l 垂直⇔ .5.已知直线1l :1110A x B y C ++=,直线2l :2220A x B y C ++=,则 ①1l 与2l 相交⇔ ; ②1l 与2l 平行⇔ ;③1l 与2l 重合⇔ ; ④1l 与2l 垂直⇔ .6.两点111(,)P x y ,222(,)P x y 之间的距离12=PP ;点(,)P x y ︒︒到直线l :0Ax By C ++=的距离d = ;两平行直线1l :10Ax By C ++=与2l :20Ax By C ++=之间的距离d = .7.圆的标准方程为222()()(0)x a y b r r -+-=>,其中 为圆心, 为半径 ;圆的一般方程为220x y Dx Ey F ++++=表示圆的充要条件是2240D E F +->,其中圆心为 ,半径为 .8.点与圆的位置关系圆的标准方程为222()()x a y b r -+-=,点00(,)M x y ,(1)点在圆上:22200()()x a y b r -+-=;(2)点在圆外:22200()()x a y b r -+->;(3)点在圆内:22200()()x a y b r -+-<。

直线与圆的位置关系知识点及例题

直线与圆的位置关系知识点及例题

直线与圆的地点关系一、知识点梳理1、直线与圆的地点关系:r为半径, d 为圆心到直线的距离图形名称相离相切相交判定d>r d=r d<r交点个数无 1 个 2 个例 1、以下判断正确的选项是()①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,? 则直线与圆订交.A.①②③B.①②C.②③D.③例 2、过圆上一点能够作圆的______条切线;过圆外一点能够作圆的_____条切线;?过圆内一点的圆的切线______.例 3、以三角形一边为直径的圆恰巧与另一边相切,则此三角形是_______.例 4、以下直线是圆的切线的是()A.与圆有公共点的直线B.到圆心的距离等于半径的直线C.垂直于圆的半径的直线D.过圆直径外端点的直线例 5.如下图,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C 与 AB相切2、切线的判断:( 1)依据切线的定义判断:即与圆有一个公共点的直线是圆的切线.( 2)依据圆心到直线的距离来判断:即与圆心的距离等于半径的直线是圆的切线.( 3)依据切线的判断定理来判断:即经过半径的外端而且垂直于这条半径的直线是圆的切线.判断切线经常用的协助线作法:( 1)若直线与圆有公共点时,协助线的作法是“连结圆心和公共点”,再证明直线和半径垂直.(2)当直线与圆并无明确有公共点时,协助线的作法是“过圆心向直线作垂线”再证明圆心到直线的距离等于圆的半径 .例 6、判断以下命题能否正确( 1)经过半径的外端的直线是圆的切线( 2)垂直于半径的直线是圆的切线;( 3)过直径的外端而且垂直于这条直径的直线是圆的切线;( 4)和圆有一个公共点的直线是圆的切线;( 5)以等腰三角形的极点为圆心,底边上的高为半径的圆与底边相切.例 7.OA均分∠BOC,P是OA上任一点(O除外),若以P为圆心的⊙P与OC相离,?那么⊙P与OB的地点关系是()A.相离B.相切C.订交D.订交或相切例 8、如下图,在直角坐标系中,⊙M的圆心坐标为(m,0),半径为2,?假如⊙M与y轴所在直线相切,那么m=______,假如⊙ M与 y 轴所在直线订交,那么m? 的取值范围是_______.例 9、如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BE∥CD,交AC?的延伸线于点E,连结 BC.( 1)求证: BE为⊙ O的切线;1(2)假如 CD=6, tan ∠ BCD= ,求⊙ O的直径.2例 10、如图,已知:△ABC内接于⊙O,点D在OC的延伸线上,sinB=1,∠D=30°.2( 1)求证: AD是⊙ O的切线;(2)若 AC=6,求 AD的长.例 11、如图,P为⊙O外一点,PO交⊙O于C,过⊙O上一点A作弦AB⊥PO于E,若∠ EAC=∠ CAP,求证: PA是⊙ O的切线.3、切线的性质:1、经过切点的半径垂直于圆的切线,经过切点垂直于切线的直线必经过圆心关于切线的性质可分解为:过圆心、过切点、垂直于切线这三个条件中随意两个作为条件,就能够推出第三个作为结论4、切线长定理:切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长切线长定理:从圆外一点能够引圆的两条切线,它们的切线长相等,这点和圆心的连线均分两条切线的夹角.例 12、如图 1, PA、 PB是⊙O 的两条切线、 A、 B 为切点。

