江苏专版2020版高考数学一轮复习课时跟踪检测九指数与指数函数理含解析20190506415
江苏专版2020版高考数学一轮复习课时跟踪检测九指数与指数函数理含解析

课时跟踪检测(九) 指数与指数函数一抓基础,多练小题做到眼疾手快1.(2019·连云港调研)已知a =3π,b =e π,c =e 3,则a ,b ,c 的大小关系为________. 解析:由y =e x是增函数,得b =e π>c =e 3,由y =x π是增函数,得a =3π>b =e π,故c <b <a .答案:c <b <a 2.已知函数y =ax -1+3(a >0且a ≠1)图象经过点P ,则点P 的坐标为________.解析:当x =1时,y =a 0+3=4, ∴函数y =ax -1+3(a >0且a ≠1)的图象恒过定点(1,4).∴点P 的坐标为(1,4). 答案:(1,4)3.在同一平面直角坐标系中,函数f (x )=2x +1与g (x )=⎝ ⎛⎭⎪⎫12x -1的图象关于________对称.解析:因为g (x )=21-x=f (-x ),所以f (x )与g (x )的图象关于y 轴对称.答案:y 轴 4.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为________.解析:由f (x )过定点(2,1)可知b =2, 因为f (x )=3x -2在[2,4]上是增函数,所以f (x )min =f (2)=1,f (x )max =f (4)=9. 故f (x )的值域为[1,9]. 答案:[1,9] 5.不等式222x x-+>⎝ ⎛⎭⎪⎫12x +4的解集为________. 解析:不等式222x x-+>⎝ ⎛⎭⎪⎫12x +4可化为⎝ ⎛⎭⎪⎫12x 2-2x >⎝ ⎛⎭⎪⎫12x +4,等价于x 2-2x <x +4, 即x 2-3x -4<0,解得-1<x <4. 答案:{x |-1<x <4}6.(2019·徐州调研)若函数f (x )=a x -1(a >1)在区间[2,3]上的最大值比最小值大a2,则a =________.解析:∵函数f (x )=a x -1(a >1)在区间[2,3]上为增函数, ∴f (x )max =f (3)=a 2,f (x )min =f (2)=a .由题意可得a 2-a =a 2,解得a =32.答案:32二保高考,全练题型做到高考达标 1.若函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则f (-4)与f (1)的大小关系是________.解析:由题意知a >1,f (-4)=a 3,f (1)=a 2, 由y =a t(a >1)的单调性知a 3>a 2,所以f (-4)>f (1). 答案:f (-4)>f (1)2.(2018·启东中学检测)满足⎝ ⎛⎭⎪⎫14x -3>16的x 的取值范围是________.解析:∵⎝ ⎛⎭⎪⎫14x -3>16,∴⎝ ⎛⎭⎪⎫14x -3>⎝ ⎛⎭⎪⎫14-2,∵函数y =⎝ ⎛⎭⎪⎫14x在定义域上是减函数,∴x -3<-2,故x <1. 答案:(-∞,1)3.已知实数a ,b 满足等式2 017a=2 018b,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有________个.解析:设2 017a=2 018b=t ,如图所示,由函数图象,可得若t >1,则有a >b >0;若t =1,则有a =b =0;若0<t <1,则有a <b <0.故①②⑤可能成立,而③④不可能成立.答案:24.若函数f (x )=⎩⎪⎨⎪⎧a x, x >1,2-3a x +1,x ≤1是R 上的减函数,则实数a 的取值范围是________.解析:依题意,a 应满足⎩⎪⎨⎪⎧0<a <1,2-3a <0,2-3a ×1+1≥a 1,解得23<a ≤34.答案:⎝ ⎛⎦⎥⎤23,34 5.(2019·苏州中学检测)函数f (x )=⎝ ⎛⎭⎪⎫13x 2+1的值域为________.解析:令u =x 2+1,可得f (u )=⎝ ⎛⎭⎪⎫13u 是减函数,而u =x 2+1的值域为[1,+∞),∴函数f (x )=⎝ ⎛⎭⎪⎫13x 2+1的值域为⎝ ⎛⎦⎥⎤0,13. 答案:⎝ ⎛⎦⎥⎤0,136.(2019·无锡调研)函数f (x )=⎝ ⎛⎭⎪⎫12x x 226-+的单调递增区间是________.解析:设u (x )=x 2-2x +6=(x -1)2+5,对称轴为x =1, 则u (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增,又y =⎝ ⎛⎭⎪⎫12x在R 上单调递减,所以f (x )=⎝ ⎛⎭⎪⎫12x x 226-+在(-∞,1)上单调递增,在(1,+∞)上单调递减.答案:(-∞,1)7.已知函数f (x )=a -x(a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.解析:因为f (x )=a -x=⎝ ⎛⎭⎪⎫1ax ,且f (-2)>f (-3),所以函数f (x )在定义域上单调递增, 所以1a>1,解得0<a <1. 答案:(0,1)8.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是________.解析:原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x ,因为函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数,所以⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m <2,解得-1<m <2.答案:(-1,2) 9.化简下列各式:(1)⎝ ⎛⎭⎪⎫2790.5+0.1-2+⎝ ⎛⎭⎪⎫21027-23-3π0+3748;(2)3a 72·a -3÷3a -3·a -1.解:(1)原式=⎝ ⎛⎭⎪⎫25912+10.12+⎝ ⎛⎭⎪⎫6427-23-3+3748=53+100+916-3+3748=100.(2)原式=3a 72·a -23÷3a-23·a-12=3a 72÷3a-12=a 76÷a16-=a 86=a 43.10.(2018·苏州调研)已知函数f (x )=3x+λ·3-x(λ∈R). (1)若f (x )为奇函数,求λ的值和此时不等式f (x )>1的解集; (2)若不等式f (x )≤6对x ∈[0,2]恒成立,求实数λ的取值范围. 解:(1)函数f (x )=3x +λ·3-x的定义域为R. 因为f (x )为奇函数,所以f (-x )+f (x )=0对∀x ∈R 恒成立,即3-x+λ·3x +3x +λ·3-x =(λ+1)(3x +3-x)=0对∀x ∈R 恒成立, 所以λ=-1.由f (x )=3x -3-x >1,得(3x )2-3x-1>0, 解得3x >1+52或3x<1-52(舍去),所以不等式f (x )>1的解集为⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫x >log 31+52.(2)由f (x )≤6,得3x+λ·3-x≤6,即3x+λ3x ≤6. 令t =3x∈[1,9],则问题等价于t +λt≤6对t ∈[1,9]恒成立, 即λ≤-t 2+6t 对t ∈[1,9]恒成立, 令g (t )=-t 2+6t ,t ∈[1,9],因为g (t )在[1,3]上单调递增,在[3,9]上单调递减, 所以当t =9时,g (t )有最小值g (9)=-27,所以λ≤-27,即实数λ的取值范围为(-∞,-27]. 三上台阶,自主选做志在冲刺名校1.当x ∈[1,2]时,函数y =12x 2与y =a x(a >0)的图象有交点,则a 的取值范围是________.解析:当a >1时,如图①所示,使得两个函数图象有交点,需满足12·22≥a 2,即1<a ≤2;当0<a <1时,如图②所示,需满足12·12≤a 1,即12≤a <1.综上可知,a ∈⎣⎢⎡⎦⎥⎤12,2.答案:⎣⎢⎡⎦⎥⎤12,22.(2018·南京调研)已知二次函数f (x )=mx 2-2x -3,关于实数x 的不等式f (x )≤0的解集为[-1,n ].(1)当a ≥0时,解关于x 的不等式ax 2+n +1>(m +1)x +2ax ; (2)是否存在实数a ∈(0,1),使得关于x 的函数y =f (a x )-3a x +1在x ∈[1,2]上的最小值为-92?若存在,求实数a 的值;若不存在,请说明理由.解:(1)由f (x )=mx 2-2x -3≤0的解集为[-1,n ]知,关于x 的方程mx 2-2x -3=0的两根为-1和n ,且m >0,则⎩⎪⎨⎪⎧-1+n =2m ,-1×n =-3m,所以⎩⎪⎨⎪⎧m =1,n =3.所以原不等式可化为(x -2)(ax -2)>0.①当a =0时,原不等式化为(x -2)×(-2)>0,解得x <2;②当0<a <1时,原不等式化为(x -2)·⎝ ⎛⎭⎪⎫x -2a >0,且2<2a ,解得x >2a或x <2;③当a =1时,原不等式化为(x -2)2>0,解得x ∈R 且x ≠2;④当a >1时,原不等式化为(x -2)·⎝ ⎛⎭⎪⎫x -2a >0,且2>2a ,解得x <2a或x >2.综上所述,当a =0时,原不等式的解集为{x |x <2};当0<a ≤1时,原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >2a 或x <2;当a >1时,原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >2或x <2a .(2)假设存在满足条件的实数a , 由(1)知f (x )=x 2-2x -3,y =f (a x )-3a x +1=a 2x -(3a +2)a x -3.令a x=t ,a 2≤t ≤a ,则y =t 2-(3a +2)t -3, 此函数图象的对称轴为t =3a +22, 因为a ∈(0,1),所以a 2<a <1,1<3a +22<52,所以函数y =t 2-(3a +2)t -3在[a 2,a ]上单调递减,所以当t =a 时,y 取得最小值,最小值为y =-2a 2-2a -3=-92,解得a =-32(舍去)或a =12.故存在满足条件的a ,a 的值为12.。
届高考数学一轮总复习课时跟踪检测(九)指数与指数函数文新人教A版【含答案】

课时跟踪检测(九) 指数与指数函数一抓基础,多练小题做到眼疾手快 1.函数f (x )=2|x -1|的大致图象是( )解析:选B f (x )=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝ ⎛⎭⎪⎫12x -1,x <1.所以f (x )的图象在[1,+∞)上为增函数,在(-∞,1)上为减函数.2.设a =22.5,b =2.50,c =⎝ ⎛⎭⎪⎫12 2.5,则a ,b ,c 的大小关系是( )A .a >c >bB .c >a >bC .b >a >cD .a >b >c解析:选D a >1,b =1,0<c <1,所以a >b >c . 3.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)解析:选C 由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在[2,4]上是增函数,所以f (x )min =f (2)=1,f (x )max =f (4)=9.故f (x )的值域为[1,9].4.(2016·皖北协作区联考)函数f (x )=1-e x的值域为________.解析:由1-e x ≥0,e x ≤1,故函数f (x )的定义域为{x |x ≤0}.所以0<e x≤1,-1≤-e x <0,0≤1-e x<1,函数f (x )的值域为[0,1).答案:[0,1)5.若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________. 解析:当a >1时,f (x )=a x-1在[0,2]上为增函数, 则a 2-1=2,∴a =± 3.又∵a >1,∴a = 3. 当0<a <1时,f (x )=a x-1在[0,2]上为减函数, 又∵f (0)=0≠2,∴0<a <1不成立. 综上可知,a = 3. 答案: 3二保高考,全练题型做到高考达标1.函数f (x )=a x -2+1(a >0且a ≠1)的图象必经过点( )A .(0,1)B .(1,1)C .(2,0)D .(2,2)答案:D2.已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >a解析:选A 由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .3.已知函数f (x )=e x -e -xe x +e -x ,若f (a )=-12,则f (-a )=( )A.12 B .-12C.14D .-14解析:选A ∵f (x )=e x-e -xe x +e -x ,f (a )=-12,∴e a -e -ae a +e -a =-12. ∴f (-a )=e -a -e a e -a +e a =-e a -e -ae a +e -a =-⎝ ⎛⎭⎪⎫-12=12.4.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)解析:选C 当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1, 所以0≤a <1.故a 的取值范围是(-3,1).5.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是( )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)解析:选C 原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x ,∵函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数,∴⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2, 当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m <2,解得-1<m <2.6.已知函数f (x )=ln ⎝ ⎛⎭⎪⎫1-a 2x 的定义域是(1,+∞),则实数a 的值为________.解析:由题意得,不等式1-a2x >0的解集是(1,+∞),由1-a2x >0,可得2x>a ,故x >log 2a ,由log 2a =1得a =2. 答案:27.已知函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的大小关系是________.解析:∵|x +1|≥0,函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),∴a >1.由于函数f (x )=a|x +1|在(-1,+∞)上是增函数,且它的图象关于直线x =-1对称,则函数在(-∞,-1)上是减函数,故f (1)=f (-3),f (-4)>f (1).答案:f (-4)>f (1)8.(2016·福建四地六校联考)y =2·a|x -1|-1(a >0,a ≠1)过定点________.解析:由题根据指数函数性质令|x -1|=0,可得x =1,此时y =1,所以函数恒过定点(1,1).答案:(1,1) 9.化简下列各式:(1)⎝ ⎛⎭⎪⎫2790.5+0.1-2+⎝ ⎛⎭⎪⎫2102723--3π0+3748;(2)3a 72·a -3÷3a -3·a -1.解:(1)原式=⎝ ⎛⎭⎪⎫25912+10.12+⎝ ⎛⎭⎪⎫642723--3+3748=53+100+916-3+3748=100. (2)原式=3a 72·a32-÷3a32-·a12-=3a 72÷3a12-=a 76÷a 16-=a 86=a 43.10.(2016·上海松江区期末)已知函数f (x )=a |x +b |(a >0,b ∈R).(1)若f (x )为偶函数,求b 的值;(2)若f (x )在区间[2,+∞)上是增函数,试求a ,b 应满足的条件. 解:(1)∵f (x )为偶函数,∴对任意的x ∈R ,都有f (-x )=f (x ). 即a|x +b |=a|-x +b |,|x +b |=|-x +b |,解得b =0.(2)记h (x )=|x +b |=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间[2,+∞)上是增函数, 即h (x )在区间[2,+∞)上是增函数, ∴-b ≤2,b ≥-2.②当0<a <1时,f (x )在区间[2,+∞)上是增函数,即h (x )在区间[2,+∞)上是减函数,但h (x )在区间[-b ,+∞)上是增函数,故不存在a ,b 的值,使f (x )在区间[2,+∞)上是增函数.∴f (x )在区间[2,+∞)上是增函数时,a ,b 应满足的条件为a >1且b ≥-2. 三上台阶,自主选做志在冲刺名校1.(2015·唐山二模)当x ∈[1,2]时,函数y =12x 2与y =a x(a >0)的图象有交点,则a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,2B.⎣⎢⎡⎦⎥⎤12,2C.⎣⎢⎡⎦⎥⎤14,2 D.⎣⎢⎡⎦⎥⎤14,2 解析:选B 当a >1时,如图①所示,使得两个函数图象有交点,需满足12·22≥a 2,即1<a ≤2;当0<a <1时,如图②所示,需满足12·12≤a 1,即12≤a <1,综上可知,a ∈⎣⎢⎡⎦⎥⎤12,2.2.已知定义在R 上的函数f (x )=2x-12|x |.(1)若f (x )=32,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 解:(1)当x <0时,f (x )=0,无解; 当x ≥0时,f (x )=2x-12x ,由2x-12x =32,得2·22x-3·2x-2=0,将上式看成关于2x的一元二次方程, 解得2x =2或2x=-12,∵2x>0,∴x =1.(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t-1)≥-(24t-1),∵22t-1>0, ∴m ≥-(22t+1),∵t ∈[1,2],∴-(22t+1)∈[-17,-5], 故实数m 的取值范围是[-5,+∞).。
