预应力混凝土简支T梁计算报告midas
midas曲梁计算书

上部结构纵向计算A匝道A0~A4联4X30m(8.8m宽)计算依据及标准如下:设计方提供的初步设计图纸及设计原则《公路工程技术标准》JTG B01—2003《公路桥涵设计通用规范》JTG D60—2004《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG 025—86注:在设计方提供的施工图图纸中,该联中支点A1~A3处支座均为固定支座,经程序试算后应力及内力结果都与目标结果相差很远,也不符合一般连续梁支座常规布置形式,经调试支座布置形式后,建立此模型。
(一)主梁纵向计算1、计算内容根据设计方提供的主梁结构和预应力钢筋的设计图,按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)的要求,对结构持久状况截面极限承载能力、正常使用极限状态的截面抗裂、挠度以及使用阶段构件的应力等内容进行了全面的验算。
2、计算模型纵向计算按杆系理论,采用midas civil 2006进行分析,将箱梁纵向作为平面梁单元进行离散;并考虑支座布置及荷载横向分配等因素,考虑满堂支架上现浇、张拉等施工过程。
1)离散模型计算模型结构离散图见下图所示,共78个节点,70个单元。
图10.4.1-1 结构离散图2)材料混凝土:主梁采用C50混凝土,弹性模量E=3.45×104MPa,fck=32.4MPa,ftk=2.65 MPa,fcd=22.4 MPa,ftd=1.83 MPa。
普通钢筋:HRB335预应力钢束:采用Φj15.24钢绞线,弹性模量195000MPa,张拉控制应力0.75fpk=0.75×1860=1395MPa,松弛比0.035,孔道摩阻系数0.3,偏差系数0.0015,一端锚具回缩6mm。
3、计算参数1)恒载一期恒载:按构件实际截面计入,混凝土容重γ=26.25KN/m3(考虑5%的施工误差);二期恒载(公路桥面桥面系):沥青混凝土铺装厚度18cm,容重γ=25KN/m3,行车道宽8m;地袱栏杆每侧:单条每延米12.5KN/m;则:∑q=0.18X8x25+2x12.5=61KN/m横隔板:(厚50cm)Pt1::6.8KN支座沉陷:按5mm考虑。
Midas例题(梁格法):预应力混凝土连续T梁桥的分析与设计

钢束 名称 1t1-1
1t1-3
2t1-2
3t1-1
3t1-3 23t1-1
X 0 7.6 23.85 31.45 0 5.9 25.55 31.45 32.55 40.15 55.85 63.45 64.55 72.15 88.4 96 64.55 72.15 88.4 96 56 72
坐标 (m)
为了说明采用梁格法分析一般梁桥结构的分析步骤,本例题采用了一个比较简单的分 析模型——一座由五片预应力T梁组成的3×32m桥梁结构,每片梁宽2.5m。桥梁的基本数 据取自实际结构但和实际结构有所不同。
本例题的基本数据如下:
桥梁形式:三跨连续梁桥 桥梁等级:I级 桥梁全长:3@32=96m 桥梁宽度:12.5m 设计车道:3车道
12t1-2
0
40 0.62 1.825
负弯矩
56
钢束10 23t1-2 72
0.62 1.825 0.62 1.825
钢束 类型 R 0 40 正弯矩 40 钢束8 0 0 40 正弯矩 40 钢束7 0 0 40 正弯矩 40 钢束9 0 0 40 正弯矩 40 钢束8 0 负弯矩 钢束10
负弯矩 钢束10
图4. 单位体系设定 4-10
定义材料和截面特性
同时定义多种材料
特性时,使用 键可以连续输入。
定义结构所使用的混凝土和钢束的材料特性。
模型 / 材料和截面特性 / 材料 类型>混凝土 ; 规范> JTG04(RC) 数据库> C50
名称(Strand1860 ) ; 类型>钢材 ; 规范> JTG04(S) 数据库> Strand1860
图2. T型梁跨中截面图
Midas预应力混凝土连续箱梁分析算例课件

MIDAS软件是一款功能强大的有限元 分析软件,可以对预应力混凝土连续 箱梁进行精确的建模和分析,为桥梁 设计提供可靠的技术支持。
预应力混凝土连续箱梁的设计和施工 需要综合考虑多种因素,包括结构形 式、材料特性、施工方法等,以确保 桥梁的安全性和经济性。
展望
随着科技的不断进步和工程实 践的积累,预应力混凝土连续 箱梁的设计和施工将不断得到