高中数学直线和圆知识点总结+习题

高中数学直线和圆知识点总结+习题

直线和圆一.直线1.斜率与倾斜角:tan k θ=,[0,)θπ∈(1)[0,2πθ∈时,0k ≥;(2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k <(4)当倾斜角从0︒增加到90︒时,斜率从0增加到+∞;当倾斜角从90︒增加到180︒时,斜率从-∞增加到02.直线方程(1)点斜式:)(00x x k y y -=-(2)斜截式:y kx b =+(3)两点式:121121x x x x y y y y --=--(4)截距式:1x y a b +=(5)一般式:0C =++By Ax 3.距离公式(1)点111(,)P x y ,222(,)P x y 之间的距离:12PP =(2)点00(,)P x y 到直线0Ax By C ++=的距离:d =(3)平行线间的距离:10Ax By C ++=与20Ax By C ++=的距离:d =4.位置关系(1)截距式:y kx b =+形式重合:1212k k b b ==相交:12k k ≠平行:1212 k k b b =≠垂直:121k k ⋅=-(2)一般式:0Ax By C ++=形式重合:1221A B A B =且1221A C A C =且1212B C C B =平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠垂直:12120A AB B +=相交:1221A B A B ≠5.直线系1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l )二.圆1.圆的方程(1)标准形式:222()()x a y b R -+-=(0R >)(2)一般式:220x y Dx Ey F ++++=(2240D E F +->)(3)参数方程:00cos sin x x r y y r θθ=+⎧⎨=+⎩(θ是参数)【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决.(4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--=2.位置关系(1)点00(,)P x y 和圆222()()x a y b R -+-=的位置关系:当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外(2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系:判断圆心(,)O a b 到直线0Ax By C ++=的距离d =R 的大小关系当d R <时,直线和圆相交(有两个交点);当d R =时,直线和圆相切(有且仅有一个交点);当d R <时,直线和圆相离(无交点);判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.(2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.3.圆和圆的位置关系判断圆心距12d O O =与两圆半径之和12R R +,半径之差12R R -(12R R >)的大小关系当12d R R >+时,两圆相离,有4条公切线;当12d R R =+时,两圆外切,有3条公切线;当1212R R d R R -<<+时,两圆相交,有2条公切线;当12d R R =-时,两圆内切,有1条公切线;当120d R R ≤<-时,两圆内含,没有公切线;4.当两圆相交时,两圆相交直线方程等于两圆方程相减5.弦长公式:l =例题:例1若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.例2已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.例3设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.例4若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.例5已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程;(2)求证:直线AB 恒过定点.例6过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为________.例7圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.例8圆心在原点且与直线x +y -2=0相切的圆的方程为____________________.例9已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________.例10(1)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.例11已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.例12已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.例13平面直角坐标系xoy 中,直线10x y -+=截以原点O (1)求圆O 的方程;(2)若直线l 与圆O 切于第一象限,且与坐标轴交于D ,E ,当DE 长最小时,求直线l 的方程;(3)设M ,P 是圆O 上任意两点,点M 关于x 轴的对称点为N ,若直线MP 、NP 分别交于x 轴于点(m ,0)和(n ,0),问mn 是否为定值?