混沌粒子群优化算法【精品文档】(完整版)
混沌动态种群数粒子群优化算法

混沌动态种群 数粒子群优化算法
张 寅, 曹德欣
ZHANG n CAO xn Yi , De i
中国矿 业大学 理学院 , 江苏 徐州 2 10 208
piain ,0 14 (5 :84 . l t s2 1 。7 3 )3 -0 c o
Ab t a t s r c :Fo h a t l wa m p i ia in, e p r c e r a i r p e n t e l c l e t mu r g o n t e wh l t r te p r ce s r o t z t i m o t a t ls a e e sl t p d i o a x r h i y a h e m e i n i h oe i - e a i e p o e sT i p p r p o o e a t l s l p i z to a e n c a t y a c p p lt n ieW h n t e g o a r t r c s . h s a e r p s s a p ri e wal o t v c - n mi ai n b s d o h o i d n mi o u ai s . e lb l c o z h
关键词 : 粒子群优化 算法; 全局最优值 ; 混沌; 种群数 DO :03 7 0i n10 .3 1 0 1 50 1 文章编号 :0 28 3 ( O 13 .0 80 文献标识 码: I l.7 8 .s.0 28 3 . 1. .1 s 2 3 t 0 .3 12 l) 50 3 .3 A 中图分类号 :P1 T 8
粒子群优化算法【范本模板】

什么是粒子群优化算法粒子群优化算法(ParticleSwarm optimization,PSO)又翻译为粒子群算法、微粒群算法、或微粒群优化算法。
是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。
通常认为它是群集智能(Swarm intelligence, SI)的一种。
它可以被纳入多主体优化系统(Multiagent OptimizationSystem,MAOS). 是由Eberhart博士和kennedy博士发明.PSO模拟鸟群的捕食行为。
一群鸟在随机搜索食物,在这个区域里只有一块食物。
所有的鸟都不知道食物在那里.但是他们知道当前的位置离食物还有多远。
那么找到食物的最优策略是什么呢.最简单有效的就是搜寻目前离食物最近的鸟的周围区域。
PSO从这种模型中得到启示并用于解决优化问题.PSO中,每个优化问题的解都是搜索空间中的一只鸟。
我们称之为“粒子”。
所有的粒子都有一个由被优化的函数决定的适应值(fitnessva lue),每个粒子还有一个速度决定他们飞翔的方向和距离。
然后粒子们就追随当前的最优粒子在解空间中搜索。
PSO初始化为一群随机粒子(随机解),然后通过叠代找到最优解,在每一次叠代中,粒子通过跟踪两个“极值”来更新自己。
第一个就是粒子本身所找到的最优解,这个解叫做个体极值p Best,另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。
另外也可以不用整个种群而只是用其中一部分最优粒子的邻居,那么在所有邻居中的极值就是局部极值.[编辑]PSO算法介绍[1]如前所述,PSO模拟鸟群的捕食行为。
设想这样一个场景:一群鸟在随机搜索食物.在这个区域里只有一块食物。
所有的鸟都不知道食物在那里。
但是他们知道当前的位置离食物还有多远。
那么找到食物的最优策略是什么呢。
最简单有效的就是搜寻目前离食物最近的鸟的周围区域.PSO从这种模型中得到启示并用于解决优化问题。
PSO中,每个优化问题的解都是搜索空间中的一只鸟.我们称之为“粒子”。
一种改进的混沌粒子群优化算法

P S O o r a d j u s t i n g r e l a t i v e p a r a m e t e r s .T o s o l v e t h i s p ob r l e m,t hi s p a p e r p op r o s e s a n i m p ov r e d c h a o s
2 0 1 3 年第 1 0 期
文章编号 : 1 0 0 9— 2 5 5 2 ( 2 0 1 3 ) 1 0— 0 0 0 9—0 4 中图分 类号 : T P 3 0 1 . 6 文献标识码 : A
一
种 改进 的 混沌 粒 子 群 优化 算 法