2023年新高考数学大一轮复习专题09 指数与指数函数(解析版)

专题09 指数与指数函数【考点预测】 1.指数及指数运算 (1)根式的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中(1n >,)n N *∈n 称为根指数,a 称为根底数.(2)根式的性质:当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数. 当n 为偶数时,正数的n 次方根有两个,它们互为相反数.(3)指数的概念:指数是幂运算(0)n a a ≠中的一个参数,a 为底数,n 为指数,指数位于底数的右上角,幂运算表示指数个底数相乘.(4)有理数指数幂的分类 ①正整数指数幂()n n a a a a a n N *=⋅⋅⋅⋅∈个;②零指数幂01(0)a a =≠; ③负整数指数幂1(0nn aa a-=≠,)n N *∈;④0的正分数指数幂等于0,0的负分数指数幂没有意义. (5)有理数指数幂的性质①+(0m n m n a a a a >=,m ,)n Q ∈;②()(0m n m n a a a >=,m ,)n Q ∈; ③()(0m m m ab a a b >=,0b >,)m Q ∈(0mn a a >=,m ,)n Q ∈. 2.指数函数【方法技巧与总结】 1.指数函数常用技巧(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论.(2)当01a <<时,x →+∞,0y →;a 的值越小,图象越靠近y 轴,递减的速度越快. 当1a >时x →+∞,0y →;a 的值越大,图象越靠近y 轴,递增速度越快.(3)指数函数x y a =与1()x y a=的图象关于y 轴对称.【题型归纳目录】题型一:指数运算及指数方程、指数不等式 题型二:指数函数的图像及性质 题型三:指数函数中的恒成立问题 题型四:指数函数的综合问题 【典例例题】题型一:指数运算及指数方程、指数不等式例1.(2022·四川凉山·三模(文))计算:)2ln31e 1lg 4lg 0.254-⎛⎫+-++= ⎪⎝⎭______.【答案】18 【解析】 【分析】根据指对数幂的计算公式求解即可 【详解】)()2ln321e 1lg 4lg 0.25431lg 40.25184-⎛⎫+-++=+-+⨯= ⎪⎝⎭故答案为:18例2.(2022·河北邯郸·一模)不等式10631x x x --≥的解集为___________. 【答案】[)1,+∞ 【解析】 【分析】将原不等式变为1631101010x x x ⎛⎫⎛⎫⎛⎫++≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设()163101010x x xf x ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后利用函数的单调性解不等式. 【详解】由10631xxx--≥,可得1631101010x x x⎛⎫⎛⎫⎛⎫++≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()163101010x x xf x ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为163101010,,xxxy y y ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎝=⎭⎭=均为R 上单调递减函数则()f x 在R 上单调逆减,且()11f =,()()1f x f ∴≤, 1x ∴≥故不等式10631x x x --≥的解集为[)1,+∞. 故答案为:[)1,+∞.例3.(2022·陕西·榆林市教育科学研究所模拟预测(理))甲、乙两人解关于x 的方程220x x b c -+⋅+=,甲写错了常数b ,得到的根为2x =-或x =217log 4,乙写错了常数c ,得到的根为0x =或1x =,则原方程的根是( )A .2x =-或2log 3x =B .1x =-或1x =C .0x =或2x =D .1x =-或2x =【答案】D 【解析】 【分析】令2x t =,则方程220x x b c -+⋅+=可化为20t ct b ++=,根据甲计算出常数c ,根据乙计算出常数b ,再将,b c 代入关于x 的方程220x x b c -+⋅+=解出x 即可 【详解】令2x t =,则方程220x x b c -+⋅+=可化为20t ct b ++=,甲写错了常数b , 所以14和174是方程20t ct m ++=的两根,所以1179442c ⎛⎫=-+=- ⎪⎝⎭,乙写错了常数c ,所以1和2是方程20t nt b ++=的两根,所以1b =⨯22=, 则可得方程29202t t -+=,解得12142,t t ==,所以原方程的根是1x =-或2x = 故选:D例4.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()4322x x f x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞- B .(,1]-∞-C .[)()2,00,2-D .[)()2,02,-⋃+∞【答案】A 【解析】 【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,函数()f x 的解析式,再分段讨论解不等式作答. 【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,()4322x xf x a =-⨯+,则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,()4322x xf x =-⨯+,当0x <时,0x ->,则()()(4322)x x f x f x --=--=--⨯+,而当0x ≥时,()2311(2)244xf x =--≥-,则当()6f x ≤-时,0(4322)6x x x --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩, 变形得024x x -<⎧⎨≥⎩,解得2x -≤,所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A例5.(2022·全国·高三专题练习)化简: (1)126016(2018)449-⎛⎫+--⨯ ⎪⎝⎭(2111332ab a b -⎫⎪⎭a >0,b >0). (3)312211122211111a a aa a a a a -+--++++-.【答案】(1)99π+;(2)ab;(3)12a . 【解析】 【分析】(1)根据指数幂的化简原则,计算整理,即可得答案. (2)根据指数幂的化简原则,计算整理,即可得答案.(3)根据指数幂的化简原则,结合立方差公式,通分计算,即可得答案. 【详解】(1)原式6614342717399πππ=⨯+--=⨯+-+-=+ (2)原式=11121082232333354331127272333333a b a b a b a b a b ab a b a b a b -⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭===.(3)原式1122313122221211111a a a a a a a a a a a a a ⎛⎫⎛⎫-⋅++ ⎪ ⎪-+--+-+⎝⎭⎝⎭=--++1122111a a a a -=--=-.【方法技巧与总结】利用指数的运算性质解题.对于形如()f x a b =,()f x a b >,()f x a b <的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如20xx a Ba C ++=或2)00(x x a Ba C ++的形式,可借助换元法转化二次方程或二次不等式求解.题型二:指数函数的图像及性质例6.(2022·浙江绍兴·模拟预测)函数2()()-+=-x xx m f x a a ,的图象如图所示,则( )A .0,01<<<m aB .0,1<>m aC .0,01m a ><<D .0,1>>m a【答案】C 【解析】 【分析】依据图像列不等式求得m a 、的取值范围,即可进行选择 【详解】由图像可知,当0x >时,()0f x <,则0x >时,2()0x m +>,则0m ≥, 又由()f x 图像不关于原点中心对称可知0m ≠,则0m > 则0x >时,0xxa a--<,即210x xa a -<,则01a <<故选:C例7.(2022·全国·高三专题练习)函数()21xf x m =--恰有一个零点,则m 的取值范围是( )A .()1,+∞B .{}()01,∞⋃+C .{}[)01,∞⋃+D .[)1,+∞【答案】C 【解析】 【分析】将问题转化为|1|2x y =-与y m =只有一个交点,画出|1|2x y =-的图象,应用数形结合法求m 的取值范围. 【详解】由题设,|1|2x y =-与y m =只有一个交点, 又|1|2x y =-的图象如下:∴m ∈{}[)01,∞⋃+. 故选:C.例8.(2022·四川省泸县第二中学模拟预测(文))函数()11e xf x -=+,下列关于函数()f x 的说法错误的是( )A .函数()f x 的图象关于原点对称B .函数()f x 的值域为()0,1C .不等式()12f x >的解集是()0,∞+ D .()f x 是增函数 【答案】A 【解析】 【分析】利用特殊值法可判断A 选项;求出函数()f x 的值域,可判断B 选项;解不等式()12f x >可判断C 选项;利用指数型函数的单调性可判断D 选项. 【详解】对于A 选项,函数()f x 的定义域为R ,且()1002f =≠, 所以,函数()f x 的图象不关于原点对称,A 错; 对于B 选项,因为e 11x -+>,所以,()()10,11e xf x -=∈+,B 对; 对于C 选项,由()111e 2xf x -=>+可得1x e -<,则0x -<,解得0x >,C 对; 对于D 选项,对任意的R x ∈,1e 1x y -=+>,且函数1e x y -=+在R 上单调递减,故函数()f x 是增函数,D 对. 故选:A.例9.(2022·河南·三模(文))已知()1f x -为定义在R 上的奇函数,()10f =,且()f x 在[)1,0-上单调递增,在[)0,∞+上单调递减,则不等式()250xf -<的解集为( )A .()22,log 6B .()()2,12,log 6-∞⋃C .()2log 6,+∞D .()()21,2log 6,⋃+∞【答案】D 【解析】 【分析】首先判断出()f x 的对称性,求得()0f x <的解集,从而求得()250xf -<的解集.【详解】因为()1f x -为定义在R 上的奇函数,所以()f x 的图象关于点()1,0-对称, 且()10f -=,又()10f =,所以()30f -=. 依题意可得,当31x -<<-或1x >时,()0f x <.所以()250xf -<等价于3251x -<-<-或251x ->,解得12x <<或2log 6x >. 故选:D例10.(2022·新疆阿勒泰·三模(理))函数11x y a -=+图象过定点A ,点A 在直线()31,0mx ny m n +=>>上,则121m n+-最小值为___________. 【答案】92##4.5【解析】 【分析】根据指数函数过定点的求法可求得()1,2A ,代入直线方程可得()122m n -+=,根据()()1211212121m n m n m n ⎛⎫+=+-+ ⎪--⎝⎭,利用基本不等式可求得最小值. 【详解】当1x =时,012y a =+=,11x y a -∴=+过定点()1,2A , 又点A 在直线3mx ny +=上,23∴+=m n ,即()122m n -+=, 1m >,0n >,10m ∴->,()()()21121121212512121m n m n m n m n m n -⎛⎫⎛⎫∴+=+-+=++≥ ⎪ ⎪---⎝⎭⎝⎭19522⎛ += ⎝(当且仅当()2121m nm n-=-,即53m =,23n =时取等号), 121m n ∴+-的最小值为92. 故答案为:92.例11.(2022·北京·高三专题练习)已知()212221x x xf x a +=+-+(其中a R ∈且a 为常数)有两个零点,则实数a 的取值范围是___________. 【答案】()4,+∞ 【解析】 【分析】设()20,x t =∈+∞,可转化为()2210t a t +-+=有两个正解,进而可得参数范围.【详解】设()20,xt =∈+∞,由()212221x x xf x a +=+-+有两个零点, 即方程()2210t a t +-+=有两个正解,所以()21212Δ2402010a t t a t t ⎧=-->⎪+=->⎨⎪=>⎩,解得4a >,即()4,a ∈+∞, 故答案为:()4,+∞.例12.(2022·全国·高三专题练习)已知函数()22x xf x k -=+⋅(k 为常数,k ∈R )是R 上的奇函数.(1)求实数k 的值;(2)若函数()y f x =在区间[]1,m 上的值域为15,4n ⎡⎤⎢⎥⎣⎦,求m n +的值.【答案】(1)1k =- (2)72【解析】 【分析】(1)由(0)0f =求得参数值,再检验即可;(2)由函数的单调性得(1)15()4f n f m =⎧⎪⎨=⎪⎩,代入可求得,m n .(1)由()f x 是奇函数得(0)10f k =+=,1k =-,此时()22x x f x -=-是奇函数; (2)由复合函数的性质得1()2222x x xxf x -=-=-在定义域内是增函数, 所以(1)15()4f nf m =⎧⎪⎨=⎪⎩,13222n =-=,115224m m -=,24m =或124m=-(舍去), 2m =,所以37222m n +=+=.