预应力体系
通过在混凝土浇筑前施加 预压应力,改善了结构的 受力性能,提高了梁的承 载能力和稳定性。
横向联系
连续箱梁采用横隔板和横 梁等横向联系构件,确保 了结构的整体稳定性。
预应力混凝土连续箱梁的设计原理
力学分析
根据结构力学原理,对连 续箱梁进行受力分析,确 定各截面的弯矩、剪力和 扭矩等。
预应力设计
特殊情况处理
针对模型中可能出现的特殊情况, 如施工阶段、预应力张拉等,说明 处理方法。
计算结果分析
01
02
03
04
变形分析
分析模型在受力后的变形情况 ,包括挠度、转角等。
应力分析
分析模型中的应力分布和大小 ,包括正应力和剪应力。
预应力张拉分析
针对预应力张拉的情况,分析 张拉后的应力分布和损失。
结果对比
优化和完善。
未来可以进一步研究新型材料 和结构形式在预应力混凝土连 续箱梁中的应用,以提高桥梁
的性能和耐久性。
有限元分析软件的功能和精度 将不断提升,为预应力混凝土 连续箱梁的分析和设计提供更 加可靠的技术支持。
未来可以通过加强科研合作和 技术交流,推动预应力混凝土 连续箱梁领域的创新和发展, 为我国桥梁事业的发展做出更 大的贡献。
05 参考文献
CHAPTER
midas建模计算(预应力混凝土连续箱梁桥)

midas建模计算(预应力混凝土连续箱梁桥)midas建模计算(预应力混凝土连续箱梁桥)纵向计算模型的建立1.设置操作环境1.1打开新项目,输入文件名称,保存文件1.2在工具-单位体系中将单位体系设置为“m”,“KN”,“kj”和“摄氏”。
2.材料与截面定义2.1 材料定义右键-材料和截面特性-材料。
C50材料定义如下图所示。
需定义四种材料:主梁采用C50混凝土,立柱、盖梁及桥头搭板采用C30混凝土,基桩采用C25混凝土。
预应力钢绞线采用1860级高强低松弛s 15.24钢绞线。
钢绞线定义时,设计类型:钢材;规范:JTG04(S);数据库:strand 1860,名称:预应力钢筋2.2 截面定义2.2.1 利用SPC(截面特性值计算器)计算截面信息(1)在CAD中x-y平面内,以mm为单位绘制主梁所有的控制截面,以DXF 格式保存文件;绘图时注意每个截面必须是闭合的,不能存在重复的线段,并且对于组成变截面组的线段,其组成线段的个数应保持一致。
(2)在midas工具中打开截面特性计算器(SPC),在Tools-Setting中将单位设置为“KN”和“mm”;(3)从File-Import-Autocad DXF导入DXF截面;(4)从Model-Section-Generate中选择“Type-Plane”;不勾选“Merge Straight Lines”前面的复选框;Name-根据截面所在位置定义不同的截面名称从而生成截面信息;(5)在Property-Calculate Section Property 中设置划分网格的大小和精度,然后计算各截面特性;(6)从File-Export-MIDAS Section File导出截面特性文件,指定文件目录和名字,以备使用。
2.2.2 建立模型截面(1)右键-材料和截面特性-截面-添加-设计截面,选择设计用数值截面。
单击“截面数据”选择“从SPC导入”,选择刚导出的截面特性文件,并输入相应的设计参数。
MIDAS-预应力混凝土T梁的分析与设计

MIDAS-预应力混凝土连续T梁分析与设计概要本例题使用一个简单的预应力混凝土两跨连续梁模型(图1)来重点介绍MIDAS/C ivil软件的PSC截面钢筋的输入方法、施工阶段分析功能、钢束预应力荷载的输入方法、移动荷载的输入方法和查看分析结果的方法、设计数据的输入方法和查看设计结果的方法等。
图1. 分析模型桥梁概况及一般截面分析模型为一个两跨连续梁,其钢束的布置如图2所示,分为两个阶段来施工。
桥梁形式:两跨连续的预应力混凝土梁桥梁长度:L = 30@2 = 60.0 m钢束坐标区 分 x(m) 0 12243036 4860钢束1 z (m) 1 0.1 1.7 1.2钢束2 z (m) 1.3 1.9 0.1 1图2. 立面图和剖面图注:图2中B表示设置的钢绞线的圆弧的切线点。
预应力混凝土梁的分析与设计步骤 预应力混凝土梁的分析步骤如下。