汤可宗 ,丰建 文
( 景德镇 陶瓷学院信息工程学院 , 江西 景德镇 3 3 3 0 0 0 )
A b s t r a c t :P a r t i c l e s w a r m o p i t mi z a i t o n( P S O) i s a p o p u l a t i o n — b a s e d s t o c h a s t i c g l o b a l o p i t m i z a t i o n
摘
要 :粒 子群优 化 算法 ( P S O) 自提 出以来 ,已经被 广 泛地 应 用于 求解 各 类复 杂 的优 化 问题 , 过去对粒子群算法的研究主要 集中在融入新的优化方法或对其相 关参数进行调整 ,但这样只会 使得 P S O更加 复 杂。针 对这 一 问题 ,文 中提 出一种 改进 的混沌粒 子群优 化 算法 ( I C P S O) , I C P S O 从粒 子群优 化 算 法的 时间 与寻优 实时角度 出发 ( 即在 较短 的 时间 内获 得 较好 的 解 ) ,对 粒子速 度 更新 算子进 行 了简化 ,每 隔一定代 数 后 ,在 最优 解 邻 近 区域 引入 混 沌扰 动 以避 免 种 群 陷入 局 部 最优 解 。数 值 实验 结果表 明 :提 出的算 法相 对 于文 献给 出的 P S O 改进 算 法 ,不仅 能够 获得 较 好
粒子群优化算法及其应用研究【精品文档】(完整版)

摘要在智能领域,大部分问题都可以归结为优化问题。
常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。
本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。
根据分析结果,研究了一种基于量子的粒子群优化算法。
在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。
本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。
最后,对本文进行了简单的总结和展望。
关键词:粒子群优化算法最小二乘支持向量机参数优化适应度目录摘要 (I)目录 (II)1.概述 (1)1.1引言 (1)1.2研究背景 (1)1.2.1人工生命计算 (1)1.2.2 群集智能理论 (2)1.3算法比较 (2)1.3.1粒子群算法与遗传算法(GA)比较 (2)1.3.2粒子群算法与蚁群算法(ACO)比较 (3)1.4粒子群优化算法的研究现状 (4)1.4.1理论研究现状 (4)1.4.2应用研究现状 (5)1.5粒子群优化算法的应用 (5)1.5.1神经网络训练 (6)1.5.2函数优化 (6)1.5.3其他应用 (6)1.5.4粒子群优化算法的工程应用概述 (6)2.粒子群优化算法 (8)2.1基本粒子群优化算法 (8)2.1.1基本理论 (8)2.1.2算法流程 (9)2.2标准粒子群优化算法 (10)2.2.1惯性权重 (10)2.2.2压缩因子 (11)2.3算法分析 (12)2.3.1参数分析 (12)2.3.2粒子群优化算法的特点 (14)3.粒子群优化算法的改进 (15)3.1粒子群优化算法存在的问题 (15)3.2粒子群优化算法的改进分析 (15)3.3基于量子粒子群优化(QPSO)算法 (17)3.3.1 QPSO算法的优点 (17)3.3.2 基于MATLAB的仿真 (18)3.4 PSO仿真 (19)3.4.1 标准测试函数 (19)3.4.2 试验参数设置 (20)3.5试验结果与分析 (21)4.粒子群优化算法在支持向量机的参数优化中的应用 (22)4.1支持向量机 (22)4.2最小二乘支持向量机原理 (22)4.3基于粒子群算法的最小二乘支持向量机的参数优化方法 (23)4.4 仿真 (24)4.4.1仿真设定 (24)4.4.2仿真结果 (24)4.4.3结果分析 (25)5.总结与展望 (26)5.1 总结 (26)5.2展望 (26)致谢 (28)参考文献 (29)Abstract (30)附录 (31)PSO程序 (31)LSSVM程序 (35)1.概述1.1引言最优化问题是在满足一定约束条件下,寻找一组参数值,使得系统的某些性能指标达到最大或者最小。
粒子群算法文档【精品文档】(完整版)

