高二数学不等式练习题及答案
高二数学分式不等式试题答案及解析

高二数学分式不等式试题答案及解析1.不等式的解集是()A.(,+)B.(3,+)C.(﹣,﹣3)∪(4,+)D.(﹣,﹣3)∪(,+)【答案】D【解析】不等式等价于,方程的根为,因此不等式的解集.【考点】一元二次不等式的解法.2.不等式的解集是.【答案】【解析】原不等式可变形为:等价不等式组解得:所以答案填:【考点】分式不等式的解法.3.不等式的解集是 ( )A.B.C.(-2,1)D.∪【答案】C【解析】本题一般等价转化为一元二次不等式,然后直接得出结论.【考点】分式不等式的解法.4.关于的不等式的解集是,则关于的不等式的解为()A.B.C.D.【答案】B【解析】本题要找出参数的关系或它们的值,这里可根据不等式的解集与方程的解的关系得出,不等式的解集是,说明方程的解是1,且.,这样不等式可化为,从而得出结论为B.【考点】解不等式.5.不等式的解集是()A.B.C.D.【答案】B【解析】根据题意,由于等价(x+2)(x-3)<0,可知得到的解集为-2<x<3,故可知不等式的解集为,故选B.【考点】一元二次不等式的解集点评:主要是考查了分式不等式化为二次不等式的求解,属于基础题。
6.关于的不等式的解为或,则的取值为()A.2B.C.-D.-2【答案】D【解析】不等式等价于,而其解为或,所以的取值为-2,选D。
【考点】本题主要考查分式不等式解法。
点评:简单题,分式不等式,往往要转化成整式不等式求解,利用“穿根法”较为直观明确。
7.不等式的解集是 .【答案】【解析】根据题意,对于不等式,等价于不等式,结合二次不等式的求解可知,解集为,故填写。
【考点】本试题考查分式不等式的解集。
点评:解决该试题的关键是能利用一元二次不等式的解集来求解分式不等式,属于中档题。
易错点是对于分母x直接两边相乘约去。
8.不等式的解集是()A.B.C.D.【答案】C【解析】由于分式不等式对于x>1时,则有x>2,当x<1时,则有-2<x<2,故可知不等式的解集为,选C.【考点】本试题考查了分式不等式的求解。
高二数学基本不等式试题

高二数学基本不等式试题1.已知则mn的最小值是【答案】【解析】。
【考点】本题主要考查均值定理的应用。
点评:应用均值定理,应注意“一正、二定、三相等”。
常见错误是忽视等号成立的条件。
2.已知正数满足,求的最小值有如下解法:解:∵且.∴∴.判断以上解法是否正确?说明理由;若不正确,请给出正确解法.【答案】错误.见解析。
【解析】∵①等号当且仅当时成立,又∵②等号当且仅当时成立,而①②的等号同时成立是不可能的.正确解法:∵且.∴,当且仅当,即,又,∴这时∴.【考点】本题主要考查均值定理的应用。
点评:应用均值定理,应注意“一正、二定、三相等”。
常见错误是忽视等号成立的条件。
3.当时,不等式恒成立,则的取值范围是()A.B.C.D.【答案】D【解析】由时,恒成立得对任意恒成立,即当时,取得最大值,的取值范围是,故选D.【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).4.当时,不等式恒成立,则的取值范围是()A.B.C.D.【答案】D【解析】由时,恒成立得对任意恒成立,即当时,取得最大值,的取值范围是,故选D.【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).5.当时,函数的最小值为()A.B.C.D.【答案】C【解析】,,当且仅当时取等号,函数的最小值为4,选C.6.函数的最小值为__________.【答案】5【解析】,,当且仅当时取等号,故答案为.【易错点晴】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).7.设a>0,b>0,若是3a与3b的等比中项,则的最小值为A.8B.4C.1D.【答案】B【解析】由题意,,得,则,故选B。
高二数学不等式的性质试题答案及解析

高二数学不等式的性质试题答案及解析1.根据条件:满足,且,有如下推理:(1)(2) (3) (4) 其中正确的是()A.(1)(2)B.(3) (4)C.(1) (3)D.(2) (4)【答案】B【解析】由,因为,所以,对于的值可正可负也可为0,对于(1)错误,因为,而,所以;对于(2)错误,因为,从而;对于(3)正确,因为,当时,,当时,由;对于(4)正确,因为;综上可知,选B.【考点】不等式的性质.2.设.则下列不等式一定成立的是( )A.B.C.D.【答案】D【解析】由得不到,故A错误.利用基本不等式得,故B错误;令a=-1,b=-1得,即,故C错误;,,故选D.【考点】不等式的基本性质;基本不等式。
3.若,则下列结论不正确的是()A.B.C.D.【答案】D【解析】由已知,则均正确,而故D不正确【考点】不等式的性质4.如果关于x的不等式和的解集分别为和,那么称这两个不等式为对偶不等式. 如果不等式与不等式为对偶不等式,且,则 .【答案】【解析】由题意得:不等式与为对偶不等式.,因此与同解,即与同解,所以【考点】不等式解集5.设,则下列不等式中一定成立的是A.B.C.D.【答案】A【解析】A.故A正确;B中,故B不正确,D中,故D不正确;C中当,故C不正确【考点】不等式的性质6.已知,则下列推证中正确的是()A.B.C.D.【答案】C【解析】A 当时不成立;B 当时不成立;D 当均为负值时,不成立.【考点】本题主要考查不等式的性质.7.已知,则下列说法正确的是 ( )A.若,则B.若,则C.若,则D.若,则【答案】A【解析】当时,B和D均不正确。