1.定义材料和截面2.建立结构模型3.输入PSC截面钢筋4.输入荷载恒荷载钢束特性和形状钢束预应力荷载5.定义施工阶段6.输入移动荷载数据定义车道定义车辆移动荷载工况7.运行结构分析8.查看分析结果9.PSC设计PSC设计参数确定运行设计查看设计结果使用的材料及其容许应力混凝土采用JTG04(RC)规范的C50混凝土钢材采用JTG04(S)规范,在数据库中选Strand1860荷载恒荷载自重在程序中按自重输入预应力钢束(φ15.2 mm×31)截面面积: Au = 4340 mm 2孔道直径: 130 mm钢筋松弛系数(开),选择JTG04和0.3(低松弛) 超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2 预应力钢筋与管道壁的摩擦系数:0.25管道每米局部偏差对摩擦的影响系数:1.5e-006(1/mm) 锚具变形、钢筋回缩和接缝压缩值: 开始点:6mm 结束点:6mm张拉力:抗拉强度标准值的75%徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50000KN/m^2 长期荷载作用时混凝土的材龄:=o t 5天 混凝土与大气接触时的材龄:=s t 3天 相对湿度: %70=RH 大气或养护温度: C °20=T 构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004) 徐变系数: 程序计算 混凝土收缩变形率: 程序计算移动荷载适用规范:公路工程技术标准(JTG B01-2003) 荷载种类:公路I级,车道荷载,即CH-CD设置操作环境打开新文件(新项目),以 ‘PSC Beam’为名保存(保存)。
预应力混凝土T型简支梁设计计算书

一、设计资料1、桥面跨径及桥宽标准跨径:总体方案选择的结果,采用装配式预应力混凝土T 型简支梁,跨度25m ;主梁长:伸缩缝采用40mm ,预制梁长24.96m ; 计算跨径:取相邻支座中心间距24.5m ;桥面净空:由于该桥所在线路的宽度较大,确定采用分离式桥面;左半幅路面布置:0.5m (护栏)+12m (行车道)+0.8m (护栏+检修道)=13.3m 。
2、主要技术指标设计荷载:公路Ⅰ级;结构重要性系数为γ0 = 1.1; 桥面坡度:行车道单向横坡2%。
3、材料性能参数 (1)混凝土强度等级为C40,主要强度指标为:强度标准值 ck f =26.8a MP ,tkf=2.4a MP强度设计值 cd f =18.4 a MP ,td f =1.65a MP 弹性模量 c E =3.25×410a MP(2)预应力钢筋采用1×7标准型-15.2-1860-Ⅱ-GB/T5224-1995钢绞线。
其强度指为:抗拉强度标准值 pk f =1860a MP 抗拉强度设计值pdf =1260aMP 弹性模量pE =1.95×510aMP相对界限受压区高度b ξ=0.4,pu ξ=0.2563(3)普通钢筋①纵向抗拉普通钢筋采用HRB400钢筋,其强度指标为抗拉强度标准值sk f =400a MP 抗拉强度设计值sdf =330aMP相对界限受压区高度bξ=0.53puξ=0.1985②箍筋及构造钢筋采用HRB335,其强度指标为 抗拉强度标准值sk f =335a MP 抗拉强度设计值sdf =280aMP弹性模量sE =2.0×510aMP4、设计依据 1)《公路桥涵设计通用规范》(JTG D60—04),简称《桥规》; 2)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D60—04),简称《公预规》; 3)《公路桥涵地基与基础设计规范》(JTJ024—85);二、构造布置1、梁间距:采用装配式施工。
T梁架设专项方案midas计算书

怀通高速38标40米T梁架设专项施工方案编制: ________________________复核: ________________________批准: ________________________20XX年XX月XX日第一章、编制依据及工程概况 ................................................ 4..1.1、编制依据.......................................................... 4...1.2、工程概述.......................................................... 4...第二章、人员、机械设备配备情况 ............................................ 