§6.4 粒子群优化算法人们提出了群搜索概念,利用它们来解决现实中所遇到的优化问题,并取得了良好的效果.粒子群优化算法就是群体智能中的一种算法.粒子群算法是一种演化计算技术,是一种基于迭代的优化工具,系统初始化为一组随机解,通过迭代搜寻最优值,将鸟群运动模型中栖息地类比为所求问题空间中可能解的位置,利用个体间的传递,导致整个群体向可能解的方向移动,逐步发现较好解.6.4.1 基本粒子群算法粒子群算法,其核心思想是对生物社会性行为的模拟.最初粒子群算法是用来模拟鸟群捕食的过程,假设一群鸟在捕食,其中的一只发现了食物,则其他一些鸟会跟随这只鸟飞向食物处,而另一些会去寻找更好的食物源.在捕食的整个过程中,鸟会利用自身的经验和群体的信息来寻找食物.粒子群算法从鸟群的这种行为得到启示,并将其用于优化问题的求解.若把在某个区域范围内寻找某个函数最优值的问题看作鸟群觅食行为,区域中的每个点看作一只鸟,现把它叫粒子(particle).每个粒子都有自己的位置和速度,还有一个由目标函数决定的适应度值.但每次迭代也并不是完全随机的,如果找到了新的更好的解,将会以此为依据来寻找下一个解.图6.21给出了粒子运动的思路图.图6.21粒子运动的路线图下面给出粒子群算法的数学描述.假设搜索空间是D维的,群中的第i个粒子能用如下D维矢量所表示:12(,,,)i i i iD X x x x '=(6.43)每个粒子代表一个潜在的解,这个解有D 个维度.每个粒子对应着D 维搜索空间上的一个点.粒子群优化算法的目的是按照预定目标函数找到使得目标函数达到极值的最优点.第i 个粒子的速度或位置的变化能用如下的D 维向量表示:12(,,,)i i i iD V v v v '= (6.44)为了更准确地模拟鸟群,在粒子群优化中引入了两个重要的参量.一个是第i 个粒子曾经发现过的自身历史最优点(Personal best ,pbest),可以表示为:12(,,,)i i i iD P p p p '= (6.45)另一个是整个种群所找到的最优点(Global best ,gbest),可以表示为:12(,,,)g g g gD P p p p '= (6.46)PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解.在每一次的迭代中,粒子通过跟踪两个“极值”(i P 和g P )来更新自己.在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置:1122(1)()()(()())()(()())id id id id gd id v t wv t c r t p t x t c r t p t x t +=+-+-,(速度更新公式)(6.46)(1)()(1)id id id x t x t v t +=++(位置更新公式) (6.47)其中w 称之为惯性因子,在一般情况下,取1w =,1,2,,t G = 代表迭代序号,G 是预先给出的最大迭代数;1,2,,d D = , 1,2,,i N = ,N 是群的大小;1c 和2c 是正的常数,分别称为自身认知因子和社会认知因子,用来调整i P 和g P 的影响强度.1r 和2r 是区间[0,1]内的随机数.由(6.46)和(6.47)构成的粒子群优化称为原始型粒子群优化.从社会学的角度来看,公式(6.47)的第一部分称为记忆项,表示上次优化中的速度的影响;公式第二部分称为自身认知项,可以认为是当前位置与粒子自身最优位置之间的偏差,表示粒子的下一次运动中来源于自己经验的部分;公式的第三部分称为社会认知项,是一个从当前位置指向种群最佳位置的矢量,反映了群内粒子的协作和知识共享.可见,粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动.随着迭代进化的不断进行,粒子群逐渐聚集到最优点处,图6.22 给出了某个优化过程中粒子逐渐聚集的示意图.图6.22 粒子群在优化过程聚集示意图 综上所述,我们得到如下基本粒子群算法流程:(1) 设定参数,初始化粒子群,包括随机位置和速度;(2) 评价每个粒子的适应度;(3) 对每个粒子,将其当前适应值与其曾经访问过的最好位置pbest 作比较,如果当前值更好,则用当前位置更新pbest ;(4) 对每个粒子,将其当前适应值与种群最佳位置gbest 作比较,如果当前值更好,则用当前位置更新gbest ;(5) 根据速度和位置更新公式更新粒子;(6)若未满足结束条件则转第二步;否则停止迭代.迭代终止条件根据具体问题一般选为迭代至最大迭代次数或粒子群搜索到的最优位置满足预定的精度阈值.6.4.2 粒子群算法的轨迹分析1998年,Ozcan 在文献[13]中首先对粒子在一维空间的轨迹进行了讨论,并在1999年将粒子运动的轨迹分析推广到多维空间的情形,2002年,文献[14]从矩阵代数的观点讨论了粒子的轨迹问题,本节采用[15]中的差分方程思想分别讨论单个粒子在一维以及二维空间的轨迹问题。
