《反比例函数的意义》教学设计

合集下载

反比例函数的意义教学设计

反比例函数的意义教学设计

《反比例函数的意义》教学设计一、教学目标1.知识与技能目标:使学生理解并掌握反比例函数的概念,能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。

2.过程与方法目标:观察,诱导,讨论,分析,总结。

3. 情感、态度与价值观目标:培养学生的自学能力、观察能力,激发学习兴趣,树立正确的学习态度,有远大的理想观。

二、教学重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式。

2.难点:理解反比例函数的概念。

三、教学活动设计1、复习巩固旧知识,创设问题情境,合理导入新课(1)回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?(2) 设计三个新颖熟悉的实际问题 ,激发学生的求知欲下列问题中,变量间的对应关系可以用怎样的函数关系表示?A 、刘翔在2004年雅典奥运会110 m 栏比赛中以12.91s 的成绩夺得金牌,被称为中国“飞人” .如果刘翔在比赛中跑完全程所用的时间为t s ,平均速度为v m/s .t v 110= 或 vt=110B 、某住宅小区要种植一个面积1000m 2的矩形草坪,草坪的长为y 随宽x 的变化;x y 1000= 或 xy=1000C 、已知北京市的总面积为1.68×104平方千米,人均占有的土地面积s(单位:平方千米/人)随全市总人口n(单位:人)的变化而变化n s 41068.1⨯= 或 sn=1.68×1042、引出新课,讲解例题,随堂练习巩固上面的问题中我们得到这样的三个函数, 函数关系式形式上有什么的共同点? t v 110= x y 1000= n s 41068.1⨯=反比例函数的定义:一般地,形如xk y =(k 是常数,k ≠0)的函数称为反比例函数,其中x 是自变量, y 是x 的反比例函数. K 叫比例系数反比例函数的自变量的取值范围: x ≠0x k y =-1 k xy = 例1、下列函数中哪些是反比例函数? 哪些是一次函数?y = 3x-1 y = 2x x y 23= y = 3x x y 1-= xy 31= x y 5= 5x y = -xy=2 3xy=-7 -y=x 51- y=-6x+3 x y 4.0=练习1、下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少?(1)x y 4= (2) x y 21-= (3) x y -=1 (4) 1=xy (5) 2x y = 练习2、关系式xy+4=0中y 是x 的反比例函数吗?若是,比例系数k 等于多少?若不是,请说明理由。

反比例函数的意义教学设计

反比例函数的意义教学设计
概念:如果两个变量x,y之间的关系可以表示成 的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零。
学生探究反比例函数变量的相依关系,领会其概念。
二、联系生活、丰富联想
做一做
1.一个矩形的面积为1000平方米,相邻的两条边长分别为xm和ycm。那么变量y是变量x的函数吗?为什么?
学生先独立思考,再进行全班交流。
学生先独立练习,而后再同桌交流,上讲台演示。
三、举例应用 创新提高:
例1.(补充)下列等式中,哪些是反比例函数
(1) (2) (3)xy=21(4) (5)
(6) (7)y=x-4
分析:根据反比例函数的定义,关键看上面各式能否改写成 (k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是 ,分子不是常数,只有(2)、(3)、(5)能写成定义的形式
例2.(补充)当m取什么值时,函数 是反比例函数?
分析:反比例函数 (k≠0)的另一种表达式是 (k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误。
解得m=-2
例3.(补充)已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5
情感态度与价值观
培养观察、推理、分析能力,体验数形结合的数学思想,认识反比例函数的应用价值。
重点
理解反比例函数的概念,能根据已知条件写出函数解析式
难点
理解反比例函数的概念
教学过程
教学设计 与 师生互动
备 注
一、创设情境、导入新课
利用幻灯片给出6个生活情景
在上面所列出函数中哪些是我们学过的函数?