当时,若则。
故C不正确。
由不等式的性质可知A正确。
【考点】不等式的性质。
8.设,现有下列命题:①若,则;②若,则;③若,则;④若,则其中正确命题的序号为 .【答案】①,④【解析】因为,现有下列命题:①若即,又.所以成立,即①式成立;因为,令.所以.所以②式不成立;因为令则所以不成立.故③式不成立;因为所以又因为所以.故④式成立.【考点】1.不等式的性质.2.含绝对值的运算.3.含根式的运算.9.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是( )A.[-2,+)B.(-,-2)C.[-2,2]D.[0,+)【答案】A【解析】对一切实数x,恒成立.当时, 恒成立.当时,因为的最大值为-2, 故【考点】恒成立问题,及参数分离法.10.若,,,则A.B.C.D.【答案】A【解析】根据题意,由于>1,,<0,0<<1那么可知其大小关系为,故选A.【考点】对数函数与指数函数的值域点评:解决的关键是根据指数函数与对数函数性质来求解范围,比较大小,属于基础题。
高二数学不等式的性质试题

高二数学不等式的性质试题1.已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.>B.ln(x2+1)>ln(y2+1)C.sin x>sin y D.x3>y3【答案】D【解析】函数y=a x当0<a<1时单调递减,所以x>y;又因为函数y= x3 在R上单调递增,所以x3>y3也可以用特殊值法.【考点】函数的单调性.2.函数在恒为正,则实数的范围是.【答案】【解析】注意到,所以函数在恒为正显然不可能;或,故应填入:.【考点】不等式的恒成立.3.设,,,(e是自然对数的底数),则()A.B.C.D.【答案】D【解析】由于,所以;又因为,从而有,故选D.【考点】比较大小.4.已知满足且,则下列选项中不一定能成立的是( )A.B.C.D.【答案】C【解析】由已知满足且得到:,所以A、B、D一定成立,故选C.【考点】不等式的基本性质.5.已知且,则下列不等式中成立的是( )A.B.C.D.【答案】D【解析】A.当时不成立,同理B.、 C.也不成立,由指数函数的单调性, D.成立【考点】不等式,指数函数的单调性6.已知,则下列推证中正确的是()A.B.C.D.【答案】C【解析】A 当时不成立;B 当时不成立;D 当均为负值时,不成立.【考点】本题主要考查不等式的性质.7.已知,则下列不等关系正确的是()A.B.C.D.【答案】C【解析】A中当时不等式不成立,A错;B中当时,不等式不成立,B错;C中对于,因为在范围内是增函数,当时,不等式成立,所以C正确;D中要使不等式成立需,故选C.【考点】不等式的性质;指数函数与对数函数的单调性.8.如果, 那么()A.B.C.D.【答案】D【解析】利用不等式的性质:故选D【考点】不等式的性质。
9.下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则【答案】D【解析】选项A中忽略了当的情况,故A错;选项B的结论中不等号方向没改变,故B错;选项C中忽略了的情况,故C错;所以正确答案是D.【考点】不等式的基本性质.10.下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则【答案】D【解析】选项A中忽略了当的情况,故A错;选项B的结论中不等号方向没改变,故B错;选项C中忽略了的情况,故C错;所以正确答案是D.【考点】不等式的基本性质.11.若不等式与同时成立,则必有( )A.B.C.D.【答案】C【解析】因为两个不等式同时成立,利用2个等价关系可以得到a与b的关系.又因为所以.故答案为C【考点】不等式的性质12.若a、b、c,则下列不等式成立的是()A.B.C.D.【答案】C【解析】因为,,不等式两边同时乘以或除以一个正数,不等号的方向不变,因此.A答案中或为0则不成立,B答案中要求,D答案中为0则不成立.【考点】不等式的性质.13.下列命题中的真命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】不等式基本性质中,与乘法有关的性质,不等式两边都要是非负数,才可能得出相应的结论,如果出现负数,结论不一定成立.如A中为负数,结论就可能不成立:,但;B中如,但,C中,但,故A、B、C都是错误的,排除A、B、C,只能选D.实际上D中条件不等式右边的是,,不等式两边均非负,可同时平方得.【考点】不等式的基本性质.14.已知,,则A.B.C.D.【答案】C【解析】因为,,,所以,,即,故选C。
高二数学不等式试题答案及解析

高二数学不等式试题答案及解析1.若关于x的不等式|x+2|+|x-1|<a的解集为,则实数a的取值范围为___________.【答案】(-∞,3)【解析】因为关于x的不等式|x+2|+|x-1|<a的解集为,那么说明a小于分段函数的最小值3,故可知实数a的取值范围为(-∞,3)2.解关于的不等式:【答案】当或时,不等式解集是:;当或时,原不等式解集是:;当时,原不等式解集是:【解析】本试题主要是考查了一元二次不等式的求解的综合运用。
由于二次方程有根,但是根的大小不定,因此要对于根的情况,对判别式进行分类讨论,然后得到不同情况下的解集。