【方法技巧与总结】解决指数函数有关问题,思路是从它们的图像与性质考虑,按照数形结合的思路分析,从图像与性质找到解题的突破口,但要注意底数对问题的影响.题型三:指数函数中的恒成立问题例13.(2022·北京·高三专题练习)设()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,若对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,则正数m 的取值范围为( )A .m 1≥B .1mC .01m <<D .01m <≤【答案】A 【解析】 【分析】分析可知()2xf x =,由已知可得2x x m ≥-对任意的[],1x m m ∈+恒成立,解得2x m ≤对任意的[],1x m m ∈+恒成立,可得出关于实数m 的不等式,解之即可.【详解】因为函数()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,则当0x ≥时,0x -≤,()()2xf x f x =-=,故对任意的R x ∈,()2x f x =, 对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,即222x x m -≥,即2x x m ≥-对任意的[],1x m m ∈+恒成立,且m 为正数,则()2x x m ≥-,可得2x m ≤,所以,12m m +≤,可得m 1≥. 故选:A.例14.(2022·北京·高三专题练习)已知函数()33x xf x -=-.(1)利用函数单调性的定义证明()f x 是单调递增函数;(2)若对任意[]1,1x ∈-,()()24f x mf x ⎡⎤+≥-⎣⎦恒成立,求实数m 的取值范围. 【答案】(1)证明见解析 (2)[]4,4- 【解析】 【分析】(1)利用单调性的定义,取值、作差、整理、定号、得结论,即可得证.(2)令33x x t -=-,根据x 的范围,可得t 的范围,原式等价为()2h t t mt =+,88,33t ⎡⎤∈-⎢⎥⎣⎦,只需()min 4h t ≥-即可,分别讨论823m -≤-、88323m -<-<和823m -≥三种情况,根据二次函数的性质,计算求值,分析即可得答案. (1)由已知可得()f x 的定义域为R , 任取12,x x ∈R ,且12x x <,则()()12f x f x -()()1122121121333331313x x x x x x x x x ---+⎛⎫=---=-+ ⎪⎝⎭, 因为130x >,121103x x ++>,21130x x --<,所以()()120f x f x -<,即()()12f x f x <, 所以()f x 在R 上是单调递增函数. (2)()()()()223333x x x xf x mf x m --⎡⎤+=-+-⎣⎦,令33x x t -=-,则当[]1,1x ∈-时,88,33t ⎡⎤∈-⎢⎥⎣⎦,所以()()22f x mf x t mt ⎡⎤+=+⎣⎦.令()2h t t mt =+,88,33t ⎡⎤∈-⎢⎥⎣⎦,则只需()min 4h t ≥-. 当823m -≤-,即163m ≥时,()h t 在88,33⎡⎤-⎢⎥⎣⎦上单调递增, 所以()min 86484393h t h m ⎛⎫=-=-≥- ⎪⎝⎭,解得256m ≤,与163m ≥矛盾,舍去;当88323m -<-<,即161633m -<<时,()h t 在8,32m ⎡⎤--⎢⎥⎣⎦上单调递减,在8,23m ⎡⎤-⎢⎥⎣⎦上单调递增,所以()2min 424m m h t h ⎛⎫=-=-≥- ⎪⎝⎭,解得44m -≤≤;当823m -≥即163m ≤-时,()h t 在88,33⎡⎤-⎢⎥⎣⎦上单调递减, 所以()min 86484393h t h m ⎛⎫==+≥- ⎪⎝⎭,解得256m ≥-,与163m ≤-矛盾,舍去. 综上,实数m 的取值范围是[]4,4-.例15.(2022·全国·高三专题练习(文))已知函数()3(21x f x a a =-+为实常数). (1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,对任意[]1,6x ∈,不等式()2xuf x ≥恒成立,求实数u 的最大值. 【答案】(1)函数()f x 是奇函数,理由见解析;(2)1. 【解析】 【分析】(1)若函数()f x 为奇函数,由奇函数的定义可求得a 的值;又当32a ≠时()()11f f -≠,且()()11f f -≠-,函数()f x 是非奇非偶函数; (2)对任意[]1,6x ∈,不等式()2xuf x ≥恒成立,化简不等式参变分离,构造新函数()t ϕ,利用换元法和对勾函数的单调性求出最值,代入得出实数u 的最大值. 【详解】 解:(1)当32a =时()()3322302121xx f x f x a a -+-=--=-=++,即()()f x f x -=-;故此时函数()f x 是奇函数; 因当32a ≠时,()()11,12f a f a =--=-,故 ()()11f f -≠,且()()11f f -≠-于是此时函数()f x 既不是偶函数,也不是奇函数; (2)因()f x 是奇函数,故由(1)知32a =,从而()33221x f x =-+; 由不等式()2x u f x ≥,得3322221xx x u ⋅≤⋅-+,令[]213,65(xt +=∈因[]1,6)x ∈,故()()3133291222t u t t t t -⎛⎫≤--=+- ⎪⎝⎭ 由于函数()32922t t t ϕ⎛⎫=+- ⎪⎝⎭在[]3,65单调递增,所以()min ()31ϕϕ==t ;因此,当不等式()2xuf x ≥在[]1,6x ∈上恒成立时,max 1.u = 例16.(2022·全国·高三专题练习(文))已知函数1()421x x f x a +=-+. (1)若函数()f x 在[0x ∈,2]上有最大值8-,求实数a 的值; (2)若方程()0f x =在[1x ∈-,2]上有解,求实数a 的取值范围. 【答案】(1)5;(2)1718a ≤≤. 【解析】 【分析】(1)2()(2)221x x f x a =-+,[0x ∈,2],2[1x ∴∈,4],进而讨论a 与52的关系求解; (2)[1x ∈-,2],∴令12[2x t =∈,4],2()210g t t at ∴=-+=在1,42⎡⎤⎢⎥⎣⎦有解,进而求解.【详解】解:(1)2()(2)221x x f x a =-+,[0x ∈,2],2[1x ∴∈,4], ①52a 时,2()42418max f x a =-⨯+=-,解得258a =(舍)②52a >时,2()12118max f x a =-⨯+=-,解得5a =, 5a ∴=;(2)[1x ∈-,2],∴令12,42xt ⎡⎤=∈⎢⎥⎣⎦,2()210g t t at ∴=-+=在1,42⎡⎤⎢⎥⎣⎦有解,11212222t t a t t =+=当且仅当122t t=,即1t =时等号成立,此时函数2()21g t t t =-+的图象如图,4t ∴=时,a 取得最大值178, 综上[1a ∈,17]8. 【点睛】本题考查复合函数的单调性,在特定区间的最值问题;以及复合函数在特定区间的上有解,转化为对勾函数的图象求解,属于中档题.例17.(2022·全国·高三专题练习)已知函数2()f x x =,1()2xg x m ⎛⎫=- ⎪⎝⎭(1)当[1,3]x ∈-时,求()f x 的值域;(2)若对[]0,2x ∀∈,()1g x 成立,求实数m 的取值范围;(3)若对[]10,2x ∀∈,2[1,3]x ∃∈-,使得12()()g x f x 成立,求实数m 的取值范围. 【答案】(1)[0,9];(2)34m -;(3)8m -. 【解析】 【分析】(1)由二次函数的性质得出值域;(2)将问题转化为求()g x 在[]0,2的最小值大于或等于1,再根据指数函数的单调性得出实数m 的取值范围; (3)将问题转化为()g x 在[]0,2的最大值小于或等于()f x 在[1,3]-上的最大值9,从而得出实数m 的取值范围. 【详解】(1)当[1,3]x ∈-时,函数2()[0f x x =∈,9] ()f x ∴的值域[]0,9(2)对[]0,2x ∀∈,()1g x 成立,等价于()g x 在[]0,2的最小值大于或等于1.而()g x 在[]0,2上单调递减,所以2112m ⎛⎫- ⎪⎝⎭,即34m -(3)对[]10,2x ∀∈,2[1,3]x ∃∈-,使得12()()g x f x 成立,等价于()g x 在[]0,2的最大值小于或等于()f x 在[1,3]-上的最大值9 由19m -,8m ∴-【方法技巧与总结】已知不等式能恒成立求参数值(取值范围)问题常用的方法: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.题型四:指数函数的综合问题例18.(2022·天津河西·二模)已知定义在R 上的函数()f x 满足:①()2()0f x f x -+=;②()()20f x f x ---=;③在[]1,1-上的解析式为()[](]πcos ,1,021,0,1x x f x x x ⎧∈-⎪=⎨⎪-∈⎩,则函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为( ) A .3 B .4C .5D .6【答案】B 【解析】 【分析】由函数的性质作出其图象,再观察交点个数即可得解. 【详解】由(2)()0f x f x -+=知()f x 的图象关于(1,0)对称, 由(2)()0f x f x ---=知()f x 的图象关于1x =-对称,作出()f x 与||1()()2x g x =在[3-,3]上的图象:由图可知函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为4.故选:B .例19.(2022·北京·二模)若函数()()223,02,0xx f x x x a⎧+≤⎪=⎨-<≤⎪⎩的定义域和值域的交集为空集,则正数a 的取值范围是( ) A .(]0,1 B .()0,1 C .()1,4 D .()2,4【答案】B 【解析】 【分析】首先得到函数的定义域,再分析当0x ≤时()f x 的取值,即可得到3a ≤,再对0x a <≤时分2a ≥和02a <<两种情况讨论,求出此时()f x 的取值,即可得到()f x 的值域,从而得到不等式,解得即可; 【详解】解:因为()()223,02,0xx f x x x a⎧+≤⎪=⎨-<≤⎪⎩,所以()f x 的定义域为(],a -∞,0a >, 当0x ≤时()23xf x =+,则()f x 在(],0-∞上单调递增,所以()(]3,4f x ∈;要使定义域和值域的交集为空集,显然03a <≤, 当0x a <≤时()()22f x x =-,若2a ≥则()20f =,此时显然不满足定义域和值域的交集为空集, 若02a <<时()f x 在(]0,a 上单调递减,此时()())22,4f x a ⎡∈-⎣, 则()())(]22,43,4f x a ⎡∈-⎣,所以()2202a a a ⎧<-⎪⎨<<⎪⎩,解得01a <<,即()0,1a ∈故选:B例20.(2022·甘肃省武威第一中学模拟预测(文))已知函数()4sin 22x x f x π=++,则124043202220222022f f f ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.【答案】4043 【解析】 【分析】根据题意,化简得到()()22f x f x +-=,结合倒序相加法求和,即可求解. 【详解】由题意,函数()4sin 22xx f x π=++, 可得()()244sin sin[(2)]22222x x f x x f x x ππ-+=+++-++- 224424222224222222x xx x x x--⋅⋅=+=+=++⋅++, 设124043202220222022S f f f ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则404340421202220222022S f f f ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭两式相加,可得140432404222022202220222022S ff f f ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦404312404320222022f f ⎡⎤⎛⎫⎛⎫++=⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以4043S =. 故答案为:4043.例21.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,满足()()121f x f x +=-,且当(]1,1x ∈-时,()12x f x -=,则()2020f =______.【答案】10092 【解析】 【分析】根据已知条件,求得(2)2()f x f x +=,结合()0f 的值以及递推关系,即可求得结果. 【详解】由(1)2(1)f x f x +=-,得(2)2()f x f x +=,于是()()()()210102020220182201620f f f f ====,又当(]1,1x ∈-时,()12x f x -=,故可得()102f =, 则()1010100912020222f =⨯=. 故答案为:10092.例22.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________. 【答案】9,2⎛⎫-∞ ⎪⎝⎭【解析】 【分析】分别在2x ≤、23x <≤、34x <≤和4x >的情况下,根据()f x 和()1f x -的解析式和符号依次求解即可. 【详解】①当2x ≤时,11x -≤,()221010x x f x --=-在(],2-∞上单调递增,()()20f x f ∴≤=,又()()()1120f x f f -≤<=, ()()10f x f x ∴+-<恒成立;②当23x <≤时,112x <-≤,()3120f x x x =--=-<, 又()()120f x f -≤=,()()10f x f x ∴+-<恒成立;③当34x <≤时,213x <-≤,()314f x x x =--=-,()1413f x x x -=--=-;()()110f x f x ∴+-=-<恒成立;④当4x >时,13x ->,()314f x x x =--=-,()1415f x x x -=--=-,()()1290f x f x x ∴+-=-<,解得:92x <,942x ∴<<; 综上所述:不等式()()10f x f x +-<的解集为9,2⎛⎫-∞ ⎪⎝⎭.故答案为:9,2⎛⎫-∞ ⎪⎝⎭.例23.(2022·江西·二模(文))设函数()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若()1f 是函数()f x 的最大值,则实数a 的取值范围为_______. 【答案】[1,2]【分析】由1x >,求得()f x 的范围,再求得||()2x a f x -=的单调性,讨论1a <,1a 时函数()f x 在1x 的最大值,即可得到所求范围. 【详解】解:因为()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,当1x >时()112f x x =-+函数单调递减且()12f x <,当1x ≤时()122x ax af x ---⎛⎫== ⎪⎝⎭,可得在x a >时函数单调递减,在x a <单调递增,若1a <,1x ,则()f x 在x a =处取得最大值,不符题意; 若1a ,1x ,则()f x 在1x =处取得最大值,且11122a -⎛⎫≥⎪⎝⎭,解得12a , 综上可得a 的范围是[]1,2. 故答案为:[]1,2【过关测试】 一、单选题1.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ( ) A .是偶函数,且在R 是单调递增 B .是奇函数,且在R 是单调递增 C .是偶函数,且在R 是单调递减 D .