人教版数学九年级下册26.1.1《反比例函数的意义》教案

人教版数学九年级下册26.1.1《反比例函数的意义》教案

人教版数学九年级下册26.1.1《反比例函数的意义》教案一. 教材分析人教版数学九年级下册第26.1.1节《反比例函数的意义》是本册教材中的重要内容,主要介绍了反比例函数的定义、性质及图象。

本节内容是在学生已经掌握了函数概念、正比例函数的基础上进行的,为后续学习函数的应用打下基础。

二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数有一定的了解。

但是,对于反比例函数的概念和性质,学生可能较为抽象,难以理解。

因此,在教学过程中,需要引导学生通过实例去感知反比例函数的意义,从而更好地理解反比例函数的性质。

三. 教学目标1.理解反比例函数的概念,掌握反比例函数的性质。

2.能够运用反比例函数解决实际问题。

3.培养学生的抽象思维能力,提高学生解决问题的能力。

四. 教学重难点1.反比例函数的概念理解。

2.反比例函数的性质掌握。

3.反比例函数在实际问题中的应用。

五. 教学方法采用情境教学法、实例教学法和小组合作学习法,引导学生通过观察、分析、归纳等方法,自主探究反比例函数的意义和性质。

六. 教学准备1.准备相关的生活实例和图片。

2.准备反比例函数的PPT课件。

3.准备练习题和拓展题。

七. 教学过程1. 导入(5分钟)利用生活实例引入反比例函数的概念,如“一辆汽车以60公里/小时的速度行驶,行驶1小时,所行的路程是多少?”引导学生思考,引出反比例函数的概念。

2. 呈现(10分钟)通过PPT课件,展示反比例函数的定义和性质,引导学生观察、分析,从而理解反比例函数的意义。

3. 操练(10分钟)让学生独立完成教材中的练习题,巩固反比例函数的概念和性质。

教师巡回指导,解答学生的疑问。

4. 巩固(10分钟)以小组合作学习的方式,让学生探讨反比例函数在实际问题中的应用。

教师提供一些实际问题,如“一块长方形的土地,面积一定,长和宽的关系是什么?”让学生分组讨论,寻找解决问题的方法。

5. 拓展(10分钟)让学生进一步探讨反比例函数的性质,如反比例函数的图象特征等。

17.1.1反比例函数的意义教学设计

17.1.1反比例函数的意义教学设计

教学设计
用待定系数法求函数的解析式
(1).写出这个反比例函数的表达式;
(2).根据函数表达式完成上表.




教师分配展示任务,各小组派代表分组展示。

反馈提高课堂练习
1、y是x的反比例函数,当x=3时,y=-6.
(1)写出y与x的函数关系式.
(2)求当y=4时x的值.
2、y是x2的反比例函数,当x=3时,y=4.
(1)求y与x的函数关系式.
(2)当x=-2时,求y的值.
3已知函数y=y1+y2,y1与x+1成正比例,y2与x成反比例,
且当x=1时,y=0;当x=4时,y=9,求当x=-1时y的值
是多少?
注意:设
y1与y2的
函数解析
式时比例
系数要用
不同的字
母表示。

板书
设计
17.1.1反比例函数的意义
定义例1:
教学
反思。

反比例函数的意义教案

反比例函数的意义教案

反比例函数的意义教学设计一、教学目标1.知识和技能:理解反比例函数的概念,能用待定系数法求反比例函数的解析式,根据已知条件会求对应量的值。

2.过程和方法:让学生经历从实际问题中抽象出反比例函数模型的过程,理解反比例函数的意义,体会数学在解决实际问题中的作用。

3.情感态度:经历反比例函数概念的形成过程体会数学学习的重要性,提高学生学习数学的兴趣;通过学习反比例函数,培养学生合作交流意识和探索精神。

二、教学重点、难点重点:理解反比例函数的概念,确定反比例函数解析式。

难点:理解反比例函数的意义。

三、教学方法小组讨论法、讲授法。

四、教学过程(一)生活情境引入1.问题(1)京沪铁路全程为1 463km,某次列车的平均速度v(km/h)随此次列车的全程运行时间t(h)的变化而变化;(2)某住宅小区要种植一个面积为1 000m的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化;(3)已知北京市的总面积为1.68x104平方千米,人均占有的土地面积s(单位:平方千米/人)随全市总人口n(单位:人)的变化而变化。

2.上面函数关系式形式上有什么共同特征?(二)探索新知师生归纳反比例函数的意义: 一般地,形如y=xk ( k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是x 的函数,自变量x 的取值范是不等于零的全体实数。