3.不等式的解集为()A.B.C.D.【答案】A【解析】主要考查一元二次不等式解法及简单高次不等式解法。
解:即,其解集为,故选A。
4.已知集合,,则=()A.B.C.D.【答案】B【解析】主要考查集合的运算及一元二次不等式解法。
解:因为,所以==,故选B。
5.已知集合,,则集合=()A.B.C.D.【答案】C【解析】主要考查集合的运算及一元二次不等式解法。
解:因为,,所以=,故选C。
6.不等式的解集为()A.B.R C.D.【答案】A【解析】主要考查一元二次不等式解法。
解:因为判别式1-8<0,所以不等式的解集为,故选A。
7.若,是方程的两根,则的最小值是()A.B.18C.2D.不存在【答案】C【解析】主要考查一元二次方程根与系数的关系及一元二次不等式解法。
解:因为,是方程的两根,所以,且从而====,,所以时,取到最小值是2.故选C。
8.已知方程无正根,求实数的取值范围.【答案】m>-4【解析】主要考查一元二次不等式解法。
解:因为方程无正根,所以或,解得m>-4。
9.若,下列不等式恒成立的是()A.B.C.D.【答案】A【解析】主要考查不等关系与基本不等式。
解:取特殊值进行检验,如令a=0,可排除B,D;令a=-3可排除C,故选A。
10.若且,则下列四个数中最大的是()A.B.C.2ab D.a【答案】B【解析】主要考查不等关系与基本不等式。
高二数学不等式试题答案及解析

高二数学不等式试题答案及解析1.买4枝郁金香和5枝丁香的金额小于22元,而买6枝郁金香和3枝丁香的金额和大于24元,那么买2枝郁金香和买3枝丁香的金额比较,其结果是()A.前者贵B.后者贵C.一样D.不能确定【答案】A【解析】设郁金香x元/枝,丁香y元/枝,则,∴由不等式的可加(减)性,得x>3,y<2,∴2x>6,3y<6,故前者贵,选A。
【考点】本题主要考查不等式的概念、不等式的性质。
点评:解答此类题目,首先要审清题意,明确变量应受到的限制条件,建立变量的约束条件。
2.设x>0,则函数y=2--x的最大值为;此时x的值是。
【答案】-2,2【解析】因为+x≥4,所以y=2--x的最大值为-2,又+x≥2等号成立须=x,x>0,故x2,等号成立。
【考点】本题主要考查均值定理的应用。
点评:从题目的条件看,可有两种思路,一是利用函数知识,二是应用均值定理。
特别注意,特别注意,应用均值定理需满足“一正、二定、三相等”。
3.若x>1,则log+log的最小值为;此时x的值是。
【答案】2,2【解析】因为x>1,所以log>0,log>0.由均值定理log+log≥2,log=log,即x=2时等号成立。
【考点】本题主要考查均值定理的应用、对数函数的性质。
点评:从题目的条件看,可有两种思路,一是利用函数知识,二是应用均值定理。
特别注意,特别注意,应用均值定理需满足“一正、二定、三相等”。
4.完成一项装修工程,请木工需要付工资每人50元,请瓦工需要付工资每人40元,现有工人工资2000元,设木工x人,瓦工y人,则所请工人的约束条件是()A.5x+4y<200B.5x+4y≥200C.5x+4y=200D.5x+4y≤200【答案】D【解析】【考点】本题主要考查不等式的概念、不等式的性质。
点评:解答此类题目,首先要审清题意,明确变量应受到的限制条件,建立变量的约束条件。
高二数学基本不等式试题答案及解析
高二数学基本不等式试题答案及解析1.已知且,则的最大值为 .【答案】【解析】已知且,,因此,.【考点】基本不等式的应用.2.设为正实数,满足,则的最大值为.【答案】【解析】由,原式【考点】基本不等式3.若实数满足,则的最大值___________;【答案】【解析】因为,所以【考点】基本不等式的应用4.若a,b,cÎR+,且a+b+c=1,求的最大值.【答案】【解析】解:∵()2=a+b+c+2() 3分≤1+2()=1+2(a+b+c)=3. 6分∴,当且仅当a=b=c=时取“=”号. 8分【考点】不等式的求解最值点评:主要是考查了运用均值不等式来求解最值,属于基础题5.交通管理部门为了优化某路段的交通状况,经过对该路段的长期观测发现:在交通繁忙的时段内,该路段内汽车的车流量(千辆/时)与汽车的平均速度(千米/时)之间的函数关系为①求在该路段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?(精确到千辆/时)②若要求在该时段内车流量超过千辆/时,则汽车的平均速度应限定在什么范围内?【答案】①时,(千辆/时)②【解析】解:①依题意,得=当且仅当,即时,上式等号成立,所以(千辆/时)②由条件得,整理,得即,解得答:当千米/时时,车流量最大,最大车流量约为千辆/时,如果要求在在该时段内车流量超过千辆/时,则汽车的平均速度应大于千米/时且小于千米/时。
【考点】基本不等式;解一元二次不等式点评:求式子的最值,方法可以结合二次函数、函数的导数、基本不等式和三角函数等。
本题就是结合基本不等式。
6.设、为正数,则的最小值为()A.B.C.D.【答案】B【解析】,当且仅当即时等号成立,所以最小值为9【考点】均值不等式点评:利用均值不等式求最值时要注意其成立的条件:都是正数,当和为定值时,乘积取最值,当乘积为定值时,和取最值,最后验证等号成立的条件是否满足7.设求证:【答案】可以运用多种方法。
【解析】证明[法一]:2分10分当且仅当,取“=”号。
高二数学基本不等式试题