是奇函数,且在R 是单调递减【答案】B 【解析】 【分析】根据奇函数的定义及指数函数的单调性判断可得; 【详解】解:1()33x xf x ⎛⎫=- ⎪⎝⎭定义域为R ,且()()113333xxx x f x f x --⎛⎫⎛⎫-=-=-=- ⎪⎪⎝⎭⎝⎭, 所以1()33xxf x ⎛⎫=- ⎪⎝⎭为奇函数,又3xy =与13x y ⎛⎫=- ⎪⎝⎭在定义域上单调递增,所以1()33xx f x ⎛⎫=- ⎪⎝⎭在R 上单调递增;2.(2022·安徽淮南·二模(理))1947年,生物学家Max Kleiber 发表了一篇题为《body size and metabolicrate 》的论文,在论文中提出了一个克莱伯定律:对于哺乳动物,其基础代谢率与体重的34次幂成正比,即340F c M =,其中F 为基础代谢率,M 为体重.若某哺乳动物经过一段时间生长,其体重为原来的10倍,则基础代谢率1.7783)( )A .5.4倍B .5.5倍C .5.6倍D .5.7倍【答案】C 【解析】 【分析】利用幂的运算性质去求解即可解决 【详解】设该哺乳动物原体重为1M 、基础代谢率为1F ,则34101F c M =,经过一段时间生长,其体重为110M ,基础代谢率为2F ,则()3420110F c M ⋅= 则()33334444201011101010F c M c M F =⋅=⋅⋅=,则3234110 1.7783 5.6F F ≈=≈故选:C3.(2022·陕西·西安中学模拟预测(文))英国著名数学家布鲁克-泰勒以微积分学中将函数展开成无穷级数的定理著称于世.在数学中,泰勒级数用无限连加式来表示一个函数,泰勒提出了适用于所有函数的泰勒级数,并建立了如下指数函数公式:23e 126!n xx x x x n =+++++++,其中R,N x n ∈∈(精确到0.01)( ) A .1.63 B .1.64C .1.65D .1.66【答案】C 【解析】应用题设泰勒展开式可得 121111e 12848!2nn =++++++⋅, 随着n 的增大,数列1!2n n ⎧⎫⎨⎬⋅⎩⎭递减且靠后各项无限接近于0,即可估计12e 的近似值. 【详解】计算前四项,在千分位上四舍五入由题意知: 01231211e 111222220!1!2!3!!nn ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=++++⋯+1111 1.646 1.652848≈+++≈≈ 故选:C4.(2022·河南洛阳·二模(文))已知函数()()1331,1log 52,1x x f x x x +⎧-≥⎪=⎨-+-<⎪⎩,且()2f m =-,则()6f m +=( )A .26B .16C .-16D .-26【答案】A 【解析】 【分析】由分段函数的性质可得当m 1≥时,1312m +-=-,当1m <时,3log (5)22m -+-=-,求出m 的值,从而可求出()6f m + 【详解】 由题意得当m 1≥时,1312m +-=-,方程无解,当1m <时,3log (5)22m -+-=-,解得4m =-,所以()216(64)(2)3126f m f f ++=-==-=,故选:A5.(2022·四川成都·三模(理))若函数()9x f x =0x ,则()0091xx -=(). A .13B .1 CD .2【答案】B 【解析】 【分析】由已知有1x >,根据零点得到0009(1)x x t -==,利用指对数的关系及运算性质得到01x -关于t的表达式,进而由指数函数的单调性确定t 值即可. 【详解】由题设1x >,由0()0f x =得:0009(1)x x -= 若009(1)xx t -=,可得002103x t x -=>,若0t =,可得0201103tx x -=>,综上,22133x x t t =,故1t =.故选:B6.(2022·河南·开封高中模拟预测(文))若关于x 的不等式()221xxa x ⋅>+∈R 有实数解,则实数a 的取值范围是( ) A .()1,+∞ B .()2,+∞ C .[)1,+∞ D .[)2,+∞【答案】A 【解析】 【分析】参变分离得到112x a >+,根据指数函数的性质求出112x +的取值范围,即可得解; 【详解】解:由题知()221xxa x ⋅>+∈R ,而21x ≥,所以112x a >+, 又1012x <≤,所以11122x <+≤. 因为关于x 的不等式()221xxa x ⋅>+∈R 有实数解, 即112x a >+()x ∈R 有实数解,所以1a >,即()1,a ∈+∞.故选:A7.(2022·四川·内江市教育科学研究所三模(理))已知函数()f x 满足:对任意x ∈R ,1122f x fx ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭.当[1,0)x ∈-时,()31x f x =-,则()3log 90=f ( ) A .19B .19-C .1727D .1727-【答案】C 【解析】【分析】 根据1122f x fx ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭可得()()1f x f x +=-,2T =,则()3310log 90log 27f f ⎛⎫=- ⎪⎝⎭,将310log 27x =代入解析式,即可求解. 【详解】 因为1122f x fx ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭, 则11112222f x fx ⎛⎫⎛⎫++=-+- ⎪⎪⎝⎭⎝⎭,即()()1f x f x +=-, 所以()()()21f x f x f x +=-+=,即2T =, 所以()3331010log 90log log 927f f f⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭,因为[)310log 1,027∈-,所以310log 273101017log 311272727f ⎛⎫=-=-=- ⎪⎝⎭, 所以()317log 9027f =, 故选:C8.(2022·上海宝山·二模)关于函数131()(2)2xx f x x =-⋅和实数,m n 的下列结论中正确的是( )A .若3m n -<<,则()()f m f n <B .若0m n <<,则()()f m f n <C .若()()f m f n <,则22m n <D .若()()f m f n <,则33m n <【答案】C 【解析】 【分析】首先判断函数的奇偶性与单调性,即可得到此类函数的规律是自变量离原点越近,函数值越小,即自变量的绝对值小,函数值就小,反之也成立,从而一一判断即可; 【详解】解:因为113311()(2)()(2)()22xx x x f x x x f x ---=-⋅-=-=,所以函数131()(2)2xx f x x =-是一个偶函数,又0x >时,122xxy =-与13y x =是增函数,且函数值为正数, 故函数131()(2)2xx f x x =-在(0,)+∞上是一个增函数由偶函数的性质得函数在(,0)-∞上是一个减函数,此类函数的规律是自变量离原点越近,函数值越小,即自变量的绝对值小,函数值就小,反之也成立,考察四个选项,A 选项,由3m n -<<,无法判断m ,n 离原点的远近,故A 错误; B 选项,0m n <<,则m 的绝对值大,故其函数值也大,故B 不对; C 选项是正确的,由()()f m f n <,一定得出22m n <;D 选项由()()f m f n <,可得出||||m n <,但不能得出33m n <,不成立, 故选:C . 二、多选题9.(2022·湖南·模拟预测)在同一直角坐标系中,函数x y a =与()log 2a y x =-的图象可能是( )A .B .C .D .【答案】BD 【解析】 【分析】分1a >和01a <<两种情况讨论两个函数的单调性进行判断. 【详解】当1a >时,x y a =在(,)-∞+∞单调递增且其图象恒过点(0,1),()log 2a y x =-在(2,)+∞单调递增且其图象恒过点(3,0),则选项B 符合要求;当01a <<时,x y a =在(,)-∞+∞单调递减且其图象恒过点(0,1),()log 2a y x =-在(2,)+∞单调递减且其图象恒过点(3,0),则选项D 符合要求;综上所述,选项B 、D 符合要求. 故选:BD.10.(2022·全国·模拟预测)已知0a b >>,下列选项中正确的为( )A 1,则1a b -<B .若221a b -=,则1a b -<C .若22=1a b -,则1a b -<D .若22log log 1a b -=,则1a b -<【答案】BC 【解析】 【分析】根据指数函数、对数函数的性质,不等式性质判断. 【详解】A 错,例如9,4a b ==1=,便51a b -=>;B 正确,2211a b =+>,1a >,又0b >,所以1a b +>,而22()()1a b a b a b -=-+=,所以1a b -<;C 正确,设21a m =>,21b n =>,1m n -=,则1m n =+,1112m n n n n+==+<, 所以222log log log 1mm n n=-<,即1a b -<. D 错误,222log log log 1aa b b -==,2a b=,2a b =,所以a b b -=,1b <不一定成立. 故选:BC .11.(2022·广东肇庆·模拟预测)若a b >,则下列不等式中正确的有( ) A .0a b -> B .22a b >C .ac bc >D .22a b >【答案】AB 【解析】 【分析】根据作差法,判断A;根据指数函数()2x f x =的单调性,判断B;举反例可说明C 的正误;同样据反例,判断D. 【详解】对于A 选项,因为a b >,所以0a b ->,故A 正确;对于B 选项,因为函数()2x f x =在R 上单调递增,所以22a b >,故B 正确; 对于C 选项,当0c ≤时,ac bc >不成立,故C 不正确; 对于D 选项,当1a =,2b =-时,2214a b =<=,故D 不正确, 故选:AB.12.(2022·全国·模拟预测)已知函数14sin ,01()2,1x x x f x x x π-<≤⎧=⎨+>⎩,若存在三个实数,使得()()()123f x f x f x ==,则( )A .123x x x ++的取值范围为()2,3B .()23x f x 的取值范围为5,23⎛⎫ ⎪⎝⎭C .123x x x 的取值范围为51,362⎛⎫⎪⎝⎭D .()13x f x 的取值范围为1,23⎛⎫⎪⎝⎭【答案】ACD 【解析】 【分析】先作出函数()f x 的大致图象,结合题意令()()()123f x f x f x t ===,进而得到1x ,2x ,3x 关于t 的增减性以及t 的取值范围,数形结合分析选项即可得解. 【详解】作出函数()f x 的大致图象,如图所示, 设()()()123f x f x f x t ===,数形结合得:13,x x 均是关于t 的增函数,2x 是关于t 的减函数,且24t <<.当01x <≤时,令()2f x =,得16x =或56, 所以12115626x x <<<<,312x <<,且121x x =+,所以()1232,3x x x ++∈,故A 正确;不妨设223x =,则()()2324sin 3t f x f x π===,此时()232x f x =>,所以B 错误;因为121x x =+,所以()21211111511,24364x x x x x ⎛⎫⎛⎫=-=--+∈ ⎪ ⎪⎝⎭⎝⎭,且12x x 与3x 均为关于t 的增函数,所以12351,362x x x ⎛⎫∈ ⎪⎝⎭,故C 正确;因为1x 为关于t 的增函数,11162x <<,()324f x t <=<,所以()131,23x f x ⎛⎫∈ ⎪⎝⎭,故D 正确.故选:ACD. 三、填空题13.(2022·安徽淮北·一模(理))2log142-⎛⎫++= ⎪⎝⎭___________.【答案】10 【解析】 【分析】利用指数幂及对数的运算性质计算即得. 【详解】24log 2log 21422424102-⎛⎫++=++=++= ⎪⎝⎭.故答案为:10.14.(2022·四川·模拟预测(理))已知两个条件:①,,()()()a b f a b f a f b ∈+=⋅R ;②()f x 在(0,)+∞上单调递减.请写出一个同时满足以上两个条件的函数____________.【答案】1()2xf x ⎛⎫= ⎪⎝⎭【解析】 【分析】对于()()()·f a b f a f b +=符合指数运算的规则,减函数则应是指数函数里的减函数. 【详解】由题意:是指数函数里的减函数,故可以是:()12xf x ⎛⎫= ⎪⎝⎭,故答案为:()12xf x ⎛⎫= ⎪⎝⎭.15.(2022·河南·模拟预测(文))函数()1423x x f x +=-+在1,2⎛⎤-∞ ⎥⎝⎦的值域为______.【答案】[)2,3 【解析】 【分析】令2x t =,结合二次函数的性质即可得出答案. 【详解】解:()()()222223212x x x f x =-⨯+=-+,设2x t =,当1,2x ⎛⎤∈-∞ ⎥⎝⎦时,0t <≤()22123t ≤-+<,所以()f x 在1,2⎛⎤-∞ ⎥⎝⎦的值域为[)2,3.故答案为:[)2,3.16.(2022·山西·二模(理))已知函数()322x x x f x -=-给出下列结论:①()f x 是偶函数;②()f x 在()0,∞+上是增函数;③若0t >,则点()(),t f t 与原点连线的斜率恒为正.其中正确结论的序号为______. 【答案】①③ 【解析】 【分析】对于①:利用偶函数的定义进行证明; 对于②:取特殊值:()()2,10f f ,否定结论;对于③:直接表示出点()(),t f t 与原点连线的斜率为222t t t --,并判断2022t t t ->-.【详解】函数()322x xx f x -=-的定义域为()(),00,∞-+∞.对于①:因为()()332222xx x xx x f x f x ----===--,所以()f x 是偶函数.故①正确; 对于②:取特殊值:由()8322211544f ==>-,()1000101110241024f =<-,得到()()210f f >,不符合增函数,可得②错误;对于③:当0t >时,点()(),t f t 与原点连线的斜率为()20022t tf t t t --=--.因为0t >,所以21t >,所以220t t -->,所以()200022t tf t t t --=>--.故③正确; 所以正确结论的序号为①③. 故答案为:①③ 四、解答题17.(2022·全国·高三专题练习)由于突发短时强降雨,某小区地下车库流入大量雨水.从雨水开始流入地下车库时进行监测,已知雨水流入过程中,地下车库积水量y (单位:3m )与时间t (单位:h )成正比,雨停后,消防部门立即使用抽水机进行排水,此时y 与t 的函数关系式为25ty k ⎛⎫=⨯ ⎪⎝⎭(k 为常数),如图所示.(1)求y 关于t 的函数关系式;(2)已知该地下车库的面积为25602m ,当积水深度小于等于0.05m 时,小区居民方可入内,那么从消防部门开始排水时算起,至少需要经过几个小时以后,小区居民才能进入地下车库?【答案】(1)2000,0125000,15tt t y t ≤≤⎧⎪=⎨⎛⎫⨯> ⎪⎪⎝⎭⎩(2)至少需要经过3个小时以后,小区居民才能进入地下车库 【解析】 【分析】(1)利用()1,2000求得y 关于t 的函数关系式.(2)根据积水深度的要求列不等式,结合指数函数的单调性求得需要等待的时间. (1)由图可知,当01t ≤≤时,y =2000t .当t >1时,25ty k ⎛⎫=⨯ ⎪⎝⎭,因为图象经过点()1,2000,所以220005k ⨯=,得k =5000 所以2000,0125000,15tt t y t ≤≤⎧⎪=⎨⎛⎫⨯> ⎪⎪⎝⎭⎩. (2)令25000 2.5600.055t⎛⎫⨯≤⨯ ⎪⎝⎭,即42128162550006255t ⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,解得4t ≥,因为消防部门从t =1时开始排水,故至少需要经过3个小时以后,小区居民才能进入地下车库. 18.(2022·全国·高三专题练习)(1)计算:1294⎛⎫- ⎪⎝⎭(﹣9.6)0﹣22327283--⎛⎫⎛⎫+ ⎪⎪⎝⎭⎝⎭; (2)已知1122a a -+=3,求22112a a a a --++++的值.