(三)巩固新知1、下列哪些等式中的y 是x 的反比例函数(1)y=3x- 1 (2) y=2x (3)y=x 23 (4)y=3x (5)y=-x 1 (6) y=x 31 (7) y=x 5 (8)y=2x (9)-xy=2(10) 3xy=-7 (11)y=x4.0 (12)y=-6x+3 (四)例题讲解例1、(1)已知y 是x 的反比例函数,当x=2时,y=6。

①写出y 与x 的函数解析式;②求当x=4时y 的值。

分析:因为y 是x 的反比例函数,所以设y= xk , 再把x=2和y=6代入上式就可求出常数k 的值。

《反比例的意义》教学设计3篇

《反比例的意义》教学设计3篇

《反比例的意义》教学设计3篇在教学工作者开展教学活动前,总不可避免地需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。

那么什么样的教学设计才是好的呢?下面是小编为大家收集的《反比例的意义》教学设计,仅供参考,希望能够帮助到大家。

《反比例的意义》教学设计1教学内容:《反比例的意义》是六年制小学数学(人教版)第十二册第一单元《比例》中的内容。

是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。

学生分析:在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

设计理念:学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。

在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。

教学目标:1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。

2.引导学生揭示知识间的联系,培养学生分析判断、推理能力教学流程:一、复习铺垫,猜想引入师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?2.猜想师:今天我们要学习一种新的比例关系——反比例关系。

(板书:反比例)师:从字面上看“反比例”与“正比例”会是怎样的关系?生:相反的。

师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?生:(略)反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。

二、提供材料,组织研究1.探究反比例的意义师:大家的猜想是否合理,还需要进一步证明。

反比例函数的意义的教案

反比例函数的意义的教案

反比例函数的意义的教案一、教学目标1.知识目标:了解反比例函数的定义及特点,掌握反比例函数的画法和性质。

2.能力目标:能够应用反比例函数解决实际问题。

3.情感目标:培养学生对数学问题的兴趣和探究精神。

二、教学重难点1.重点:反比例函数的定义及性质,反比例函数的图像特点。

2.难点:如何应用反比例函数解决实际问题。

三、教学准备1.教学工具:电脑、投影仪、教学画板、教学PPT等。

2.教学材料:教材《高中数学》,反比例函数相关题目。

四、教学过程Step 1: 导入新知1.教师通过投影仪展示一对数值:y和x,并引导学生观察y与x之间的关系。

2.学生观察后,教师向学生提问:“你们发现y与x之间有什么规律呢?”学生回答后,导出反比例函数的概念。

Step 2: 反比例函数的定义及性质1.教师向学生介绍反比例函数的定义:“若两个变量x和y之间的关系可以用y=k/x表示,其中k为非零常数,那么我们称y与x成反比例关系,函数y=k/x称为反比例函数。

”2.通过几个实例,让学生自主探究反比例函数与比例函数之间的不同。

3.教师给出反比例函数的性质,并用具体例子进行说明和讲解。

Step 3: 反比例函数的画法和图像特点1.教师通过实例引导学生画出反比例函数y=k/x的图像,并让学生观察图像的特点。

2.学生观察后,教师向学生提问:“你们发现了什么规律呢?”学生回答后,导出反比例函数的图像特点。

Step 4: 实际问题中的应用1.教师通过实际问题,让学生应用反比例函数解决实际问题。

2.学生分组讨论,并给出解决实际问题的步骤。

3.学生展示并交流各自的解决方案。

Step 5: 归纳复习1.教师总结反比例函数的定义及性质。

2.学生回答总结问题,并巩固所学知识点。

五、板书设计性质1:y与x成反比例关系性质2:反比例函数的图像是一条经过原点的曲线性质3:反比例函数的图像关于y轴对称性质4:y=k/x的图像在第一象限和第三象限都是上升曲线,在第二象限和第四象限都是下降曲线六、教学反思通过本节课的教学,学生对反比例函数的定义和性质有了初步的了解,并能够应用反比例函数解决实际问题。