5..2.1 普头河架梁施工主要人员投入情况..................................... 5..2.2 普头河架梁施工主要施工人员、机械投入情况........................... 5.第三章普头河40 米T 梁架设方案 ........................................... 5..3.1普头河40米T梁架设的总体思路......................................5.3.2普头河40米T梁架设的工期安排......................................7.3.3架桥机简介及架40米T梁的相关技术参数 (8)3.3.1、架桥机简介................................................ 8..3.3.2、架桥机相关技术参数....................................... 8..3.3.3架桥机架梁与过孔的工况..................................... 9..3.3普头河40米T梁架设过程之前期准备................................. 1.03.3.1普头河大桥左右幅桥头地基处理(前期准备) (10)3.3.2架设普头河大桥施工测量(前期准备)......................... 1.03.4架桥机悬臂过孔................................................... 1..0.3.5 T梁的喂送 (12)3.6、支座安装........................................................ 1..2.3.7架设T梁.......................................................... 1.43.7.1 梁纵移就位1..43.7.2梁横移就位................................................................... 1..43.7.3安装临时支座................................................ 1..43.8焊接横隔板....................................................... 1..5.3.9 现浇连续横梁(湿接缝)的施工...................................... 1..5第四章、架梁安全注意事项.................................................. 1..64.1 架梁安全要素..................................................... 1..6.4.2作业安全系数..................................................... 1..6.4.3桥头线路加固..................................................... 1..7.4.4 架梁基本作业安全注意事项.......................................... 1..84.4.1 捆梁过程中不应发生下列事故.................................. 1.84.4.2捆梁位置应符合对纵向限制的规定.............................. 1. 84.4.3 吊梁过程中不应发生下列事故.................................. 1.94.4.5 吊梁应符合下列规定......................................... 1..94.4.6 架桥机上移梁应注意下列事项.................................. 2.04.4.7 墩顶移梁禁止发生下列情况.................................... 2.0附图:普头河40 米T 梁架设流程图(共两张)............................... 