高二数学基本不等式试题1.下列结论中正确的是A.的最小值为B.的最小值为C.的最小值为D.当时,无最大值【答案】B【解析】使函数有意义,则,当且仅当,即取到等号;对于可能小于0,对于当且仅当,即时取等号,但的最大值为1,错;对于在上为增函数,因此有最大值.【考点】基本不等式的应用.2.下列各式中,最小值是2的是()A.B.C.D.【答案】C【解析】,当且仅当,即,取得最小值,故选择C,不选择A的原因是不满足是正数的条件,不选择B的原因是中的等号不成立,不选择D的原因是该式没有最小值,所以运用均值不等式求最值,一定要注意“一正、二定、三相等”是否都具备,缺一不可.【考点】利用均值不等式求最值.3.若直线始终平分圆的周长,则的最小值为 ( )A.1B.5C.D.【答案】D【解析】由题可知直线进过圆心,即有.为求,可以利用前面的条件换掉,得,但考虑到不好求值,另寻它法.即将“1”.“2”换成,则有,故选D.【考点】巧用“1”和基本不等式证明不等式.4.已知,且,则的最小值是_______.【答案】9【解析】∵a+b=ab,∴,∴,当且仅当时,“=”成立,∴最小值为9.【考点】基本不等式求最值.5.已知,若恒成立,则实数的取值范围【答案】【解析】由题,则,则恒成立即恒成立,则【考点】基本不等式,恒成立问题6.已知x,y,z均为正数.求证:.【答案】不等式的证明可以考虑运用均值不等式法来得到。
【解析】证明:∵x,y,z都是为正数,∴. 4分同理,可得,. 6分将上述三个不等式两边分别相加,并除以2,得. 8分【考点】均值不等式点评:主要是考查了均值不等式的求证不等式的运用,属于中档题。
7.已知,,,则的最小值为.【答案】【解析】因为,,,,所以,=,当且仅当且时,的最小值为。
【考点】均值定理的应用点评:简单题,应用均值定理,要注意“一正,二定,三相等”,缺一不可。
8.已知函数在时取得最小值,则__________.【答案】36【解析】根据题意,由于函数在时取得,即时取得最小值故可知36,故答案为36.【考点】函数的最值点评:主要是考查了函数的最值的求解,属于基础题。
高二数学----不等式的证明题及解答
不等式的证明训练题及解答一、选择题(1)若l o g a b 为整数,且l o g ab 1>l o g a b l o g b a 2,那么下列四个结论①b1>b >a 2②l o g a b +l o g b a =0 ③0<a <b <1 ④ab -1=0中正确的个数是( )A 1BC 3D 4(2)设x 1和x 2是方程x 2+px +4=0的两个不相等的实数根,则( ) A |x 1|>2且|x 2|>2 B |x 1+x 2|>4 C |x 1+x 2|<4 D |x 1|=4且|x 2|=1(3)若x ,y ∈R +,且x ≠y ,则下列四个数中最小的一个是( )A)11(2y x + B yx + (4)若x >0,y >0,且y x +≤a y x +成立,则a 的最小值是( )A22C 2D 2(5)已知a ,b ∈R +,则下列各式中成立的是( )A cos 2θ·lg a +sin 2θ·lg b <lg(a +b )B a cos2θ·b sin2θ=a +bC cos 2θ·lg a +sin 2θ·lg b >lg(a +b )D a cos 2θ·b sin2θ>a +b(6)设a ,b ∈R +,且ab -a -b ≥1,则有( )A a +b ≥2(2+1)B a +b ≤+1C a +b ≥(2+1)2D a +b ≤2(2+1)二、填空题(7)已知x 2+y 2=1,则3x +4y 的最大值是(8)设x =21y -,则x +y 的最小值是(9)若51≤a ≤5,则a +a1的取值范围是 (10)A =1+n n与13121+++ (n ∈N )的大小关系是 (11)实数yx=x -y ,则x 的取值范围是 . 三、解答证明题(12)用分析法证明:3(1+a 2+a 4)≥(1+a +a 2)2(13)用分析法证明:ab +cd ≤22c a ⋅+(14)用分析法证明下列不等式:(1)求证:15175+>+ (2)求证:4321---<---x x x x (x ≥4)(3)求证:a ,b ,c ∈R +,求证:)3(3)2(23abc c b a ab b a -++≤-+ (15)若a ,b >0,2c >a +b ,求证:(1)c 2>ab ;(2)c -ab c -2<a <c +ab c -2 (16)已知x ,y ∈R +,且x +y >2,求证:xyy x ++11与中至少有一个小于2 (17)设a ,b ,c ∈R ,证明:a 2+ac +c 2+3b (a +b +c )≥0(18)已知1≤x 2+y 2≤2,求证:21≤x 2+xy +y 2≤3 (19)设a n =)1(3221+++⨯+⨯n n (n ∈N *),求证:2)1(2)1(2+<<+n a n n n 对所有n (n ∈N *)都成立(20)已知关于x 的实系数二次方程x 2+ax +b =0,有两个实数根α,β,证明: (1)如果|α|<2,|β|<2,那么2|α|<4+b 且|b |<4 (2)如果2|α|<4+b 且|b |<4,那么|α|<2,|β|<2 不等式的证明训练题参考答案:1.A 2.B 3.D 4.B 5.A 6.A7.5 8.-1 9.[2,526] 10.A ≥n 11.(-≦,0)∪[4,+≦] 12.