基于Tent混沌序列的粒子群优化算法概要

—180基于Tent混沌序列的粒子群优化算法田东平1,2(1.宝鸡文理学院计算机软件研究所,宝鸡721007;2.宝鸡文理学院计算信息科学研究所,宝鸡721007摘要:针对粒子群优化算法易陷入局部极值和进化后期收敛速度缓慢的问题,提出基于Tent混沌序列的粒子群优化算法应用Tent映射初始化均匀分布的粒群,提高初始解的质量,设定粒子群聚集程度的判定阈值,并引入局部变异机制和局部应用Tent映射重新初始化粒群的方法,增强算法跳出局部最优解的能力,有效避免计算的盲目性,从而加快算法的收敛速度。
仿真实验结果表明,该算法是有效的。
关键词:粒子群优化算法;Tent映射;变异机制;判定阈值;收敛速度Particle Swarm Optimizati on AlgorithmBased on Tent Chaotic Seque neeTIAN Dong-ping 1,2(1.1 nstitute of Computer Software, Baoji Un iversity of Arts and Scien ee, Baoji 721007;2. I nstitute of Computatio nal In formatio n Scie nee, Baoji Un iversity of Arts and Scie nee, Baoji 721007【Abstract 】Aiming at the problems of easily getting into the local optimum and slowly conv ergi ng speed of the Particle Swarm Optimizatio n(PSO algorithm, a new PSO algorithm based on Tent chaotic seque nee is proposed. The uniform particles areproduced by Tent mapp ing so as to improve the quality of the in itial soluti ons. The decision threshold of particles focusing degree is employed, and the local mutation mechanism and the local reinitializing particles are introduced in order to help the PSO algorithm to break away from the local optimum, whick can avoid the redundant computati on and accelerate the conv erge nee speed of the evoluti onary process. Simulation experimental results show this algorithm is effective.【Key words 】Particle Swarm Optimizatio n( PSO algorithm; Tent mapp ing; mutatio n mecha ni sm; decisi on threshold; conv erge nee speed计算机工程Computer Engineering第36卷第4期Vol.36 No.4 2010 年2 月February 2010人工智能及识别技术•文章编号:1000—3428(201004— 0180- 03文献标识码:A中图分类号:TP301.61概述粒子群优化(Particle Swarm Optimization, PSO算法是种进化算法,是Kennedy等人在对鸟类、鱼类群集活动时所形成的协同智能进行总结而提出的[1]。
混沌粒子群原理+csdn

混沌粒子群原理+csdn
混沌粒子群算法(Chaotic Particle Swarm Optimization,CPSO)是一种基于混沌理论和粒子群优化算法的启发式优化算法。
混沌粒子群算法结合了混沌系统的随机性和粒子群算法的协作搜索
机制,能够有效地克服传统粒子群算法的局部收敛问题,提高全局
搜索能力。