2..0附件:架梁验算书........................................................................... 2..3.第一章、编制依据及工程概况1.1 、编制依据1、《怀化至通道(湘桂界)高速公路第38合同段两阶段施工图设计》;2、《怀化至通道(湘桂界)高速公路第38 合同段施工组织设计》;3、《公路桥涵施工技术规范》JTJ041-2000;4、相关国家或部颁规范及标准;5、湖南省高速公路精细化施工实施细则;6、装配式架桥机多用途使用手册及架桥机相关规范;1.2 、工程概述怀化至通道(湘桂界)高速公路是包头至茂名高速公路的一部分,是湖南省“五纵七横”高速公路网规划的第5 纵。
基于Midas的预应力混凝土梁正截面承载力的验算

基于Midas的预应力混凝土梁正截面承载力的验算摘要:本文主要针对预应力混凝土梁进行研究。
根据理论依据进行计算,来求出该梁的正截面承载力,再对其进行建模分析得出该梁所能承受的正截面承载力,与之前计算得出的数值做对比,得到迈达斯软件对预应力混凝土梁正截面承载力的验算。
关键词:预应力;正截面承载力;迈达斯1.前言在项目工程应用中,钢筋混凝土的预应力结构非常常见,尤其是大跨度的建筑中,不仅能增强其强度,还能减小其裂痕的产生,还有很强的刚度和抗弯能力。
我们可对预应力混凝土简支梁进行计算,通过手动计算与电脑软件模拟结果进行对比,得到迈达斯软件对预应力混凝土梁正截面承载力的验算。
2.手动计算后张法预应力混凝土简支梁,跨度l=18m,截面尺寸b×h=400mm×1200mm。
恒载24KN/m,活载16KN/m,组合系数为0.7,准永久值为0.5,梁内配置有粘结1×7标准型低松弛钢绞线束21φs12.7,混凝土等级C45,普通钢筋为HRB400级热轧钢筋。
手动计算如下4.结论迈达斯软件能够全面分析预应力混凝土简支梁的正截面承载力,拟定预应力简支梁的结构布置形式。
通过有限元分析计算,正截面承载力与手动计算相近。
参考文献[1]沈蒲生.混凝土结构设计原理.高等教育出版社[2]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社(第二版)[3]1006-3226(2004)01-0084-05.预应力混凝土结构有限元数值分析基金项目:辽宁科技大学第八期大学生创新创业项目(20180146336)通讯作者:李昊,讲师;于新,副教授。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4po
指导老师:李立峰
专业:桥梁工程
班级:桥梁一班
姓名: * * * 学号: **********
一、计算资料
跨度与技术指标
标准跨径:L=25m
计算跨径:L0=24m
汽车荷载:公路一级
设计安全等级:二级
桥梁概况及一般截面
此计算为一预应力混凝土简支梁中梁的计算,不计入现浇带,其跨中与支点截面如图1-1所示,纵断面图如图1-2所示。
使用的材料及其容许应力
混凝土:C50,轴心抗压强度设计值m mm=22.4mmm ,抗拉强度设计值m mm= 1.83mmm,弹性模量m m=3.45×104mmm。
钢筋混凝土容重:γ=26kN/m3
钢筋:预应力钢束采用3束φ×7的钢绞线,抗拉强度标准值m mm=1860mmm,张拉控制应力σcon==1395MPa
截面面积:m m=3×140×7=2940mm2,孔道直径:77mm
预应力钢筋与管道的摩擦系数:
管道每米局部偏差对摩擦的影响系数:(1/m)
锚具变形、钢筋回缩和接缝压缩值:
开始点:6mm 结束点:6mm
纵向钢筋:采用φ16的HRB335级钢筋,底部配6根,间距为70mm,翼缘板配16根,间距为100mm。
施工方法
采用预制拼装法施工;主梁为预制预应力混凝土T梁,后张法工艺;预制梁混凝土立方体强度达到设计混凝土等级的85%,且龄期不少于7天后方可张拉预应力钢束;张拉时两端对称、均匀张拉(不超张拉),采用张拉力与引伸量双控。
钢束张拉顺序为:N2—N3—N1
二、计算模型
模型的建立
本计算为一单跨预应力混凝土简支T梁桥中梁模型(图2-1),其节点的布置如图2-2
所示。
在计算活载作用时,横向分布系数取m=,并不沿纵向变化。
在建立结构模型时,取计算跨径m0=24m,由于该结构比较简单,计算跨度只有24m,故增加单元不会导致计算量过大,大多数单元长度为1m。