证明:要证3(1+a 2+a 4)≥(1+a +a 2)2只需证3[(1+a 2)2-a 2]≥(1+a +a 2)2,即证3(1+a 2+a )(1+a 2-a )≥(1+a +a 2)2≧1+a +a 2=(a +21)2+43>0 只需证3(1+a 2-a )≥1+a +a 2,展开得2-4a +2a 2≥0,即2(1-a )2≥0成立故3(1+a 2+a 4)≥(1+a +a 2)2成立13.证明:①当ab +cd <0时,ab +cd <2222d b c a +⋅+成立②当ab +cd ≥0时,欲证ab +cd ≤2222d b c a +⋅+只需证(ab +cd )2≤(2222d b c a +⋅+)2展开得a 2b 2+2abcd +c 2d 2≤(a 2+c 2)(b 2+d 2)即a 2b 2+2abcd +c 2d 2≤a 2b 2+a 2d 2+b 2c 2+c 2d 2,即2abcd ≤a 2d 2+b 2c 2只需证a 2d 2+b 2c 2-2abcd ≥0,即(ad -bc )2≥0因为(ad -bc )2≥0成立所以当ab +cd ≥0时,ab +cd ≤2222d b c a +⋅+成立综合①②可知:ab +cd ≤2222d b c a +⋅+成立14.证明:(1)欲证15175+>+ 只需证22)151()75(+>+展开得12+235>16+215,即235>4+215 只需证(235)2>(4+215)2,即4>15这显然成立故15175+>+成立(2)欲证4321---<---x x x x (x ≥4) 只需证2341-+-<-+-x x x x (x ≥4)即证22)23()41(-+-<-+-x x x x (x ≥4)展开得2x -5+22325241-⋅-+-<-⋅-x x x x x 即)2)(3()4)(1(--<--x x x x只需证[)4)(1(--x x ]2<[)2)(3(--x x ]2即证x 2-5x +4<x 2-5x +6,即4<6这显然成立 故4321---<---x x x x (x ≥4)成立(3)欲证2(ab b a -+2)≤3(33abc c b a -++) 只需证a +b -2ab ≤a +b +c -33abc即证c +2ab ≥33abc≧a ,b ,c ∈R +,≨c +2ab =c +ab +ab ≥3333abc ab ab c =⋅⋅≨c +2ab ≥33abc 成立故原不等式成立15.证明:(1)≧ab ≤(2b a +)2<c 2,≨ab <c 2(2)欲证c -ab c -2<a <c +ab c -2只需证-ab c -2<a -c <ab c -2,即|a -c |<ab c -2,即a 2-2ac +c 2<c 2-ab只需证a (a +b )<2ac≧a >0,只要证a +b <2c (已知),故原不等式成立16.证明:(反证法):假设x y y x ++11与均不小于2,即yx+1≥2,x y +1≥2,≨1+x ≥2y ,1+y ≥2x 将两式相加得:x +y ≤2,与已知x +y >2矛盾, 故xyy x ++11与中至少有一个小于2 17.证明:目标不等式左边整理成关于a 的二次式且令 f (a )=a 2+(c +3b )a +c 2+3b 2+3bc判别式Δ=(c +3b )2-4(c 2+3b 2+3bc )=-3(b +c )2≤0当Δ=0时,即b +c =0,等号成立故a 2+(c +3b )a +c 2+3b 2+3bc ≥0成立18.证明:设x =k cos θ,y =k sin θ,1≤k 2≤2≨x 2+xy +y 2=k 2(cos 2θ+cos θsin θ+sin 2θ)=k 2(1+21sin2θ) ≧sin2θ∈[-1,1]≨k 2≤k 2(1+21sin2θ)≤23k 2,故21≤x 2+xy +y 2≤319.证明:≧2)1(n n n >+=n ,≨a n >1+2+3+…+n =2)1(+n n2)1(232221+++++++<n n a n 又22)1(2)21(2n n n n n ++=++++=2)1(2122)2(22+=++<+=n n n n n ,故命题对n ∈N 都成立20.证明:依题设及一元二次方程根与系数的关系(韦达定理)得:α+β=-a ,αβ=b 则有:(1)(2)等价于证明|α|<2,|β|<2⇔2|α+β|<4+αβ,且|αβ|<4⎪⎩⎪⎨⎧+<+<⇔⎪⎩⎪⎨⎧+<+<22)4()(44424αββααβαββααβ⎪⎩⎪⎨⎧>+--<⇔0164442222βαβααβ ⎪⎩⎪⎨⎧>--<⇔0)4)(4(422βααβ⎪⎪⎩⎪⎪⎨⎧<<<⎪⎪⎩⎪⎪⎨⎧>><⇔4444442222βααββααβ或⎪⎩⎪⎨⎧<<<⎪⎩⎪⎨⎧>><⇔224224βααββααβ或⎪⎩⎪⎨⎧<<<⇔<<⇔2.2,224ββαααβ。
高二数学必修5第三章不等式章末训练题精选(含解析)
⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分)1.原点和点(1,1)在直线x+y=a两侧,则a的取值范围是( )A.a<0或a>2B.0答案 B2.若不等式ax2+bx-2>0的解集为x|-2A.-18B.8C.-13D.1答案 C解析 ∵-2和-14是ax2+bx-2=0的两根.∴-2+-14=-ba -2 ×-14=-2a,∴a=-4b=-9.∴a+b=-13.3.如果a∈R,且a2+a<0,那么a,a2,-a,-a2的⼤⼩关系是( )A.a2>a>-a2>-aB.-a>a2>-a2>aC.-a>a2>a>-a2D.a2>-a>a>-a2答案 B解析 ∵a2+a<0,∴a(a+1)<0,∴-1a2>-a2>a.4.不等式1x<12的解集是( )A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,0)∪(2,+∞)答案 D解析 1x<12⇔1x-12<0⇔2-x2x<0⇔x-22x>0⇔x<0或x>2.5.设变量x,y满⾜约束条件x+y≤3,x-y≥-1,y≥1,则⽬标函数z=4x+2y的值为( )A.12B.10C.8D.2答案 B解析 画出可⾏域如图中阴影部分所⽰,⽬标函数z=4x+2y可转化为y=-2x+z2,作出直线y=-2x并平移,显然当其过点A时纵截距z2.解⽅程组x+y=3,y=1得A(2,1),∴zmax=10.6.已知a、b、c满⾜cA.ab>acB.c(b-a)>0C.ab2>cb2D.ac(a-c)<0答案 C解析 ∵c0,c<0.⽽b与0的⼤⼩不确定,在选项C中,若b=0,则ab2>cb2不成⽴.7.已知集合M={x|x2-3x-28≤0},N={x|x2-x-6>0},则M∩N为( )A.{x|-4≤xB.{x|-4C.{x|x≤-2或x>3}D.{x|x答案 A解析 ∵M={x|x2-3x-28≤0}={x|-4≤x≤7},N={x|x2-x-6>0}={x|x3},∴M∩N={x|-4≤x8.在R上定义运算⊗:x⊗y=x(1-y),若不等式(x-a)⊗(x+a)<1对任意实数x成⽴,则( )A.-1答案 C解析 (x-a)⊗(x+a)=(x-a)(1-x-a)<1⇔-x2+x+(a2-a-1)<0恒成⽴⇔Δ=1+4(a2-a-1)<0⇔-129.在下列各函数中,最⼩值等于2的函数是( )A.y=x+1xB.y=cos x+1cos x (0C.y=x2+3x2+2D.y=ex+4ex-2答案 D解析 选项A中,x>0时,y≥2,x<0时,y≤-2;选项B中,cos x≠1,故最⼩值不等于2;选项C中,x2+3x2+2=x2+2+1x2+2=x2+2+1x2+2,当x=0时,ymin=322.选项D中,ex+4ex-2>2ex•4ex-2=2,当且仅当ex=2,即x=ln 2时,ymin=2,适合.10.若x,y满⾜约束条件x+y≥1x-y≥-12x-y≤2,⽬标函数z=ax+2y仅在点(1,0)处取得最⼩值,则a的取值范围是( )A.(-1,2)B.(-4,2)C.(-4,0]D.(-2,4)答案 B解析 作出可⾏域如图所⽰,直线ax+2y=z仅在点(1,0)处取得最⼩值,由图象可知-1即-411.若x,y∈R+,且2x+8y-xy=0,则x+y的最⼩值为( )A.12B.14C.16D.18答案 D解析 由2x+8y-xy=0,得y(x-8)=2x,∵x>0,y>0,∴x-8>0,得到y=2xx-8,则µ=x+y=x+2xx-8=x+ 2x-16 +16x-8=(x-8)+16x-8+10≥2 x-8 •16x-8+10=18,当且仅当x-8=16x-8,即x=12,y=6时取“=”.12.若实数x,y满⾜x-y+1≤0,x>0,则yx-1的取值范围是( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)D.[1,+∞)答案 B解析 可⾏域如图阴影,yx-1的⼏何意义是区域内点与(1,0)连线的斜率,易求得yx-1>1或yx-1⼆、填空题(本⼤题共4⼩题,每⼩题4分,共16分)13.若A=(x+3)(x+7),B=(x+4)(x+6),则A、B的⼤⼩关系为________.答案 A14.不等式x-1x2-x-30>0的解集是________________________________________________________________________.答案 {x|-56}15.如果a>b,给出下列不等式:①1a<1b;②a3>b3;③a2>b2;④2ac2>2bc2;⑤ab>1;⑥a2+b2+1>ab+a+b.其中⼀定成⽴的不等式的序号是________.答案 ②⑥解析 ①若a>0,b<0,则1a>1b,故①不成⽴;②∵y=x3在x∈R上单调递增,且a>b.∴a3>b3,故②成⽴;③取a=0,b=-1,知③不成⽴;④当c=0时,ac2=bc2=0,2ac2=2bc2,故④不成⽴;⑤取a=1,b=-1,知⑤不成⽴;⑥∵a2+b2+1-(ab+a+b)=12[(a-b)2+(a-1)2+(b-1)2]>0,∴a2+b2+1>ab+a+b,故⑥成⽴.16.⼀批货物随17列货车从A市以v千⽶/⼩时匀速直达B市,已知两地铁路线长400千⽶,为了安全,两列货车的间距不得⼩于v202千⽶,那么这批货物全部运到B市,最快需要________⼩时.答案 8解析 这批货物从A市全部运到B市的时间为t,则t=400+16v202v=400v+16v400≥2 400v×16v400=8(⼩时),当且仅当400v=16v400,即v=100时等号成⽴,此时t=8⼩时.三、解答题(本⼤题共6⼩题,共74分)17.(12分)若不等式(1-a)x2-4x+6>0的解集是{x|-3(1)解不等式2x2+(2-a)x-a>0;(2)b为何值时,ax2+bx+3≥0的解集为R.解 (1)由题意知1-a<0且-3和1是⽅程(1-a)x2-4x+6=0的两根,∴1-a<041-a=-261-a=-3,解得a=3.∴不等式2x2+(2-a)x-a>0即为2x2-x-3>0,解得x32.