【答案】(1)8336;(2)163. 【解析】 【分析】(1)根据指数幂的运算法则即可求出; (2)根据完全平方公式即可求出. 【详解】解:(1)原式32=-1﹣233393242⎛⎫⨯- ⎪⎝⎭⎛⎫+=- ⎪⎝⎭149839436-+=, (2)∵1122a a -+=3,∴a +a ﹣1=(1122a a -+)2﹣2=7,∴a 2+a ﹣2=(a +a ﹣1)2﹣2=47,∴原式47148167293+===+. 19.(2022·全国·高三专题练习)已知a >0,且a ≠1,若函数y =|ax -2|与y =3a 的图象有两个交点,求实数a 的取值范围. 【答案】20,3⎛⎫⎪⎝⎭【解析】 【分析】讨论0<a <1或a >1,作出函数y =|ax -2|与y =3a 的图象,由数形结合即可求解. 【详解】①当0<a <1时,在同一平面直角坐标系中作出函数y =|ax -2|与y =3a 的图象如图1. 若直线y =3a 与函数y =|ax -2|(0<a <1)的图象有两个交点, 则由图象可知0<3a <2,所以0<a <23.②当a >1时,在同一平面直角坐标系中作出函数y =|ax -2|与y =3a 的图象如图2. 若直线y =3a 与函数y =|ax -2|(a >1)的图象有两个交点, 则由图象可知0<3a <2,此时无解. 所以实数a 的取值范围是20,3⎛⎫⎪⎝⎭.20.(2022·全国·高三专题练习)设函数()(0x x f x ka a a -=->且1)a ≠是定义域为R 的奇函数; (1)若()10f >,判断()f x 的单调性并求不等式(2)(4)0f x f x ++->的解集; (2)若()312f =,且22()4()x xg x a a f x -=+-,求()g x 在[1,)+∞上的最小值. 【答案】(1)增函数,(1,)+∞;(2)2-. 【解析】 【分析】(1)由(0)0f =,求得1k =,得到()x x f x a a -=-,根据()10f >,求得1a >,即可求得函数()x x f x a a -=-是增函数,把不等式转化为(2)(4)f x f x +>-,结合函数的单调性,即可求解;(2)由(1)和()312f =,求得2a =,得到()2(22)4(22)2x x x xg x -----+=,令22x x t -=-,得到()2342,2g t t t t =-+≥,结合二次函数的性质,即可求解. 【详解】(1)因为函数()(0x x f x ka a a -=->且1)a ≠是定义域为R 的奇函数, 可得(0)0f =,从而得10k -=,即1k = 当1k =时,函数()x x f x a a -=-,满足()()()x x x x f x a a a a f x ---=-=--=-,所以1k =, 由()10f >,可得10a a->且0a >,解得1a >,所以()x x f x a a -=-是增函数, 又由(2)(4)0f x f x ++->,可得(2)(4)(4)f x f x f x +>--=-,所以24x x +>-,解得1x >,即不等式的解集是(1,)+∞.(2)由(1)知,()x x f x a a -=-,因为()312f =,即132a a -=,解得2a =, 故()222(22)2(22)4(22)224x x x x x x x x g x -----=---+-+=,令22x x t -=-,则在[1,)+∞上是增函数,故113222t -≥+=, 即()2342,2g t t t t =-+≥, 此时函数()g t 的对称轴为322t =>,且开口向上, 所以当2t =,函数()g t 取得最小值,最小值为()2224222g =-⨯+=-,即函数()g x 的最小值为2-.21.(2022·北京·高三专题练习)定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M -≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x x f x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔(2)若函数()f x 在(),0-∞上是以2为上界的有界函数,求实数a 的取值范围.【答案】(1)(3,)-+∞,不是,理由见解析;(2)[]0,3.【解析】【分析】(1)用换元法,结合二次函数性质求得值域,可得结论;(2)设2x t =,则可得(0,1)t ∈,然后由二次函数性质求得函数的值域,再结合新定义可得参数范围.【详解】(1)当2a =-时,()24222(213)x x x f x =-⨯-=--,令2,x t =由(0,)x ∈+∞,可得(1,)t ∈+∞,令()2)1(3g t t =--,有()3g t >-,可得函数()f x 的值域为(3,)-+∞故函数()f x 在(),0-∞上不是有界函数;(2)由题意有,当(),0x ∈-∞时,24222,x x a -≤+⋅-≤可化为0424x x a ≤+⋅≤必有20x a +≥且422x x a ≤-, 令2x k =,由(),0x ∈-∞,可得()0,1k ∈,由20x a +≥恒成立,可得0a ≥,令()()401h t t t t=-<<, 可知函数()h t 为减函数,有()413h t >-=, 由422x xa ≤-恒成立, 可得3,a ≤故若函数()f x 在(,0)-∞上是以2为上界的有界函数,则实数a 的取值范围为[]0,3.22.(2022·全国·高三专题练习)已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠ .(1)设12,2a b ==,求方程()2f x =的根; (2)设12,2a b ==,若对任意x ∈R ,不等式()()26f x f x m ≥-恒成立,求实数m 的最大值; (3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值.【答案】(1)0(2)4(3)1【解析】【分析】(1)将原方程转化为2(21)0x -=,由此求解即可.(2)由题意可知2(2)(())2f x f x =-,再根据分离参数法结合基本不等式,即可求出结果.(3)求出()()22x x g x f x a b =-=+-,求出函数()g x 的导数,设函数()()h x g x '=,根据导数在函数最值中的应用,求出()g x 的最小值,再对()g x 的最小值进行分析,即可求出结果.(1) 解:因为12,2a b ==,所以()22x x f x -=+. 方程()2f x =,即222x x -+=,亦即2(2)2210x x -⨯+=,所以2(21)0x -=,于是21x =,解得0x =.(2)解:由条件知2222(2)22(22)2(())2x x x x f x f x --=+=+-=-.。
江苏专版2020版高考数学一轮复习课时跟踪检测九指数与指数函数理

课时跟踪检测(九) 指数与指数函数1.(2019·连云港调研)已知a =3π,b =e π,c =e 3,则a ,b ,c 的大小关系为________. 解析:由y =e x是增函数,得b =e π>c =e 3,由y =x π是增函数,得a =3π>b =e π,故c <b <a .答案:c <b <a 2.已知函数y =ax -1+3(a >0且a ≠1)图象经过点P ,则点P 的坐标为________.解析:当x =1时,y =a 0+3=4, ∴函数y =ax -1+3(a >0且a ≠1)的图象恒过定点(1,4).∴点P 的坐标为(1,4). 答案:(1,4)3.在同一平面直角坐标系中,函数f (x )=2x +1与g (x )=⎝ ⎛⎭⎪⎫12x -1的图象关于________对称.解析:因为g (x )=21-x=f (-x ),所以f (x )与g (x )的图象关于y 轴对称.答案:y 轴 4.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为________.解析:由f (x )过定点(2,1)可知b =2, 因为f (x )=3x -2在[2,4]上是增函数,所以f (x )min =f (2)=1,f (x )max =f (4)=9. 故f (x )的值域为[1,9]. 答案:[1,9] 5.不等式222x x-+>⎝ ⎛⎭⎪⎫12x +4的解集为________. 解析:不等式222x x-+>⎝ ⎛⎭⎪⎫12x +4可化为⎝ ⎛⎭⎪⎫12x 2-2x >⎝ ⎛⎭⎪⎫12x +4,等价于x 2-2x <x +4, 即x 2-3x -4<0,解得-1<x <4. 答案:{x |-1<x <4}6.(2019·徐州调研)若函数f (x )=a x -1(a >1)在区间[2,3]上的最大值比最小值大a2,则a =________.解析:∵函数f (x )=a x -1(a >1)在区间[2,3]上为增函数, ∴f (x )max =f (3)=a 2,f (x )min =f (2)=a .由题意可得a 2-a =a 2,解得a =32.答案:321.若函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则f (-4)与f (1)的大小关系是________.解析:由题意知a >1,f (-4)=a 3,f (1)=a 2, 由y =a t(a >1)的单调性知a 3>a 2,所以f (-4)>f (1). 答案:f (-4)>f (1)2.(2018·启东中学检测)满足⎝ ⎛⎭⎪⎫14x -3>16的x 的取值范围是________.解析:∵⎝ ⎛⎭⎪⎫14x -3>16,∴⎝ ⎛⎭⎪⎫14x -3>⎝ ⎛⎭⎪⎫14-2,∵函数y =⎝ ⎛⎭⎪⎫14x在定义域上是减函数,∴x -3<-2,故x <1. 答案:(-∞,1)3.已知实数a ,b 满足等式2 017a=2 018b,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有________个.解析:设2 017a=2 018b=t ,如图所示,由函数图象,可得若t >1,则有a >b >0;若t =1,则有a =b =0;若0<t <1,则有a <b <0.故①②⑤可能成立,而③④不可能成立.答案:24.若函数f (x )=⎩⎪⎨⎪⎧a x, x >1,2-3a x +1,x ≤1是R 上的减函数,则实数a 的取值范围是________.解析:依题意,a 应满足⎩⎪⎨⎪⎧0<a <1,2-3a <0,2-3a 1+1≥a 1,解得23<a ≤34.答案:⎝ ⎛⎦⎥⎤23,34 5.(2019·苏州中学检测)函数f (x )=⎝ ⎛⎭⎪⎫13x 2+1的值域为________.解析:令u =x 2+1,可得f (u )=⎝ ⎛⎭⎪⎫13u 是减函数,而u =x 2+1的值域为[1,+∞),∴函数f (x )=⎝ ⎛⎭⎪⎫13x 2+1的值域为⎝ ⎛⎦⎥⎤0,13. 答案:⎝ ⎛⎦⎥⎤0,136.(2019·无锡调研)函数f (x )=⎝ ⎛⎭⎪⎫12x x 226-+的单调递增区间是________. 解析:设u (x )=x 2-2x +6=(x -1)2+5,对称轴为x =1, 则u (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增,又y =⎝ ⎛⎭⎪⎫12x在R 上单调递减,所以f (x )=⎝ ⎛⎭⎪⎫12x x 226-+在(-∞,1)上单调递增,在(1,+∞)上单调递减.答案:(-∞,1)7.已知函数f (x )=a -x(a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.解析:因为f (x )=a -x=⎝ ⎛⎭⎪⎫1ax ,且f (-2)>f (-3),所以函数f (x )在定义域上单调递增, 所以1a>1,解得0<a <1. 答案:(0,1)8.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是________.解析:原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x ,因为函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数,所以⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m <2,解得-1<m <2.答案:(-1,2) 9.化简下列各式:(1)⎝ ⎛⎭⎪⎫2790.5+0.1-2+⎝ ⎛⎭⎪⎫21027-23-3π0+3748;(2)3a 72·a -3÷3a -3·a -1.解:(1)原式=⎝ ⎛⎭⎪⎫25912+10.12+⎝ ⎛⎭⎪⎫6427-23-3+3748=53+100+916-3+3748=100.(2)原式=3a 72·a-23÷3a-23·a-12=3a 72÷3a-12=a 76÷a16-=a 86=a 43.10.(2018·苏州调研)已知函数f (x )=3x+λ·3-x(λ∈R). (1)若f (x )为奇函数,求λ的值和此时不等式f (x )>1的解集; (2)若不等式f (x )≤6对x ∈[0,2]恒成立,求实数λ的取值范围. 解:(1)函数f (x )=3x +λ·3-x的定义域为R. 因为f (x )为奇函数,所以f (-x )+f (x )=0对∀x ∈R 恒成立,即3-x+λ·3x +3x +λ·3-x =(λ+1)(3x +3-x)=0对∀x ∈R 恒成立, 所以λ=-1.由f (x )=3x-3-x>1,得(3x )2-3x-1>0, 解得3x >1+52或3x<1-52(舍去),所以不等式f (x )>1的解集为⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫x >log 31+52.(2)由f (x )≤6,得3x +λ·3-x ≤6,即3x+λ3x ≤6.令t =3x∈[1,9],则问题等价于t +λt≤6对t ∈[1,9]恒成立,即λ≤-t 2+6t 对t ∈[1,9]恒成立, 令g (t )=-t 2+6t ,t ∈[1,9],因为g (t )在[1,3]上单调递增,在[3,9]上单调递减, 所以当t =9时,g (t )有最小值g (9)=-27,所以λ≤-27,即实数λ的取值范围为(-∞,-27].1.当x ∈[1,2]时,函数y =12x 2与y =a x(a >0)的图象有交点,则a 的取值范围是________.解析:当a >1时,如图①所示,使得两个函数图象有交点,需满足12·22≥a 2,即1<a ≤2;当0<a <1时,如图②所示,需满足12·12≤a 1,即12≤a <1.综上可知,a ∈⎣⎢⎡⎦⎥⎤12,2.答案:⎣⎢⎡⎦⎥⎤12,22.(2018·南京调研)已知二次函数f (x )=mx 2-2x -3,关于实数x 的不等式f (x )≤0的解集为[-1,n ].(1)当a ≥0时,解关于x 的不等式ax 2+n +1>(m +1)x +2ax ; (2)是否存在实数a ∈(0,1),使得关于x 的函数y =f (a x )-3a x +1在x ∈[1,2]上的最小值为-92?若存在,求实数a 的值;若不存在,请说明理由.解:(1)由f (x )=mx 2-2x -3≤0的解集为[-1,n ]知,关于x 的方程mx 2-2x -3=0的两根为-1和n ,且m >0,则⎩⎪⎨⎪⎧-1+n =2m,-1n =-3m,所以⎩⎪⎨⎪⎧m =1,n =3.所以原不等式可化为(x -2)(ax -2)>0.①当a =0时,原不等式化为(x -2)×(-2)>0,解得x <2;②当0<a <1时,原不等式化为(x -2)·⎝ ⎛⎭⎪⎫x -2a >0,且2<2a ,解得x >2a或x <2;③当a =1时,原不等式化为(x -2)2>0,解得x ∈R 且x ≠2;④当a >1时,原不等式化为(x -2)·⎝ ⎛⎭⎪⎫x -2a >0,且2>2a ,解得x <2a或x >2.综上所述,当a =0时,原不等式的解集为{x |x <2};当0<a ≤1时,原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >2a或x <2;当a >1时,原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >2或x <2a .(2)假设存在满足条件的实数a , 由(1)知f (x )=x 2-2x -3,y =f (a x )-3a x +1=a 2x -(3a +2)a x -3.令a x=t ,a 2≤t ≤a ,则y =t 2-(3a +2)t -3, 此函数图象的对称轴为t =3a +22, 因为a ∈(0,1),所以a 2<a <1,1<3a +22<52,所以函数y =t 2-(3a +2)t -3在[a 2,a ]上单调递减,所以当t =a 时,y 取得最小值,最小值为y =-2a 2-2a -3=-92,解得a =-32(舍去)或a =12.故存在满足条件的a ,a 的值为12.。