在混沌粒子群算法中,混沌系统被引入到粒子群优化的过程中,通过混沌映射生成具有随机性和确定性的序列,用于初始化粒子群
的位置和速度。
这样可以增加粒子群的多样性,有利于跳出局部最
优解,提高全局搜索能力。
同时,混沌系统的非线性特性也有助于
加速收敛过程,提高算法的收敛速度。
CPSO算法的基本原理是模拟鸟群觅食的行为,每个粒子代表一
个潜在的解,粒子根据个体经验和群体协作不断调整自身位置和速度,以寻找最优解。
在混沌粒子群算法中,粒子的位置和速度的更
新公式与传统粒子群算法相似,但是引入了混沌映射生成的随机数,使得粒子在搜索过程中具有更大的多样性和随机性。
CPSO算法在优化问题中具有较好的收敛性和全局搜索能力,尤
其适用于高维、非线性、多峰和多模态的优化问题。
在实际应用中,CPSO算法已经被广泛应用于函数优化、神经网络训练、模式识别、
控制系统等领域,并取得了良好的效果。
关于混沌粒子群算法的更多详细内容,你可以在CSDN等专业技
术平台上查找相关文章和资料,以便深入了解该算法的原理、优缺
点以及应用实例。
希望我的回答能够帮助到你。
用混沌粒子群算法求解函数优化问题【精品文档】(完整版)

5结论...................................................................................................................19
By
Dai Yue
Supervised by
L
MAY, 2012
摘 要
粒子群在搜索过程中容易陷入局部而无法找到全局最优值,且算法后期的粒子速度下降过快而失去搜索能力等缺陷,为了解决此早熟问题,提出了一种基于混沌思想的新型粒子群算法。该算法首先通过混沌方法初始化粒子的初始位置和速度,增强了粒子的搜索能力。算法还通过混沌序列得到的惯性权重取代传统的线性递减的惯性权重,使粒子速度呈现多样性的特点,从而提高算法的全局搜索能力;对比仿真实验表明,本文所提出的混沌粒子群算法较传统粒子群算法具有更好的搜索性能。
6总结20
6.1论文总结20
6.2感想20
致谢21
参考文献22
英文资料23
英文资料翻译35
1.绪论
1.1引言
粒子群优化算法(PSO)是基于群体智能原理的优化算法,是由美国电气工程师Eberhart和社会心理学家Kennedy于1995年提出的一种进化计算技术[1][2],源于对鸟群觅食过程中的迁徙和聚集的模拟。尽管每个个体的行为准则很简单,但组合的整个群体行为非常复杂。该算法基于群体迭代,在解空间中追随最优粒子进行搜索,其优势在于容易实现,同时又具有深刻智能背景。虽然PSO算法起步较晚,但其优良的性能受到不少学者的重视。Shi等提出了惯性因子w线性递减的改进算法[3],使算法在搜索初期具有较大搜索能力,而在后期又能够得到较精确的结果,此改进方案大大提高了基本PSO算法的性能。Van den Bergh通过使粒子群中最佳粒子始终处于运动状态,得到保证收敛到具备最优的改进算法,但其性能不佳[4]。Mendes等研究粒子群的拓扑结构,分析粒子间的信息流,提出了一系列的拓扑结构[5]。Zhang将选择算子引入到PSO中,选择每次迭代后较好的例子并复制到下一代,以保证每次迭代的粒子群都具有较好的性能[6]。PSO算法的优势在于收敛速度快,易实现并且仅有少量参数需要调整,因而一经提出就成为智能优化与进化计算领域的一个新的研究热点,现已取得一些研究成果,并在一些领域得到应用,例如已被广泛应用于目标函数优化、神经网络训练、模糊控制系统等许多领域。但是,该算法仍然存在着一些需要完善的地方,本文将混沌的思想引入到PSO算法以提高其局搜索能力,并通过控制粒子平均速度保证算法的搜索趋势。混沌是被提出用于分析对初始设置非常敏感的动态系统的一种理论工具。它是由Lorenz在1972年提出的。这种描述确定系统不确定性的理论有非常良好的非线性性质,如对初始值敏感和对可行域的遍历等。这些性质有利于分析和应用于具有多极值的复杂系统。对比仿真实验表明,本文所提改进的混沌粒子群算法较传统粒子群算法具有更好的搜索性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混沌粒子群优化算法¨计算机科学2004V01.31N-o.8高鹰h2谢胜利1(华南理工大学电子与信息学院广州510641)1(广州大学信息机电学院计算机科学与技术系广州510405)2摘要粒子群优化算法是一种新的随机全局优化进化算法。