若是,请求出该定值;若不是,请说明理由.例14圆x 2+y 2=8内一点P (-1,2),过点P 的直线l 的倾斜角为α,直线l 交圆于A 、B 两点.(1)当α=43π时,求AB 的长;(2)当弦AB 被点P 平分时,求直线l 的方程.例15已知半径为5的动圆C 的圆心在直线l :x -y +10=0上.(1)若动圆C 过点(-5,0),求圆C 的方程;(2)是否存在正实数r ,使得动圆C 中满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个,若存在,请求出来;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆、圆与圆的位置关系●直线与圆的位置关系设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),设d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.●圆与圆的位置关系(1)设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r>0).(2)不能用代数法准确判断两圆的位置关系当方程组有一解时,两圆可能是内切也可能是外切;当方程组无解时,两圆可能是内含,也可能是相离,故用代数法不能准确判断两圆的位置关系.●直线被圆截得的弦长(1)几何方法运用弦心距d、半径r及弦的一半构成的直角三角形,用勾股定理计算弦长(2)代数方法已知直线l的方程:y=kx+m,圆C的方程:x2+y2+Dx+Ey+F=0,将直线方程代入圆的方程中得:ax2+bx+c=0,设x A、x B是方程的两根.则弦长|x A-x B|·a.●圆系问题(1)过圆C:x2+y2+Dx+Ey+F=0与直线l:Ax+By+C=0交点的圆系方程为:x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ∈R).(2)过两圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程为:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1),此圆系不包括圆C2.若λ=-1,则方程为(D1-D2)x+(E1-E2)y+F1-F2=0表示两圆交点的直线方程,即两圆公共弦所在的直线方程.应用圆系方程,可使一些题目迎刃而解.易错点一忽视数形结合导致产生增解失误自我诊断①与直线x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是__________.答案:(x-2)2+(y-2)2=2易错点二忽视特殊位置关系导致解题失误自我诊断②过点(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于A、B两点,如果|AB|=8,则l的方程为______________________________.解析:圆的标准方程为(x+1)2+(y-2)2=25,若|AB|=8,只需保证圆心(-1,2)到直线l的距离等于3,过点(-4,0)的直线方程为y=k(x+4)和x=-4,显然x=-4与(-1,2)的距离为3,满足题意.=3,得k=-512,从而直线方程为5x+12y+20=0.答案:5x+12y+20=0或x+4=0题型一直线与圆相交问题【例1】已知直线l:(2m+1)x+(m+1)y=7m+4(m∈R),圆C:(x-1)2+(y-2)2=25.(1)证明:无论m为何实数l与圆C必相交;(2)求直线l被圆C截得的弦长的最小值及此时m的值. 解析:(1)直线l的方程变形为(2x+y-7)m+(x+y-4)=0.对任意实数m方程成立,∴2x y70,x y40,+-=⎧⎨+-=⎩解得x3y1.=⎧⎨=⎩,∴对任意实数m,直线l恒过定点P(3,1).又5,∴P点在圆C内.∴直线l与圆C必相交.(2)k PC=-12,当l⊥PC时,所截得的弦长最短.∵l的斜率k=-2m1 m1++,∴由k·k PC=-1得m=-34.此时最短弦长为规律方法:①若对于任意的实数m,直线l与圆相交于两点,那么直线l必过圆内一定点.②过圆内一点最短的弦应是与过这点和圆心的连线垂直的弦.③求直线被圆所截得的弦长时,通常考虑弦心距、半弦长及半径构成的直角三角形,利用勾股定理求得弦长.创新预测1已知直线x-my+3=0和圆x2+y2-6x+5=0.(1)当直线与圆分别相交、相切、相离时,求实数m的取值范围;(2)当实数m取何值时?题型二直线与圆相切问题【例2】已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.(1)求过M点的圆的切线方程;(2)若直线ax-y+4=0与圆相切,求a的值.规律方法:求过一定点的圆的切线方程,首先必须判断此点是否在圆上.若在圆上,则该点为切点;若在圆外,切线应有两条.一般用“圆心到切线的距离等于半径长”来解较为简单.若求出的斜率只有一个,应找出过这一点与x轴垂直的另一条切线.创新预测2自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在直线的方程.题型三弦长与中点弦问题【例3】已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.(1)若直线l过点P且被圆C截得的线段长为43,求l的方程;(2)求过P点的圆C的弦的中点的轨迹方程.规律方法:在研究与弦的中点有关的问题时,注意运用“平方差法”,即设弦AB两端点的坐标分别为A(x1,y1),B(x2,y2),中点为(x0,y0),由2221122222x y rx y r⎧+=⎨+=⎩得k=1212y yx x--=-1212x xy y++=-0xy.