2020年高考 一轮复习数学(文) 课时跟踪检测(九) 指数与指数函数

课时跟踪检测(九) 指数与指数函数一抓基础,多练小题做到眼疾手快1.(2019·连云港调研)已知a =3π,b =e π,c =e 3,则a ,b ,c 的大小关系为________. 解析:由y =e x 是增函数,得b =e π>c =e 3,由y =x π是增函数,得a =3π>b =e π,故c <b <a .答案:c <b <a2.已知函数y =a x -1+3(a >0且a ≠1)图象经过点P ,则点P 的坐标为________.解析:当x =1时,y =a 0+3=4,∴函数y =a x -1+3(a >0且a ≠1)的图象恒过定点(1,4).∴点P 的坐标为(1,4). 答案:(1,4)3.在同一平面直角坐标系中,函数f (x )=2x+1与g (x )=⎝⎛⎭⎫12x -1的图象关于________对称.解析:因为g (x )=21-x =f (-x ),所以f (x )与g (x )的图象关于y 轴对称. 答案:y 轴4.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为________.解析:由f (x )过定点(2,1)可知b =2, 因为f (x )=3x-2在[2,4]上是增函数,所以f (x )min =f (2)=1,f (x )max =f (4)=9. 故f (x )的值域为[1,9]. 答案:[1,9] 5.不等式222x x-+>⎝⎛⎭⎫12x +4的解集为________.解析:不等式222x x-+>⎝⎛⎭⎫12x +4可化为⎝⎛⎭⎫12x 2-2x >⎝⎛⎭⎫12x +4,等价于x 2-2x <x +4, 即x 2-3x -4<0,解得-1<x <4. 答案:{x |-1<x <4}6.(2019·徐州调研)若函数f (x )=a x -1(a >1)在区间[2,3]上的最大值比最小值大a 2,则a=________.解析:∵函数f (x )=a x -1(a >1)在区间[2,3]上为增函数, ∴f (x )max =f (3)=a 2,f (x )min =f (2)=a . 由题意可得a 2-a =a 2,解得a =32.答案:32二保高考,全练题型做到高考达标1.若函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则f (-4)与f (1)的大小关系是________.解析:由题意知a >1,f (-4)=a 3,f (1)=a 2, 由y =a t (a >1)的单调性知a 3>a 2,所以f (-4)>f (1). 答案:f (-4)>f (1)2.(2018·启东中学检测)满足⎝⎛⎭⎫14x -3>16的x 的取值范围是________. 解析:∵⎝⎛⎭⎫14x -3>16,∴⎝⎛⎭⎫14x -3>⎝⎛⎭⎫14-2, ∵函数y =⎝⎛⎭⎫14x 在定义域上是减函数, ∴x -3<-2,故x <1. 答案:(-∞,1)3.已知实数a ,b 满足等式2 017a =2 018b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有________个.解析:设2 017a =2 018b =t ,如图所示,由函数图象,可得若t >1,则有a >b >0;若t =1,则有a =b =0;若0<t <1,则有a <b <0.故①②⑤可能成立,而③④不可能成立.答案:24.若函数f (x )=⎩⎪⎨⎪⎧a x , x >1,(2-3a )x +1,x ≤1是R 上的减函数,则实数a 的取值范围是________.解析:依题意,a 应满足⎩⎪⎨⎪⎧0<a <1,2-3a <0,(2-3a )×1+1≥a 1,解得23<a ≤34.答案:⎝⎛⎦⎤23,345.(2019·苏州中学检测)函数f (x )=⎝⎛⎭⎫13x 2+1的值域为________. 解析:令u =x 2+1,可得f (u )=⎝⎛⎭⎫13u 是减函数, 而u =x 2+1的值域为[1,+∞), ∴函数f (x )=⎝⎛⎭⎫13x 2+1的值域为⎝⎛⎦⎤0,13. 答案:⎝⎛⎦⎤0,136.(2019·无锡调研)函数f (x )=⎝⎛⎭⎫12x x 226-+的单调递增区间是________. 解析:设u (x )=x 2-2x +6=(x -1)2+5,对称轴为x =1, 则u (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增, 又y =⎝⎛⎭⎫12x 在R 上单调递减,所以f (x )=⎝⎛⎭⎫12x x 226-+在(-∞,1)上单调递增,在(1,+∞)上单调递减. 答案:(-∞,1)7.已知函数f (x )=a -x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.解析:因为f (x )=a -x =⎝⎛⎭⎫1a x ,且f (-2)>f (-3), 所以函数f (x )在定义域上单调递增, 所以1a >1,解得0<a <1. 答案:(0,1)8.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是________.解析:原不等式变形为m 2-m <⎝⎛⎭⎫12x , 因为函数y =⎝⎛⎭⎫12x 在(-∞,-1]上是减函数, 所以⎝⎛⎭⎫12x ≥⎝⎛⎭⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝⎛⎭⎫12x 恒成立等价于m 2-m <2,解得-1<m <2. 答案:(-1,2) 9.化简下列各式:(1)⎝⎛⎭⎫2790.5+0.1-2+⎝⎛⎭⎫21027-23-3π0+3748; (2)3a 72·a -3÷3a -3·a -1.解:(1)原式=⎝⎛⎭⎫25912+10.12+⎝⎛⎭⎫6427-23-3+3748=53+100+916-3+3748=100.(2)原式= 3a 72·a -23÷ 3a-23·a-12=3a 72÷3a-12=a 76÷a16-=a 86=a 43.10.(2018·苏州调研)已知函数f (x )=3x +λ·3-x (λ∈R ). (1)若f (x )为奇函数,求λ的值和此时不等式f (x )>1的解集;(2)若不等式f (x )≤6对x ∈[0,2]恒成立,求实数λ的取值范围. 解:(1)函数f (x )=3x +λ·3-x的定义域为R .因为f (x )为奇函数,所以f (-x )+f (x )=0对∀x ∈R 恒成立,即3-x +λ·3x +3x +λ·3-x =(λ+1)(3x +3-x )=0对∀x ∈R 恒成立,所以λ=-1.由f (x )=3x -3-x >1,得(3x )2-3x -1>0,解得3x >1+52或3x <1-52(舍去),所以不等式f (x )>1的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >log 31+52. (2)由f (x )≤6,得3x +λ·3-x ≤6,即3x +λ3x ≤6.令t =3x ∈[1,9],则问题等价于t +λt ≤6对t ∈[1,9]恒成立,即λ≤-t 2+6t 对t ∈[1,9]恒成立, 令g (t )=-t 2+6t ,t ∈[1,9],因为g (t )在[1,3]上单调递增,在[3,9]上单调递减, 所以当t =9时,g (t )有最小值g (9)=-27,所以λ≤-27,即实数λ的取值范围为(-∞,-27]. 三上台阶,自主选做志在冲刺名校1.当x ∈[1,2]时,函数y =12x 2与y =a x (a >0)的图象有交点,则a 的取值范围是________.解析:当a >1时,如图①所示,使得两个函数图象有交点,需满足12·22≥a 2,即1<a ≤2;当0<a <1时,如图②所示,需满足12·12≤a 1,即12≤a <1.综上可知,a ∈⎣⎡⎦⎤12,2.答案:⎣⎡⎦⎤12,22.(2018·南京调研)已知二次函数f (x )=mx 2-2x -3,关于实数x 的不等式f (x )≤0的解集为[-1,n ].(1)当a ≥0时,解关于x 的不等式ax 2+n +1>(m +1)x +2ax ; (2)是否存在实数a ∈(0,1),使得关于x 的函数y =f (a x )-3a x+1在x ∈[1,2]上的最小值为-92?若存在,求实数a 的值;若不存在,请说明理由. 解:(1)由f (x )=mx 2-2x -3≤0的解集为[-1,n ]知,关于x 的方程mx 2-2x -3=0的两根为-1和n ,且m >0,则⎩⎨⎧-1+n =2m,(-1)×n =-3m,所以⎩⎪⎨⎪⎧m =1,n =3.所以原不等式可化为(x -2)(ax -2)>0.①当a =0时,原不等式化为(x -2)×(-2)>0,解得x <2;②当0<a <1时,原不等式化为(x -2)·⎝⎛⎭⎫x -2a >0,且2<2a ,解得x >2a或x <2; ③当a =1时,原不等式化为(x -2)2>0,解得x ∈R 且x ≠2;④当a >1时,原不等式化为(x -2)·⎝⎛⎭⎫x -2a >0,且2>2a ,解得x <2a或x >2. 综上所述,当a =0时,原不等式的解集为{x |x <2}; 当0<a ≤1时,原不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x >2a 或x <2; 当a >1时,原不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x >2或x <2a . (2)假设存在满足条件的实数a , 由(1)知f (x )=x 2-2x -3,y =f (a x )-3a x +1=a 2x -(3a +2)a x -3. 令a x =t ,a 2≤t ≤a , 则y =t 2-(3a +2)t -3, 此函数图象的对称轴为t =3a +22, 因为a ∈(0,1),所以a 2<a <1,1<3a +22<52, 所以函数y =t 2-(3a +2)t -3在[a 2,a ]上单调递减,所以当t =a 时,y 取得最小值,最小值为y =-2a 2-2a -3=-92,解得a =-32(舍去)或a =12.故存在满足条件的a ,a 的值为12.。
江苏专版2020版高考数学一轮复习课时跟踪检测一集合的概念与运算理含解析

课时跟踪检测(一) 集合的概念与运算一抓基础,多练小题做到眼疾手快1. (2018 •徐州、连云港、宿迁三检)已知集合A= {x|x = 2k + 1 , k € Z}, B= {x|0 v xv 5},则A n B= ________ .解析:因为集合A= {x|x = 2k + 1 ,k € Z}为奇数集,B= {x|0 v x v 5},所以A n B= {1,3}. 答案:{1,3}2. 定义:满足任意元素x €代则|4 —x| € A的集合称为优集,若集合A={1 , a, 7}是优集,则实数a的值为__________ .解析:依题意,当x = 1时,|4 —x| = 3€ A,当x= 7时,|4 —x| = 3€ A所以a= 3符合条件.答案:33. (2018 •如皋高三上学期调研)集合A= {1,3} , B= {a2+ 2,3},若A U B= {1,2,3},则实数a的值为__________ .解析:T A= {1,3} , B= {a2+ 2,3},且A U B= {1,2,3},••• a2+ 2=2,解得a= 0,即实数a的值为0.答案:04. (2018 •盐城三模)已知集合A={1,2,3,4,5}, B= {1,3,5,7,9} , C= A n B,则集合C的子集的个数为__________ .解析:因为A n B= {1,3,5},所以C= {1,3,5},故集合C的子集的个数为23= 8.答案:85. (2019 •徐州期中)已知集合A= {1,2,3,4,5}, B= {( x, y)| x€ 代 y € A, x v y, x +y€ A},则集合B的子集个数是 _________ .解析:T集合A= {1,2,3,4,5} , B= {( x, y)| x € A, y€A, x v y, x+ y€ A},• B= {(1,2) , (2,3) , (1,3) , (1,4)},•集合B的子集个数是24= 16.答案:166. _____________________ (2019 •南通中学检测)已知集合A= {x|y = .9 —x2}, B= {x| x> a},若A n B= A, 则实数a的取值范围是.解析:因为A n B= A,所以A? B.因为A= {x| y=《9 —x2} = {x|9 —x2>0} = [ —3,3],所以[—3,3] ? [a , +s),所以a w —3.答案:(—a , —3]—保咼考,全练题型做到咼考达标1. _____________________________________________________________ (2018 •常州调研)已知⑴? A ? {1,2,3},则这样的集合 A 有 _________________________________ 个.解析:根据已知条件知符合条件的 A 为:A = {1} , {1,2} , {1,3} , {1,2,3},•••集合A 有4个. 答案:42. _____________ (2019 •启东中学检测)已知集合 A = {x |0 v x w 6}, B = {x € N|2x v 33},则集合 A H B 的元素个数为.x解析:因为 A = {x |0 v x w 6}, B = {x € N|2 v 33} = {0,1,2,3,4,5} ,所以 A H B = {1,2,3,4,5},即A HB 的元素个数为5.答案:5 3.已知a wi 时,集合{x |a w x w 2- a }中有且只有3个整数,则实数 a 的取值范围是解析:因为a w 1,所以2-a > 1,所以1必在集合中.若区间端点均为整数,则 a = 0,集合中有0,1,2三个整数,所以a = 0符合题意;若区间端点不为整数,则区间长度2v 2 — 2a v 4,解得一1 v a v 0,此时,集合中有0,1,2 三个整数,所以—1v a v 0符合题意.综上,实数a 的取值范围是(—1,0]. 答案:(—1,0]4.已知集合 A = {x |1 w x v 5}, B = {x | — a v x w a + 3},若 B ? (A H B ),则实数 a 的取值 范围为 ___________ .解析:因为B ? (A H E ),所以B ? A3①当 4 ?时,满足B ? A,此时一a > a + 3,即卩a w —:—a v a + 3,B ? A,贝U — a > 1,a + 3 v 5,由①②可知,实数 a 的取值范围为(一a, — 1]. 答案:(—a, — 1]5. _______________ (2018 •通州中学高三测试 )设U = R , A = (a , a + 1) , A [0,5),若A ? ?u B,则实数 a 的取值范围是 .解析:因为?u B = (—a, 0) u [5 ,+a ),又 A ? ?u B,所以 a + 1wo 或 a >5,解得 a w —1 或 a >5.3解得—a w — 1.②当B M ?时,要使答案:(—a, —1] U [5 , +a)6. ----------------------------------------------------------------------------------------------------------------------- (2019 •淮阴中学检测)设全集U为实数集R,已知集合A= 压 ----------------------------27.