∴所求不等式的解集为x|x32.(2)ax2+bx+3≥0,即为3x2+bx+3≥0,若此不等式解集为R,则b2-4×3×3≤0,∴-6≤b≤6.18.(12分)解关于x的不等式56x2+ax-a2<0.解 原不等式可化为(7x+a)(8x-a)<0,即x+a7x-a8<0.①当-a70时,-a7②当-a7=a8,即a=0时,原不等式解集为∅;③当-a7>a8,即a<0时,a8综上知,当a>0时,原不等式的解集为x|-a7当a=0时,原不等式的解集为∅;当a<0时,原不等式的解集为x|a819.(12分)证明不等式:a,b,c∈R,a4+b4+c4≥abc(a+b+c).证明 ∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,∴2(a4+b4+c4)≥2(a2b2+b2c2+c2a2)即a4+b4+c4≥a2b2+b2c2+c2a2.⼜a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,c2a2+a2b2≥2a2bc.∴2(a2b2+b2c2+c2a2)≥2(ab2c+abc2+a2bc),即a2b2+b2c2+c2a2≥abc(a+b+c).∴a4+b4+c4≥abc(a+b+c).20.(12分)某投资⼈打算投资甲、⼄两个项⽬,根据预测,甲、⼄项⽬可能的盈利率分别为100%和50%,可能的亏损率分别为30%和10%,投资⼈计划投资⾦额不超过10万元,要求确保可能的资⾦亏损不超过1.8万元,问投资⼈对甲、⼄两个项⽬各投资多少万元,才能使可能的盈利?解 设投资⼈分别⽤x万元、y万元投资甲、⼄两个项⽬,由题意知x+y≤10,0.3x+0.1y≤1.8,x≥0,y≥0.⽬标函数z=x+0.5y.上述不等式组表⽰的平⾯区域如图所⽰,阴影部分(含边界)即可⾏域.作直线l0:x+0.5y=0,并作平⾏于直线l0的⼀组直线x+0.5y=z,z∈R,与可⾏域相交,其中有⼀条直线经过可⾏域上的M点,且与直线x+0.5y=0的距离,这⾥M点是直线x+y=10和0.3x+0.1y=1.8的交点.解⽅程组x+y=10,0.3x+0.1y=1.8,得x=4,y=6,此时z=1×4+0.5×6=7(万元).∵7>0,∴当x=4,y=6时,z取得值.答 投资⼈⽤4万元投资甲项⽬、6万元投资⼄项⽬,才能在确保亏损不超过1.8万元的前提下,使可能的盈利.21.(12分)设a∈R,关于x的⼀元⼆次⽅程7x2-(a+13)x+a2-a-2=0有两实根x1,x2,且0解 设f(x)=7x2-(a+13)x+a2-a-2.因为x1,x2是⽅程f(x)=0的两个实根,且0所以f 0 >0,f 1 <0,f 2 >0⇒a2-a-2>0,7- a+13 +a2-a-2<0,28-2 a+13 +a2-a-2>0⇒a2-a-2>0,a2-2a-8<0,a2-3a>0⇒a2,-23⇒-2所以a的取值范围是{a|-222.(14分)某商店预备在⼀个⽉内分批购买每张价值为20元的书桌共36台,每批都购⼊x台(x是正整数),且每批均需付运费4元,储存购⼊的书桌⼀个⽉所付的保管费与每批购⼊书桌的总价值(不含运费)成正⽐,若每批购⼊4台,则该⽉需⽤去运费和保管费共52元,现在全⽉只有48元资⾦可以⽤于⽀付运费和保管费.(1)求该⽉需⽤去的运费和保管费的总费⽤f(x);(2)能否恰当地安排每批进货的数量,使资⾦够⽤?写出你的结论,并说明理由.解 (1)设题中⽐例系数为k,若每批购⼊x台,则共需分36x批,每批价值20x.由题意f(x)=36x•4+k•20x,由x=4时,y=52,得k=1680=15.∴f(x)=144x+4x (0(2)由(1)知f(x)=144x+4x (0∴f(x)≥2144x•4x=48(元).当且仅当144x=4x,即x=6时,上式等号成⽴.故只需每批购⼊6张书桌,可以使资⾦够⽤.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式练习题
一、选择题
1、若a,b 是任意实数,且a >b,则
( )
(A )a 2>b 2 (B )a b
<1 (C )lg(a-b)>0 (D )(21)a <(2
1)b
2、下列不等式中成立的是
( )
(A )lgx+log x 10≥2(x >1) (B )a
1+a ≥2 (a ≠0)
(C )a 1<b
1(a >b) (D )a 2
1+t ≥a t (t >0,a >
0,a ≠1)
3、已知a >0,b >0且a +b =1, 则()11)(112
2--b a 的最小值为 ( )
(A )6 (B ) 7 (C ) 8 (D )
9
4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R );
(3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( )
(A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个
5、f (n ) = 12+n -n , ϕ(n )=
n
21
, g (n ) = n 12--n , n ∈N ,则 ( )
(A ) f (n )<g (n ) <ϕ(n ) (B ) f (n )<ϕ(n )<g (n )
(C ) g (n )<ϕ(n )<g (n ) (D )g (n )<f (n )<ϕ(n )