《反比例函数意义》教案教学设计.doc

《反比例函数意义》教案教学设计.doc

《反比例函数的意义》教学设计一、内容和内容解析1.内容反比例函数的意义.2.内容解析本课是反比例函数这一章的第一课时,其主要功能是在学生学习过的一次函数的基础上,通过实际例子帮助学生认识并归纳出反比例函数的意义.反比例函数作为初中三个基本函数(还有一次函数和二次函数)中最特殊的一个,明确其意义是最为重要的内容.另外本节课的学习可以给学生研究其它函数做好引领工作,帮助他们养成良好的思维品质和学习习惯.学生需要对从实际问题中得出的三个关系式进行观察、归纳,结合已学知识来得出反比例函数的概念,并且深入的理解其意义.在此过程中,教师需要给学生一些必要的指引,具体到课堂教学实际中就是通过问题的引领,帮助学生做好问题的探究.学生是这个环节的主体,教师是辅助者,在实际教学中要尊重学生所提出的问题和看法,不应该把教师的观点强加给学生.基于以上分析,确定本节课的教学重点为:理解反比例函数的概念.二、目标和目标解析1.教学目标(1)理解反比例函数的意义;(2)能够根据已知条件确定反比例函数的解析式.2.目标解析达成目标(1)的标志是:通过对实际问题和数学问题的分析,抽象概括得出反比例函数的概念,知道自变量和对应函数成反比例的特征.达成目标(2)的标志是:能根据问题中的变量关系,确定反比例函数的解析式.三、教学问题诊断分析学生已经学习过了一次函数、二次函数、分式等预备知识,对函数的图象、性质和特征具有了一定的认知能力.再加上小学已经学习过的反比例关系,学生对反比例函数的引入不会感到突然.在对实际问题和数学问题进行分析过程中,需加强对函数概念的理解:对于自变量每一个确定的值,有唯一确定的值与之对应.反比例函数与一次函数、二次函数的不同在于两个变量的乘积为定值.同时,学习过程中要回顾类比反比例关系,分式的概念及其运算.但是反比例函数与学生已学过的一次函数、二次函数有着根本的不同.虽然从形式上和正比例函数很类似,但是其自变量取值范围不再是全体实数,所以相比于学生熟悉的函数类型,反比例函数的研究方式会有所不同,而本节课的学习就是所有这些改变的起点.本课的教学难点是:抽象得到反比例函数概念的过程.四、教学过程设计1.创设情境,引入新知问题1京广高铁全程为2 298km,某次列车的平均速度v(单位:km/h)与此次列车的全程运行时间t(单位:h)有什么样的关系?问题2冷冻一个0℃的物体,使它的温度下降到零下273℃,每分钟变化的温度(单位:℃)与冷冻时间(单位:分)有什么样的关系?师生活动:教师提出问题,学生思考、得出答案.教师板书学生给出的答案,同时提醒学生关注零下273℃的表示方法.设计意图:用实际问题引出现实中的反比例关系,为后续的反比例函数的意义教学做好铺垫.创设问题情境,让学生感受量与量之间的函数关系,体会实际问题中蕴涵的函数关系,激发探究兴趣.2.观察感知,理解概念针对学生的答案,提出一系列问题:问题3这些关系式有什么共同点?问题4这两个量之间是否存在函数关系?问题4.1这个变化过程中的常量和变量分别是什么?问题4.2变量x、y在什么范围内变化?问题4.3 y是x的函数吗?师生活动:教师针对学生的答案进行提问,引导学生进行思考,并鼓励学生提出问题,以推动对问题的进一步思考.开始渗透研究函数的一般步骤,帮助学生探究函数关系.学生需要调动原有知识储备,经过思考和讨论来回答问题.设计意图:通过对问题的讨论分析,让学生学会用函数的观点分析生活中变量之间的关系,并能够用反比例关系式表示出来,初步建立反比例函数的模型.3.归纳概括, 建立模型问题5这个函数应该如何表示?问题6你能给这个函数起个名字吗?归纳整理出反比例函数的意义:一般地,形如(为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.师生活动:教师提出问题,学生思考、议论后交流.教师应引导学生用规范的数学语言表达反比例函数的概念,并引导学生发现自变量x的取值范围是不等于0的一切实数.