设集合 A = {x |x — x -2w 0}, B ={x |x v 1,且 x € Z},贝U A n B = ____________ 解析:依题意得 A = {x |( x + 1)( x — 2) w 0} = {x | — 1 w x w 2},因此 A n B= {x | — 1 w x v 1,x € Z} = { — 1,0}.答案:{ — 1,0}& (2019 •海安中学检测)已知集合 M= x 2v 1, N ={y |y = x — 1},则(?R M ) n N解析:因为 M=£v V = ( —a, 0) U (2 ,+R ) , N= {y |y = ^/x —^} = [0 ,+^ ), 所以?R M= [0,2] , (?R M ) n N= [0,2]. 答案:[0,2]9. ______________________________________________________________________ 设全集 U = {x € N *| x w 9}, ?U (A U B = {1,3} , A n ( ?U B ) = {2,4},贝U B = ___________________ .解析:因为全集 U= {1,2,3,4,567,8,9} ,由?U (A U B = {1,3}, 得 A U B = {2,4,5,6,7,8,9},由 A n (?u B ) = {2,4}知,{2,4} ? A, {2,4} ? 所以 B= {5,6,7,8,9}. 答案:{5,6,7,8,9}10. 已知集合 A = {x |4 w2x w 16}, B = [a ,解析:集合 A = {x |4 w2x w 16} = {x |2 2w2x w24} = {x |2 w x w 4} = [2,4],因为 A ? B,所 以a w 2, b > 4,所以a — b w 2— 4 = — 2,即实数a — b 的取值范围是(一a,— 2].答案:(—a, — 2]2,B ={x |1 w x w 2},则图中阴影部分所表示的集合为解析:由题意知,集合A =』x |x >2訂阴影部分表示的集合为(?U A ) n B =n{x |1 w x w 2}=认1w x w3答案:「X i w?uBb ],若A ? B ,则实数a — b 的取值范围是11. (2019 •启东检测)已知集合A= {x| a w x w a+ 3}, B= {x|x + x —6w0},(1)当a= 0 时,求A U B, A n ?R B;(2)若A n B= A求实数a的取值范围.解:⑴当a= 0 时,A= {x|0 w x w3},又B-{x| —3< x<2},所以?R B= {x| x v — 3 或x >2},所以A U B- {x| —3w x w 3}, A n ?R B= {x|2 v x w 3}.(2)因为A n B- A,所以A? B,a》一3,所以* 解得—3w a w —1,a + 3w 2,所以实数a的取值范围为[—3,—1].12. (2018 •南京高三部分学校联考)已知集合A- {x| x2—4x —5w 0}, A {x|2 x—6>0},M= A n B(1) 求集合M(2) 已知集合C-{x| a—1w x w7—a, a€ R},若M n C-M求实数a的取值范围.2解:(1)由x —4x —5w0,得—1w x w 5,所以A- [ —1,5].由2x—6>0,得x>3,所以B- [3 ,+s).所以M= [3,5].⑵因为M n C- M所以M? c,—1 w 3,a贝y 7 —a>5, 解得a w2.a —1 w 7—a,故实数a的取值范围为(一g, 2].三上台阶,自主选做志在冲刺名校1. _________ 已知集合A- {x| x2—2 019x + 2 018 v 0}, B- {x|log 2X< 币,若A? B,则整数m的最小值是____ .解析:由x2— 2 019x + 2 018 v 0,解得 1 v x v2 018,故A- {x|1 v x v 2 018}. 由log 2x v m,解得0v x v 2m,故B- {x|0 v x v 2m}.由A? B,可得2m>2 018 ,10 11因为2 - 1 024,2 - 2 048,所以整数m的最小值为11.答案:11—1, x € M2. 对于集合M定义函数f M(x)—对于两个集合A, B,定义集合A A B1, x?M-{x|f A(x) • f B(x) -—1}.已知A- {2,4,6,8,10} , B- {1,2,4,8,12},则用列举法写出集合A A B-解析:由题意知,要使f A(x) • f B(x) -—1,必有x€ {x| x € A且x?B} U {x| x € B且x?A} -{1,6,10,12},所以A A B- {1,6,10,12}答案:{1,6,10,12}3. 已知集合A= {x|1 v x v 3},集合B= {x|2m< x v 1 —m}.⑴当n^—1时,求A U B;⑵若A? B,求实数n的取值范围;(3)若A n B= ?,求实数n的取值范围.解:(1)当n^—1 时,B= {x| —2v x v2},则A U B= {x| —2v x v 3}.T - n> 2n,⑵由A? B知2mc 1,解得me—2,1 —n> 3,即实数n的取值范围为(一R,—2].(3)由A n B= ?,得1①若2n> 1—n即3时,B= ?,符合题意;1 [n v -,[n v-,②若2n v 1 —n即n v 3时,需$ 3或$3〔1-nf^l 〔2rr^ 3,1 1得0w n v 3或?,即0w n v 3.综上知n>0,即实数n的取值范围为[0,+R ).。
2020版高考数学一轮复习课时跟踪检测十指数与指数函数

Earlybird课时跟踪检测(十) 指数与指数函数一、题点全面练3 31. 3· ·612的化简结果为( )2A .2B .3C .4D .6解析:选 B 原式=3132·(2 )1 3·1216=3 12 ·3113 ·2 3 ·41 6 ·3 16=3 12+ 13 + 11 1 - + 6 ·23 3=3·20=3. 2.函数 f (x )=a x-b的图象如图所示,其中 a ,b 为常数,则下列结论中正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,0<b <1D .0<a <1,b <0解析:选 D 法一:由题图可知 0<a <1,当 x =0时,a -b ∈(0,1),故-b >0,得 b < 0.故选 D.法二:由图可知 0<a <1,f (x )的图象可由函数 y =a x 的图象向左平移得到,故-b >0, 则 b <0.故选 D.3.化简 4a2123 ·bab)3 ÷(-的结果为( )32a 8a A .- B .-3b b6a C .-D .-6abb2解析:选 C 原式=4÷ a(-3 )2 11-2- 6 a33bb3 3 =-6ab -1=-,故选 C.4.设 x >0,且 1<b x <a x ,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <b解析:选C因为1<b x,所以b0<b x,因为x>0,所以b>1,a因为b x<a x,所以(b)x>1,a因为x>0,所以>1,所以a>b,所以1<b<a.故选C.b4215.已知a=( 2)3,b=25,c=93,则a,b,c的大小关系是() A.b<a<c B.a<b<cC.b<c<a D.c<a<b解析:选A a=( 2) 43=214×23=223,b=225,c=913=323,由函数y=x 23在(0,+∞)上为增函数,得a<c,由函数y=2x在R上为增函数,得a>b,综上得c>a>b.故选A.6.函数f(x)=a x+b-1(其中0<a<1,且0<b<1)的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限解析:选C由0<a<1可得函数y=a x的图象单调递减,且过第一、二象限,因为0<b<1,所以-1<b-1<0,所以0<1-b<1,y=a x的图象向下平移1-b个单位即可得到y=a x+b-1的图象,所以y=a x+b-1的图象一定在第一、二、四象限,一定不经过第三象限.故选C.7.已知函数f(x)=Error!则函数f(x)是()A.偶函数,在[0,+∞)单调递增B.偶函数,在[0,+∞)单调递减C.奇函数,且单调递增D.奇函数,且单调递减解析:选C易知f(0)=0,当x>0时,f(x)=1-2-x,-f(x)=2-x-1,此时-x<0,则f(-x)=2-x-1=-f(x);当x<0时,f(x)=2x-1,-f(x)=1-2x,此时-x>0,则f(-x)=1-2-(-x)=1-2x=-f(x).即函数f(x)是奇函数,且单调递增,故选C.18.二次函数y=-x2-4x(x>-2)与指数函数y=(2 )x的交点有()A.3个B.2个C.1个D.0个选解:析C因为二次函数y=-x2-4x=-(x+2)2+4(x>-2),且x=-1时,y=-x2-4x=3,1y=(2 )x=2,1在坐标系中画出y=-x2-4x(x>-2)与y=(2 )x的大致图象,由图可得,两个函数图象的交点个数是1.故选C.99.已知函数f(x)=x-4+,x∈(0,4),当x=a时,f(x)取得最小值b,则函数g(x)x+1=a|x+b|的图象为()解析:选A因为x∈(0,4),所以x+1>1,9 9 9所以f(x)=x-4+=x+1+-5≥2·x+1-5=1,x+1 x+1 x+1当且仅当x=2时取等号,此时函数有最小值1,所以a=2,b=1,此时g(x)=2|x+1|=Error!此函数图象可以看作由函数y=Error!的图象向左平移1个单位得到.结合指数函数的图象及选项可知A正确.故选A.110.函数f(x)=2+2+1(2 )x x的单调递减区间为________.1 1解析:设u=-x2+2x+1,∵y=u在R上为减函数,∴函数f(x)=1x x2+2+(2 )(2 )的单调递减区间即为函数u=-x2+2x+1的单调递增区间.又u=-x2+2x+1的单调递增区间为(-∞,1],∴f(x)的单调递减区间为(-∞,1].答案:(-∞,1]1 111.不等式(2 )(2 )x ax<2x+a-2恒成立,则a的取值范围是________.2+Earlybird1解析:由指数函数的性质知 y =(2 )x是减函数,112 +因为(2 ) (2 )所以 x 2+ax >2x +a -2恒成立, 所以 x 2+(a -2)x -a +2>0恒成立, 所以 Δ=(a -2)2-4(-a +2)<0, 即(a -2)(a -2+4)<0, 即(a -2)(a +2)<0,故有-2<a <2,即 a 的取值范围是(-2,2). 答案:(-2,2)1112.已知函数 f (x )=(+ x 3(a >0,且 a ≠1).a x -12)(1)讨论 f (x )的奇偶性;(2)求 a 的取值范围,使 f (x )>0在定义域上恒成立. 解:(1)由于 a x -1≠0,则 a x ≠1,得 x ≠0, ∴函数 f (x )的定义域为{x |x ≠0}. 对于定义域内任意 x ,有11 f (-x )=((-x )3+2)a-x -1a x1=( 2)(-x )3 + 1-a x11 =(-1-(-x )3+2)a x -111=(2)x 3=f (x ), + a x -1∴函数 f (x )是偶函数. (2)由(1)知 f (x )为偶函数,∴只需讨论 x >0时的情况,当 x >0时,要使 f (x )>0,11则(x 3>0,+2)a x-11 1即+>0,a x-1 2a x+1即>0,则a x>1. 2a x-1又∵x>0,∴a>1.∴当a∈(1,+∞)时,f(x)>0.Earlybird二、专项培优练(一)易错专练——不丢怨枉分1.设y=f(x)在(-∞,1]上有定义,对于给定的实数K,定义f K(x)=Error!给出函数f(x)=2x+1-4x,若对于任意x∈(-∞,1],恒有f K(x)=f(x),则()A.K的最大值为0 B.K的最小值为0C.K的最大值为1 D.K的最小值为1解析:选D根据题意可知,对于任意x∈(-∞,1],恒有f K(x)=f(x),则f(x)≤K在x≤1上恒成立,即f(x)的最大值小于或等于K即可.令2x=t,则t∈(0,2],f(t)=-t2+2t=-(t-1)2+1,可得f(t)的最大值为1,∴K≥1,故选D.1 12 12.已知实数a,b满足2>(2 )a>(2 )b>,则()4A.b<2 b-a B.b>2 b-aC.a<b-a D.a>b-a1 1 12 2 2 解析:选B由>a,得a>1,由a>b,得2a>b,2 (2 )(2 )(2 )(2 )(2 )2 1 2 2 b故2a<b,由(2 )b>4,得(2 )b>(2 )4,得b<4.由2a<b,得b>2a>2,a<<22,故1<a<2,2<b<4.对于选项A、B,由于b2-4(b-a)=(b-2)2+4(a-1)>0恒成立,故A错误,B正确;1 1对于选项C,D,a2-(b-a)=(a+2 )2-(b+4 ),由于1<a<2,2<b<4,故该式的符号不确定,故C、D错误.故选B.3.设a>0,且a≠1,函数y=a2x+2a x-1在[-1,1]上的最大值是14,求实数a的值.解:令t=a x(a>0,且a≠1),则原函数化为y=f(t)=(t+1)2-2(t>0).1①当0<a<1,x∈[-1,1]时,t=a x∈[a,a],1此时f(t)在[a,a]上为增函数.1 1所以f(t)max=f(a)=(+1 )2-2=14.a1 1 1所以(+1 )2=16,解得a=-(舍去)或a=.a 5 31②当a>1时,x∈[-1,1],t=a x∈[,a],aEarlybird1此时 f (t )在[,a ]上是增函数.a所以 f (t )max =f (a )=(a +1)2-2=14, 解得 a =3或 a =-5(舍去). 1 综上得 a = 或 3.3(二)交汇专练——融会巧迁移a +b4.[与基本不等式交汇]设 f (x )=e x,0<a <b ,若 p =f ( ab ),q =f( 2 ),r =f a f b ,则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >qa +ba +b解 析:选 C ∵0<a <b ,∴> ab ,又 f (x )=e x 在(0,+∞)上为增函数,∴f( 2 )2>f ( ab ),即 q >p .又 r = f af b = e a e b =ea -b2 =q ,故 q =r >p .故选 C. 115.[与一元二次函数交汇]函数 y =(4 )x -(2 )x +1在区间[-3,2]上的值域是________.1解析:令 t =(2 )x ,1因为 x ∈[-3,2],所以 t ∈[,8 ],4 13 故 y =t 2-t +1=(t -2 )2+ . 41 3 当 t = 时,y min = ;2 4 当 t =8时,y max =57.3 故所求函数的值域为[,57].43 答案:[,57]4-2x +b6.[与函数性质、不等式恒成立交汇]已知定义域为 R 的函数 f (x )= 是奇函2x +1+a数.(1)求a,b的值;(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.解:(1)因为f(x)是R上的奇函数,Earlybird-1+b所以f(0)=0,即=0,解得b=1.2+a-2x+1从而有f(x)=.2x+1+a1 -+1-2+1 2又由f(1)=-f(-1)知=-,解得a=2.4+a1+a-2x+1 1 1(2)由(1)知f(x)==-+,2x+1+2 2 2x+1由上式易知f(x)在R上为减函数,又因为f(x)是奇函数,从而不等式f(t2-2t)+f(2t2-k)<0等价于f(t2-2t)<-f(2t2-k)=f(-2t2+k).因为f(x)是R上的减函数,由上式推得t2-2t>-2t2+k.即对一切t∈R有3t2-2t-k>0,1从而Δ=4+12k<0,解得k<-.31(-∞,-3).故k的取值范围为。
(江苏专版)2020版高考数学(理)一轮复习:课时跟踪检测(12套,含答案)

( )5 25
25
则 g(t)max=g 2 = 8 ,所以 a≥ 8 ;
( ) 1 5 1 5 25 t+ 记 h(t)=2t2+2t=2 2 2- 8 ,
则 h(t)min=h(2)=7,所以 a≤7, 25
综上所述, 8 ≤a≤7.