本文把混沌手优思想引入到粒子群优化算法中,这种方法利用混沌运动的随机性、遍历性和规律性等特性首先对当前粒子群体中的最优粒子进行混池寻优,然后把混沌寻优的结果随机替换粒子群体中的一个粒子。
通过这种处理使得粒子群体的进化速度加快t从而改善了粒子群优化算法摆脱局部极值点的能力,提高了算法的收敛速度和精度。
仿真结果表明混沌粒子群优化算法的收敛性能明显优于粒子群优化算法。
关键词粒子群优化算法。
混沌手优,优化’ChaosParticle SwarmOptimizationAlgorithmGAOYin91”XIESheng—Lil(Collegeof Electronic&InformationEngineeringtSouthChina University ofTechnology,Guangzhou510641)1(Dept.of ComputerScience andTechnology.GuangzhouUniversity·Guangzhou510405)2Abstract Particle swarmoptimizationis anewstochasticglobaloptimization evolutionaryalgorithm.Inthis paper,the chaotic searchis embeddedintooriginalparticleswarmoptimizers.Basedon theergodicity,stochastic propertyandregularityofchaos,fl newsuperiorindividualisreproducedbychaoticsearchingonthecurrentglobalbest individ—ual。
andastochastic selectedindividualfrom the current“population”is replaced bythe newsuperiorindividual.Theparticleswarmoptimizationembedded chaotic searchquicIcensthe evolutionprocess,and improvesthe abilities ofseekingtheglobalexcellent result and convergencespeedandaccuracy.The experimentresults demonstrate thatthe proposedalgorithmsaresuperiortooriginalparticleswarmoptimization algorithms.KeywordsParticleswarmoptimization,Chaotic search,0ptimization 1 引言Kennedy和EberhartE“钉于1995年提出的粒子群优化算法是一种基于群智能的随机优化进化算法。
同遗传算法类似,是一种基予群体的具有全局寻优能力的优化工具。
但它没有遗传算法中用的交叉以及变异等复杂的遗传操作,其优势在于简单、易于实现同时又有深刻的智能背景,既适合科学研究。
又特别适合工程应用。
自从粒子群优化算法提出以来,一直受到计算智能等领域的研究人员的广泛关注,在短短的几年时间里取得了丰硕的研究成果[2““。
然而,Kennedy等人提出的粒子群优化算法亦有其不足:易陷入局部极值点,进化后期收敛速度慢,精度较差等。
为了克服粒子群优化算法的这些不足,研究人员提出了许多改进的粒子群优化算法,如:1998年ShiY提出的带惯性因子的粒子群优化算法[3],随后于2001年给出的模糊自适应粒子群优化算法“1;为控制粒子的飞行速度,ClercM于1999年提出的带约束因子的粒子群优化算法[53;借鉴遗传算法的思想,AngelineP.(1998)提出了杂交粒子群优化算法口],之后,LovbjergM(2001)给出了具有繁殖和子群的粒子群优化算法[7],2003年Natsuki又给出的具有高斯变异的粒子群优化算法[83;为使粒子群优化算法更易跳出局部极值点,Van(2001)给出了协同粒子群优化算法‘“”];文[11,123(1997,2000)对粒子群优化算法进行了扩展而提出了离散粒子群优化算法等。
这些算法从不同方面对粒子群优化算法进行了改进,不同程度地提高了算法的收敛速度和精度,但效果并不是非常理想。
混沌(Chaos)是自然界中一种常见的非线性现象。
混沌变量看似杂乱的变化过程其实含有内在的规律性,利用混沌变量的随机性、遍历性及规律性可以进行优化搜索[15,16]。