6、设x 2+y 2 = 1, 则x +y
( )
(A ) 有最小值1 (B ) 有最小值2
(C )有最小值-1 (D ) 有最小值-2
7、不等式|x +5|>3的解集是
( )
(A){x|-8<x <8} (B){x|-2<x <2}
(C){x|x <-2或x >2= (D){x|x <-8或x >-2=
8、若a ,b ,c 为任意实数,且a >b ,则下列不等式恒成立的是 ( )
(A)ac >bc (B)|a +c|>|b +c| (C)a 2>b 2 (D)a +c >b +c
9、设集合M={x|13-+x x ≤0},N={x|x 2
+2x-3≤0},P={x|322)2
1(-+x x ≥1},则
有 ( )
(A )M ⊂N=P (B )M ⊂N ⊂P (C )M=P ⊂N (D )M=N=P
10、设a,b ∈R,且a+b=3,则2a +2b 的最小值是
( )
(A )6 (B )42 (C )22 (D )26
11、若关于x 的不等式ax 2+bx -2>0的解集是⎪⎭
⎫
⎝⎛+∞⎪⎭
⎫ ⎝
⎛-∞-,3
121, ,则
ab 等于( )
(A)-24 (B)24 (C)14 (D)-14
12、如果关于x 的不等式(a -2)x 2+2(a -2)x -4<0对一切实数x 恒成立,则实数a
的取值范围是
( )
(A)]2,(-∞ (B))2,(--∞ (C)]2,2(- (D)(-2,2)
13、设不等式f(x)≥0的解集是[1,2],不等式g(x) ≥0的解集为Φ,则不等式
0)
()
(>x g x f 的解集是
( )
(A) Φ (B)+∞-∞,2()1,( ) (C)[1,2] (D)R
14、
2
2+>
+x x
x x 的解集是
( )
(A ) (-2,0) (B ) (-2,0) (C ) R (D ) (-∞,-2)∪(0,+ ∞)
15、不等式3
3
31>
--x
的解集是
( )
(A ) (-∞,1) (B ) (43,1 ) (C ) (4
3,1) (D ) R
二、填空题
1、若x 与实数列a 1,a 2,…,a n 中各数差的平方和最小,则x=________.
2、不等式x
x
x
1
2
1log 〈的解集是________. 3、某工厂产量第二年增长率是p 1,第三年增长率是p 2,第四年增长率是p 3且p 1+p 2+p 3=m(定值),那么这三年平均增长率的最大值是________.
4、a ≥0,b ≥0,a 2
+2
2
b =1,则a 21b +的最大值是________.
5、若实数x 、y 满足xy >0且x 2y=2,则xy +x 2的最小值是________.
6、x >1时,f(x)=x +1
161
2++
x x
x 的最小值是________,此时x=________.
7、不等式log 4(8x -2x )≤x 的解集是________.
8、不等式
3
21
141-〉-x
x 的解集是________. 9、命题①:关于x 的不等式(a -2)x 2+2(a -2)x -4<0对x ∈R 恒成立;命题②:f(x)=-(1-3a -a 2)x 是减函数.若命题①、②至少有一个为真命题,则实数a 的取值范围是________.
10、设A={x|x ≥x
1
,x ∈R},B={x|12+x <3,x ∈R =,则D=A ∩
B=________.
三、解答题
1、解不等式:1
211
922+-+-x x x x ≥7.
2、解不等式:x 4-2x 3-3x 2<0.
3、解不等式:
6
55
92+--x x x ≥-2.
4、解不等式:2269x x x -+->3.
5、解不等式:232+-x x >x +5.
6、若x 2+y 2=1,求(1+xy)(1-xy)的最大、最小值。
7、若x,y >0,求
y
x y x ++的最大值。
8、已知关于x 的方程x 2+(m 2-1)x +m -2=0的一个根比-1小,另一个根比1大,
求参数m 的取值范围。
9、解不等式:log a (x +1-a)>1.
10解不等式38->-x x .
不等式练习答案
一、DADCB DDDAB BCBAB
二、1、n 1
(a 1+a 2+…+a n ) 2、0<x <1或x >2 3、3m 4、4
2
3 5、3
6、8,2+3
7、(0,2
5
1log 2+) 8、0<x <log 23 9、-3<x ≤2
10、-2
1≤x <0或1≤x <4
三、1、[-21,1]∪(1,3
4) 2、(-1,0)∪(0,3) 3、(-∞,2)∪(3,+∞) 4、(0,3)
5、(-∞,-
1323) 6、1, 4
3
7、2 8、-2<m <0 9、解:(I)当a>1时,原不等式等价于不等式组:⎩⎨
⎧>-+>-+.
101a a x a x ,
解得x>2a-1.
(II)当0<a<1时,原不等式等价于不等式组:⎩⎨
⎧<->-+.101a a x a x +
,
解得:a-1<x<2a-1.
综上,当a>1时,不等式的解集为{x|x>2a-1};
当0<a<1时,不等式的解集为{x|a-1<x<2a-1}.
10、原不等价于不等式组(1)⎪⎩
⎪
⎨⎧->-≥-≥-2
)3(8030
8x x x x 或(2)⎩⎨⎧<-≥-0308x x
由(1)得2
21
53+<
≤x , 由(2)得x <3, 故原不等式的解集为⎭
⎬⎫
⎩⎨⎧+<2215|x x。