该法常用来解决与弦的中点、直线的斜率有关的问题.OA⊥OB(O为原点)可转化为x1x2+y1y2=0,再结合根与系数的关系等代数方法简化运算过程,这在解决垂直关系中是常用的.创新预测3已知圆C:x2+y2+2x-4y+3=0.(1)若不过原点的直线l与圆C相切,且在x轴,y轴上的截距相等,求直线l的方程;(2)从圆C外一点P(x,y)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求点P 的轨迹方程.题型四圆与圆的位置关系【例4】已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)求m=45时两圆的公共弦所在直线的方程和公共弦的长.规律方法:应注意两圆位置由圆心距和两半径的和与差来确定,从而确定切线的条数.求公共弦方程时,只需将两圆方程相减即可.创新预测4 圆O1的方程为x2+(y+1)2=4,圆O2的圆心O2(2,1).(1)若圆O2与圆O1外切,求圆O2的方程,并求内公切线方程;(2)若圆O2与圆O1交于A、B两点,且O2的方程.一、选择题:每小题6分,共36分.1.(2009·湖南长郡模拟)直线l:y-1=k(x-1)和圆x2+y2-2y=0的位置关系是( )A.相离B.相切或相交C.相交D.相切答案:C解析:l过定点A(1,1),∵12+12-2×1=0,∴点A在圆上.∵直线x=1过点A且为圆的切线,又l斜率存在,∴l与圆一定相交.2.(2009·浙江杭州二中模拟)以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程为( )A.(x-2)2+(y+1)2=3B.(x+2)2+(y-1)2=3C.(x-2)2+(y+1)2=9D.(x+2)2+(y-1)2=9答案:C解析:点(2,-1)到3x-4y+5=0的距离即为半径=3,∴方程为(x-2)2+(y+1)2=9.3.(2009·山东临沂一模)已知点P(x,y)是直线l:kx+y+4=0(k>0)上一动点,PA、PB是圆C:x2+y2-2y=0的两条切线,A、B是切点,若四边形PACB的最小面积是2,则k的值为( )B.2D.2 答案:D4.(2009·江西抚州一中模拟)已知向量a=(sinα,cosα),βsinβ),若向量a与b 的夹角为23π,则直线xcosβ+ysinβ+1=0与圆(x-sinα)2+(y-cosα)2=14的位置关系是( )A.相离B.相切C.相交D.不能确定答案:B5.(2009·天津和平区一模)过点(0,-1)作直线l与圆x2+y2-2x-4y-20=0交于A、B两点,如果|AB|=8,则直线l的方程为( )A.3x+4y+4=0B.3x-4y-4=0C.3x+4y+4=0或y+1=0D.3x-4y-4=0或y+1=0答案:C6.(2010·山东枣庄模拟)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|OA+OB|=|OA-OB |,其中O为坐标原点,则实数a的值为( )A.2B.±2C.-2D.答案:B解析:如图,作平行四边形OADB,则OA+OB=OD,OA-OB=BA,∴|OD|=|BA|.又|OA|=|OB|,∴四边形OADB为正方形,易知|OA|为直线在y轴上的截距大小,a=2.验证a=-2时,成立.二、填空题:每小题6分,共18分.7.(2009·江苏通州调研)若直线ax+by=1与圆x2+y2=1相切,则实数ab的取值范围是_____________.答案:[-12,12]8.(2009·东北三校联考)与圆x2+(y-2)2=1相切,且在两坐标轴上截距相等的直线共有__________答案:49.(2009·天津模拟)圆x2+y2+2x-6y-15=0与直线(1+3m)x+(3-2m)y+4m-17=0的交点个数是____________.答案:2解析:直线l:(3x-2y+4)m+x+3y-17=0,由3x2y40,x3y170,-+=⎧⎨+-=⎩得x2,y 5.=⎧⎨=⎩∴直线过定点A(2,5).∵22+52+4-30-15=-12<0,∴A在圆内,故直线与圆有两个交点.三、解答题:10、11题每题15分,12题16分,共46分.10.(2009·黑龙江双鸭山模拟)求圆心在直线x+y=0上,且过圆x2+y2-2x+10y-24=0与圆x2+y2+2x+2y-8=0的交点的圆的方程.11.(2009·浙江金华模拟)设点F(0,32),动圆P经过点F且和直线y=-32相切,记动圆的圆心P的轨迹为曲线w.(1)求曲线w的方程;(2)过点F作互相垂直的直线l1、l2,分别交曲线w于A、C和B、D四个点,求四边形ABCD面积的最小值.12.(2009·天津汉沽一中第六次月考)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.解析:(1)将圆C配方得(x+1)2+(y-2)2=2.①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,即k=2y=(2②当直线在两坐标轴上的截距不为零时,设直线方程为x+y-a=0, 由直线与圆相切得x+y+1=0或x+y-3=0.(2)由|PO|=|PM|得x21+y21=(x1+1)2+(y1-2)2-2⇒2x1-4y1+3=0.即点P在直线l:2x-4y+3=0上,当|PM|取最小值时即|OP|取得最小值,直线OP⊥l,∴直线OP的方程为2x+y=0.解方程组2x y0,2x4y30,+=⎧⎨-+=⎩得P点坐标为(-310,35).。

相关文档
最新文档