设计意图:使学生从上述不同的数学关系式中抽象出反比例函数的一般形式,让学生感受反比例函数的基本特征,发展学生用数学语言描述反比例函数的能力,体会从实际问题中抽象出反比例函数的方法.4.分析例题, 培养能力例1 已知y是x的反比函数,并且当x=2时,y=6.(1)写出y关于x的函数解析式.(2)当x=4时,求y的值.师生活动:教师提出问题,学生思考、交流,解答问题.教师引导学生理解“y是x的反比函数”这句话的意义,总结得出求反比例函数解析式的方法,正确用反比例函数解析式解决问题.设计意图:使学生会根据已知条件求反比例函数的解析式,进一步熟悉函数值的求法.例2已知与成反比例,并且当时,(1)写出和的函数解析式;(2)求当时的值.师生活动:教师提出问题,学生独立思考,解答问题.教师巡视学生完成情况,并请学生展示解答过程,给予适当评价.设计意图:已知条件中y与成反比例. 设为(k≠0),看作整体,进一步加深对反比例函数概念理解,明确反比例与反比例函数的区别和联系,并会解决实际问题.5.归纳小结,反思提高教师与学生一起回顾本课所学主要内容,并请学生回答以下问题:(1)我们今天学习了反比例函数的哪些知识?如何获得反比例函数的概念?(2)反比例函数中的两个变量的关系是什么?(3)反比例函数对自变量取值有何要求?(4)如何根据已知条件求反比例函数的解析式?设计意图:让学生能够梳理知识体系,进一步加深对知识的理解.6.布置作业教科书习题26.1 复习巩固第1,2题.五、目标检测设计设计意图:进一步明晰概念,用反比例函数的概念判定函数是否为反比例函数:从形式上看是写成一般式,实质上是两个变量的乘积为定值.2.已知y与x?成反比例,并且当=2时,y=-6.(1)写出y关于的函数解析式;(2)当=4时,求y的值;(3)当y=4时,求x的值.设计意图:进一步加深概念理解,明确反比例与反比例函数的区别和联系,并会解决实际问题.精品文档。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《反比例函数的意义》教学设计
一、内容和内容解析
1.内容
反比例函数的意义.
2.内容解析
本课是反比例函数这一章的第一课时,其主要功能是在学生学习过的一次函数的基础上,通过实际例子帮助学生认识并归纳出反比例函数的意义.反比例函数作为初中三个基本函数(还有一次函数和二次函数)中最特殊的一个,明确其意义是最为重要的内容.另外本节课的学习可以给学生研究其它函数做好引领工作,帮助他们养成良好的思维品质和学习习惯.
学生需要对从实际问题中得出的三个关系式进行观察、归纳,结合已学知识来得出反比例函数的概念,并且深入的理解其意义.在此过程中,教师需要给学生一些必要的指引,具体到课堂教学实际中就是通过问题的引领,帮助学生做好问题的探究.学生是这个环节的主体,教师是辅助者,在实际教学中要尊重学生所提出的问题和看法,不应该把教师的观点强加给学生.
基于以上分析,确定本节课的教学重点为:理解反比例函数的概念.
二、目标和目标解析
1.教学目标
(1)理解反比例函数的意义;
(2)能够根据已知条件确定反比例函数的解析式.
2.目标解析
达成目标(1)的标志是:通过对实际问题和数学问题的分析,抽象概括得出反比例函数的概念,知道自变量和对应函数成反比例的特征.
达成目标(2)的标志是:能根据问题中的变量关系,确定反比例函数的解析式.
三、教学问题诊断分析
学生已经学习过了一次函数、二次函数、分式等预备知识,对函数的图象、性质和特征具有了一定的认知能力.再加上小学已经学习过的反比例关系,学生对反比例函数的引入不会感到突然.在对实际问题和数学问题进行分析过程中,需加强对函数概念的理解:对于自
变量每一个确定的值,有唯一确定的值与之对应.反比例函数与一次函数、二次函数的不同在于两个变量的乘积为定值.同时,学习过程中要回顾类比反比例关系,分式的概念及其运算.