建立保证控制截面在单元的端部,以便于读取数据。
对于横隔板当作节点荷载加入计算模型,其所起到的横向联系作用已在横向分布系数中考虑。
每个节点对应的x坐标值如表2-1所示
预应力钢束布置图(图2-3)及钢束坐标(表2-2)
N1 N2 N3 x z x z x z
12 12 12
备注: R=20;关于12m处对称;不超张拉;不考虑平弯
荷载组包括自重、Prestress1、Prestress 2、Prestress 3、二期恒载、温度荷载六部分,根据钢束张拉的顺序进行加载,即N2—N3—N1。
温度荷载包括季节温升、温降和日照温升、温降,季节温升、温降按照系统温度计入,季节温升考虑整体升温19℃,季节温降考虑整体降温18℃。
日照温升、温降按梯度温度输入,梯度温度按照新桥规
(JTG D62-2004)关于100mm沥青混凝土铺装的规定计入
(图3-1)。
其中,m1=14℃,m2=5.5℃,A=300mm,
竖向日照反温差为正温差乘以。
二期恒载:q=18kN/m
横隔板自重:面积A=1.7212m2,重量:G=8.50kN
移动荷载
按照新桥规(JTG D62-2004)加载,考虑结构整体作用,
设横向分布系数m=,此外,车道偏心为0。
徐变和收缩
水泥种类系数:5
28天龄期混凝土立方体抗压强度标准值,即标号强度
,m): 50MPa
(m
mm
长期荷载作用时混凝土的材龄:m0=5天
混凝土与大气接触时的材龄:m m=3天
相对湿度:RH=70%
大气或养护温度:T=20℃
施工阶段
本计算采用3个施工阶段,起具体的定义如表3-1所示
施工阶段表3-1
永久作用计算结果包括弯矩、轴力、剪力图、变形、上翼缘应力和下翼缘应力图。
采用CS3桥梁内力图作为输出结果。
恒荷载与永久作用内力对比(合计施工阶段)表4-1
图4-1永久作用弯矩图
图4-2恒载作用弯矩图
图4-3永久作用轴力图
图4-4恒载作用轴力图
图4-5永久作用剪力图
图4-6恒载作用剪力图
应力图采用组合应力,在下缘取得最大应力,在容许应力线内。
永久作用时全截面受压。
上、下翼缘应力表4-2
图4-7上翼缘应力图
图4-8 下翼缘应力图
梁单元在永久作用的下的变形:x轴方向的最大变形发生在x=24m处,为(收缩),y方向无变形,z轴方向最大变形发生在x=12m处,为(上拱),如图4-9所示。
图4-9永久作用下梁单元的变形图
五、可变作用计算结果
可变荷载包括汽车荷载和温度荷载,计算结果包括弯矩图、剪力图和位移包络图。
图5-1 汽车荷载作用弯矩图
图5-2 汽车荷载作用剪力图
图5-3 温度荷载作用弯矩图
图5-4 温度荷载作用剪力图
图5-5 可变荷载作用弯矩图
图5-6可变荷载作用剪力图位移包络图
位移包络图:
可变作用最大时x方向最大位移发生在24m处为(伸长),z方向最大位移发生在12m 处为(上拱);可变作用最小时x方向最大位移发生在24m处为(收缩),z方向最大位移发生在12m处为(下挠)。
图5-7 可变荷载作用最大时变形图
图5-8 可变荷载作用最小时变形图汽车荷载引起z方向最大位移发生在12m处为(下挠)
图5-9 汽车荷载作用引起的最大下挠变形图
季节温升引起的x轴方向最大位移发生在x=24m处,为(伸长),z轴方向的最大位移发生在x=12m处,为(上拱);
图5-10 季节温升引起的变形图
季节温降引起的x轴方向最大位移发生在x=24m处,为(收缩),z轴方向的最大位移发生在x=12m处,为(下挠);
图5-11 季节温降引起的变形图
日照温升引起的x轴方向最大位移发生在x=24m处,为(伸长),z轴方向的最大位移发生在x=12m处,为(上拱);
图5-12 日照温升引起的变形图
日照温降引起的x轴方向最大位移发生在x=24m处,为(收缩),z轴方向的最大位移发生在x=12m处,为(下挠);
图5-13 日照温降引起的变形图
六、荷载组合结果
包括承载能力极限状态组合(基本组合)、正常使用极限状态组合(短期组合和长期组合)的弯矩、轴力、剪力包络图。
承载能力极限状态组合(基本组合)表6-1
图6-1 基本组合弯矩包络图
图6-2 基本组合轴力包络图
图6-3 基本组合剪力包络图
图6-4 短期组合弯矩包络图
图6-5 短期组合轴力包络图
图6-6 短期组合剪力包络图
图6-7 长期组合弯矩包络图
图6-8 长期组合轴力包络图
图6-10 长期组合剪力包络图。