[ ] 25 ,7 所以实数 a 的取值范围是 8 .
三上台阶,自主选做志在冲刺名校
3 k+α=2.
3 答案:2
2.(2019·连云港调研)若函数 f(x)=-x2+2(a-1)x+2 在(-∞,4)上为增函数,
则 a 的取值范围是________.
解析:∵f(x)=-x2+2(a-1)x+2 的对称轴为 x=a-1,
f(x)=-x2+2(a-1)x+2 在(-∞,4)上为增函数,
=2x+b 的“关联区间”是[-3,0],则 b 的取值范围是________.
1 解析:由题意设 m(x)=f(x)-g(x)=3x3-x2-3x-b, 则 m′(x)=x2-2x-3,
由 m′(x)=0,得 m=-1 或 m=3.
∵f(x)与 g(x)在[-3,0]上是“关联函数”,
∴x=-1 是函数 m(x)在[-3,0]上的极大值,同时也是最大值.
________.
解析:不等式 x2-4x-2-a>0 在区间(1,4)内有解等价于 a<(x2-4x-2)max, 令 f(x)=x2-4x-2,x∈(1,4),
所以 f(x)<f(4)=-2,所以 a<-2.
答案:(-∞,-2)
4.(2018·泰州中学调研)已知 f(x)是定义在 R 上的奇函数,当 x<0 时,f(x)
1.(2019·金陵中学期中)设 f(x)与 g(x)是定义在同一区间[a,b]上的两个函数,若
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(九) 指数与指数函数一抓基础,多练小题做到眼疾手快1.(2019·连云港调研)已知a =3π,b =e π,c =e 3,则a ,b ,c 的大小关系为________. 解析:由y =e x是增函数,得b =e π>c =e 3,由y =x π是增函数,得a =3π>b =e π,故c <b <a .答案:c <b <a 2.已知函数y =ax -1+3(a >0且a ≠1)图象经过点P ,则点P 的坐标为________.解析:当x =1时,y =a 0+3=4, ∴函数y =ax -1+3(a >0且a ≠1)的图象恒过定点(1,4).∴点P 的坐标为(1,4). 答案:(1,4)3.在同一平面直角坐标系中,函数f (x )=2x +1与g (x )=⎝ ⎛⎭⎪⎫12x -1的图象关于________对称.解析:因为g (x )=21-x=f (-x ),所以f (x )与g (x )的图象关于y 轴对称.答案:y 轴 4.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为________.解析:由f (x )过定点(2,1)可知b =2, 因为f (x )=3x -2在[2,4]上是增函数,所以f (x )min =f (2)=1,f (x )max =f (4)=9. 故f (x )的值域为[1,9]. 答案:[1,9] 5.不等式222x x-+>⎝ ⎛⎭⎪⎫12x +4的解集为________. 解析:不等式222x x-+>⎝ ⎛⎭⎪⎫12x +4可化为⎝ ⎛⎭⎪⎫12x 2-2x >⎝ ⎛⎭⎪⎫12x +4,等价于x 2-2x <x +4, 即x 2-3x -4<0,解得-1<x <4. 答案:{x |-1<x <4}6.(2019·徐州调研)若函数f (x )=a x -1(a >1)在区间[2,3]上的最大值比最小值大a2,则a =________.解析:∵函数f (x )=a x -1(a >1)在区间[2,3]上为增函数, ∴f (x )max =f (3)=a 2,f (x )min =f (2)=a .由题意可得a 2-a =a 2,解得a =32.答案:32二保高考,全练题型做到高考达标 1.若函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则f (-4)与f (1)的大小关系是________.解析:由题意知a >1,f (-4)=a 3,f (1)=a 2, 由y =a t(a >1)的单调性知a 3>a 2,所以f (-4)>f (1). 答案:f (-4)>f (1)2.(2018·启东中学检测)满足⎝ ⎛⎭⎪⎫14x -3>16的x 的取值范围是________.解析:∵⎝ ⎛⎭⎪⎫14x -3>16,∴⎝ ⎛⎭⎪⎫14x -3>⎝ ⎛⎭⎪⎫14-2,∵函数y =⎝ ⎛⎭⎪⎫14x在定义域上是减函数,∴x -3<-2,故x <1. 答案:(-∞,1)3.已知实数a ,b 满足等式2 017a=2 018b,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有________个.解析:设2 017a=2 018b=t ,如图所示,由函数图象,可得若t >1,则有a >b >0;若t =1,则有a =b =0;若0<t <1,则有a <b <0.故①②⑤可能成立,而③④不可能成立.答案:24.若函数f (x )=⎩⎪⎨⎪⎧a x, x >1,2-3a x +1,x ≤1是R 上的减函数,则实数a 的取值范围是________.解析:依题意,a 应满足⎩⎪⎨⎪⎧0<a <1,2-3a <0,2-3a ×1+1≥a 1,解得23<a ≤34.答案:⎝ ⎛⎦⎥⎤23,34 5.(2019·苏州中学检测)函数f (x )=⎝ ⎛⎭⎪⎫13x 2+1的值域为________.解析:令u =x 2+1,可得f (u )=⎝ ⎛⎭⎪⎫13u 是减函数,而u =x 2+1的值域为[1,+∞),∴函数f (x )=⎝ ⎛⎭⎪⎫13x 2+1的值域为⎝ ⎛⎦⎥⎤0,13. 答案:⎝ ⎛⎦⎥⎤0,136.(2019·无锡调研)函数f (x )=⎝ ⎛⎭⎪⎫12x x 226-+的单调递增区间是________.解析:设u (x )=x 2-2x +6=(x -1)2+5,对称轴为x =1, 则u (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增,又y =⎝ ⎛⎭⎪⎫12x在R 上单调递减,所以f (x )=⎝ ⎛⎭⎪⎫12x x 226-+在(-∞,1)上单调递增,在(1,+∞)上单调递减.答案:(-∞,1)7.已知函数f (x )=a -x(a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.解析:因为f (x )=a -x=⎝ ⎛⎭⎪⎫1ax ,且f (-2)>f (-3),所以函数f (x )在定义域上单调递增, 所以1a>1,解得0<a <1. 答案:(0,1)8.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是________.解析:原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x ,因为函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数,所以⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m <2,解得-1<m <2.答案:(-1,2) 9.化简下列各式:(1)⎝ ⎛⎭⎪⎫2790.5+0.1-2+⎝ ⎛⎭⎪⎫21027-23-3π0+3748;(2)3a 72·a -3÷3a -3·a -1.解:(1)原式=⎝ ⎛⎭⎪⎫25912+10.12+⎝ ⎛⎭⎪⎫6427-23-3+3748=53+100+916-3+3748=100.(2)原式=3a 72·a -23÷3a-23·a-12=3a 72÷3a-12=a 76÷a16-=a 86=a 43.10.(2018·苏州调研)已知函数f (x )=3x+λ·3-x(λ∈R). (1)若f (x )为奇函数,求λ的值和此时不等式f (x )>1的解集; (2)若不等式f (x )≤6对x ∈[0,2]恒成立,求实数λ的取值范围. 解:(1)函数f (x )=3x +λ·3-x的定义域为R. 因为f (x )为奇函数,所以f (-x )+f (x )=0对∀x ∈R 恒成立,即3-x+λ·3x +3x +λ·3-x =(λ+1)(3x +3-x)=0对∀x ∈R 恒成立, 所以λ=-1.由f (x )=3x -3-x >1,得(3x )2-3x-1>0, 解得3x >1+52或3x<1-52(舍去),所以不等式f (x )>1的解集为⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫x >log 31+52.(2)由f (x )≤6,得3x+λ·3-x≤6,即3x+λ3x ≤6. 令t =3x∈[1,9],则问题等价于t +λt≤6对t ∈[1,9]恒成立, 即λ≤-t 2+6t 对t ∈[1,9]恒成立, 令g (t )=-t 2+6t ,t ∈[1,9],因为g (t )在[1,3]上单调递增,在[3,9]上单调递减, 所以当t =9时,g (t )有最小值g (9)=-27,所以λ≤-27,即实数λ的取值范围为(-∞,-27]. 三上台阶,自主选做志在冲刺名校1.当x ∈[1,2]时,函数y =12x 2与y =a x(a >0)的图象有交点,则a 的取值范围是________.解析:当a >1时,如图①所示,使得两个函数图象有交点,需满足12·22≥a 2,即1<a ≤2;当0<a <1时,如图②所示,需满足12·12≤a 1,即12≤a <1.综上可知,a ∈⎣⎢⎡⎦⎥⎤12,2.答案:⎣⎢⎡⎦⎥⎤12,22.(2018·南京调研)已知二次函数f (x )=mx 2-2x -3,关于实数x 的不等式f (x )≤0的解集为[-1,n ].(1)当a ≥0时,解关于x 的不等式ax 2+n +1>(m +1)x +2ax ; (2)是否存在实数a ∈(0,1),使得关于x 的函数y =f (a x )-3a x +1在x ∈[1,2]上的最小值为-92?若存在,求实数a 的值;若不存在,请说明理由.解:(1)由f (x )=mx 2-2x -3≤0的解集为[-1,n ]知,关于x 的方程mx 2-2x -3=0的两根为-1和n ,且m >0,则⎩⎪⎨⎪⎧-1+n =2m ,-1×n =-3m,所以⎩⎪⎨⎪⎧m =1,n =3.所以原不等式可化为(x -2)(ax -2)>0.①当a =0时,原不等式化为(x -2)×(-2)>0,解得x <2;②当0<a <1时,原不等式化为(x -2)·⎝ ⎛⎭⎪⎫x -2a >0,且2<2a ,解得x >2a或x <2;③当a =1时,原不等式化为(x -2)2>0,解得x ∈R 且x ≠2;④当a >1时,原不等式化为(x -2)·⎝ ⎛⎭⎪⎫x -2a >0,且2>2a ,解得x <2a或x >2.综上所述,当a =0时,原不等式的解集为{x |x <2};当0<a ≤1时,原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >2a 或x <2;当a >1时,原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >2或x <2a .(2)假设存在满足条件的实数a , 由(1)知f (x )=x 2-2x -3,y =f (a x )-3a x +1=a 2x -(3a +2)a x -3.令a x=t ,a 2≤t ≤a ,则y =t 2-(3a +2)t -3, 此函数图象的对称轴为t =3a +22, 因为a ∈(0,1),所以a 2<a <1,1<3a +22<52,所以函数y =t 2-(3a +2)t -3在[a 2,a ]上单调递减,所以当t =a 时,y 取得最小值,最小值为y =-2a 2-2a -3=-92,解得a =-32(舍去)或a =12.故存在满足条件的a ,a 的值为12.。