但是反比例函数与学生已学过的一次函数、二次函数有着根本的不同.虽然从形式上和正比例函数很类似,但是其自变量取值范围不再是全体实数,所以相比于学生熟悉的函数类型,反比例函数的研究方式会有所不同,而本节课的学习就是所有这些改变的起点.本课的教学难点是:抽象得到反比例函数概念的过程.
四、教学过程设计
1.创设情境,引入新知
问题1京广高铁全程为2 298km,某次列车的平均速度v(单位:km/h)与此次列车的全程运行时间t(单位:h)有什么样的关系?
问题2冷冻一个0℃的物体,使它的温度下降到零下273℃,每分钟变化的温度(单位:℃)与冷冻时间(单位:分)有什么样的关系?
师生活动:教师提出问题,学生思考、得出答案.教师板书学生给出的答案,同时提醒学生关注零下273℃的表示方法.
设计意图:用实际问题引出现实中的反比例关系,为后续的反比例函数的意义教学做好铺垫.创设问题情境,让学生感受量与量之间的函数关系,体会实际问题中蕴涵的函数关系,激发探究兴趣.
2.观察感知,理解概念
针对学生的答案,提出一系列问题:
问题3这些关系式有什么共同点?
问题4这两个量之间是否存在函数关系?
问题4.1这个变化过程中的常量和变量分别是什么?
问题4.2变量x、y在什么范围内变化?
问题4.3 y是x的函数吗?
师生活动:教师针对学生的答案进行提问,引导学生进行思考,并鼓励学生提出问题,以推动对问题的进一步思考.开始渗透研究函数的一般步骤,帮助学生探究函数关系.学生需要调动原有知识储备,经过思考和讨论来回答问题.
设计意图:通过对问题的讨论分析,让学生学会用函数的观点分析生活中变量之间的关系,并能够用反比例关系式表示出来,初步建立反比例函数的模型.
3.归纳概括, 建立模型
问题5这个函数应该如何表示?
问题6你能给这个函数起个名字吗?
归纳整理出反比例函数的意义:
一般地,形如(为常数,)的函数称为反比例函数,其中是自变量,
是函数,自变量的取值范围是不等于0的一切实数.
师生活动:教师提出问题,学生思考、议论后交流.教师应引导学生用规范的数学语言表达反比例函数的概念,并引导学生发现自变量x的取值范围是不等于0的一切实数.设计意图:使学生从上述不同的数学关系式中抽象出反比例函数的一般形式,让学生感受反比例函数的基本特征,发展学生用数学语言描述反比例函数的能力,体会从实际问题中抽象出反比例函数的方法.
4.分析例题, 培养能力
例1 已知y是x的反比函数,并且当x=2时,y=6.
(1)写出y关于x的函数解析式.
(2)当x=4时,求y的值.
师生活动:教师提出问题,学生思考、交流,解答问题.教师引导学生理解“y是x的反比函数”这句话的意义,总结得出求反比例函数解析式的方法,正确用反比例函数解析式解决问题.
设计意图:使学生会根据已知条件求反比例函数的解析式,进一步熟悉函数值的求法.
例2已知与成反比例,并且当时,
(1)写出和的函数解析式;
(2)求当时的值.
师生活动:教师提出问题,学生独立思考,解答问题.教师巡视学生完成情况,并请学生展示解答过程,给予适当评价.
设计意图:已知条件中y与成反比例. 设为(k≠0),看作整体,进一步加深对反比例函数概念理解,明确反比例与反比例函数的区别和联系,并会解决实际问题.5.归纳小结,反思提高
教师与学生一起回顾本课所学主要内容,并请学生回答以下问题:
(1)我们今天学习了反比例函数的哪些知识?如何获得反比例函数的概念?
(2)反比例函数中的两个变量的关系是什么?
(3)反比例函数对自变量取值有何要求?
(4)如何根据已知条件求反比例函数的解析式?
设计意图:让学生能够梳理知识体系,进一步加深对知识的理解.
6.布置作业
教科书习题26.1 复习巩固第1,2题.
五、目标检测设计
设计意图:进一步明晰概念,用反比例函数的概念判定函数是否为反比例函数:从形式上看是写成一般式,实质上是两个变量的乘积为定值.
2.已知y与x?成反比例,并且当=2时,y=-6.
(1)写出y关于的函数解析式;
(2)当=4时,求y的值;
(3)当y=4时,求x的值.
设计意图:进一步加深概念理解,明确反比例与反比例函数的区别和联系,并会解决实际问题.。

相关文档
最新文档