本文将混沌优化思想引入到粒子群优化算法中,给出了混沌粒子群优化算法。
其基本思想是首先对粒子群体中的最优粒子进行混沌寻优,然后把混沌寻优的结果随机替换粒子群体中的一个粒子。
这种处理改善了粒子群优化算法摆脱局部极值点的能力,提高了算法的收敛速度和精度。
仿真结果表明混沌粒子群优化算法的收敛性能明显优于粒子群优化算法。
2混沌粒子群优化算法一般将由确定性方程得到的具有随机性的运动状态称为混沌,呈现混沌状态的变量称为混沌变量。
如下的Logistic方程D53是一个典型的混沌系统:2计l=pz。
(1一z.)n一0,1,2,…(1)*)国家自然科学基金(602"/4006)、广东省优秀人才基金(2000—6—15)、华南理工大学自然科学基金资助项目.离鹰博士后,尉教授,主要研究领域:盲信号处理、人工神经网络、小波分析和智能信息处理等.谢胜利教授,博士生导师,主要研究领域:智能信息处理、盲信号处理、非线性系统学习控制等.·13·万方数据式中卢为控制参量,方程(1)可以看作是一个动力学系统。
p值确定后,由任意初值z。
∈[o,1].可迭代出一个确定的时间序列z。
,砘椭,…。
一个混沌变量在一定范围内有如下特点:随机性,即它的表现同随机变量一样杂乱;遍历性,即它可以不重复地历经空间内的所有状态;规律性,该变量是由确定的迭代方程导出的。
混沌优化方法是一种新颖的优化方法,它利用混沌系统特有的遍历性来实现全局最优,而且它不要求目标函数具有连续性和可微性的性质。
粒子群优化算法最初是Kennedy和Eberhart[1’21从模拟社会行为而发展起来的具有全局寻优能力的优化工具。
它通过迭代搜寻最优值,系统初始化为一组随机解,而粒子(潜在的解)在解空间追随最优的粒子进行搜索。
假设在一个n维的目标搜索空间中,有Ⅳ个粒子组成一个群体,其中第i个粒子表示一个n维的向量麓一(巍l,轧2,…,嚣..),i一1,2,…,N,分基乩,在[口,,幻]范围内取制值,即n,≤札,≤幻,i一1,2,…,Ⅳ,j一1,2,…,以,每个粒子的位置就是一个潜在的解。
将Xi带入一个目标函数就可以计算出其适应值.根据适应值的大小衡量Xi的优劣。
第i个粒子的“飞行”速度也是一个n维的向量,记为∞=(研.1'研.2’…,口。
),i一1,2,…,Ⅳ。
记第i个粒子迄今为止搜索到的最优位置为A一(丸t,pm,…,p。
),i一1,2,…,Ⅳ,整个粒子群迄今为止搜索到的最优位置为m一(A。
P川,…,P。
),粒子群优化算法采用下列公式对粒子操作:埘一q+clrl(肼~∞)+c2r2(办一麓)(2)ao一∞+砌(3)其中,i=1,2.…,N;学习因子c,和C。
是非负常数m和r。
是介于[o,1]之间的随机数。
迭代中止条件根据具体问题一般选为最大迭代次数或(和)粒子群迄今为止搜索到的最优位置满足预定最小适应阈值。
粒子群优化算法虽然简单,但其有易陷入局部极值点,进化后期收敛速度慢,精度较差等的缺点。
如能采取某种优化手段使每一代群体的质量进一步提高,则无疑会有助于后面的搜索过程。
为此,我们把混沌优化思想引入到粒子群优化算法中,提出了混沌粒子群优化算法。
主要措施是利用混沌运动的遍历性以当前整个粒子群迄今为止搜索到的最优位置为基础产生混沌序列,把产生的混沌序列中的最优位置粒子随机替代当前粒子群中的一个粒子的位置。
提出的混沌粒子群优化算法的具体步骤如下:①确定参数:学习因子c。
,c2,和群体规模Ⅳ,进化次数,混沌寻优次数。
②随机产生N个粒子的种群。
③按(2)和(3)式对粒子进行操作。
④对最优位置办一(A—P川,…,A.。
)进行混沌优化。
将P。
(i一1,2,…,九)映射到Logistic方程(1)的定义域[o,^一7,1]淄=笔兰亭,(i=1,2,…,n),然后,用Logistic方程(1)进行迭代产生混沌变量序列2j“(m一1,2,…),再把产生的混沌变量序列zf神(m一1,2,…)通过逆映射声嚣=m+(6J—m)zf神(m一1,2,…)返回到原解空间,得p:搠’=(户料,户躞,…,户册),(m一1,2,…)在原解空间对混沌变量经历的每一个可行解p≯’(m一1,2,…)计算其适应值,保留性能最好的可行解p。
⑤随机从当前群体中选出的一个粒子用p。
取代。
@若达到最大代数或得到满意解,则优化过程结束,否·14·则返回步骤③。
5算法仿真比较下面以求一个基准测试函数的最小值为例,通过计算机仿真来评价比较混沌粒子群优化算法和粒子群优化算法的性能,并和带惯性因子的粒子群优化算法(IWPSO)、杂交粒子群优化算法(CrossoverPSO,CRPSO)和带高斯变异的粒子群优化算法(MPSO)进行比较,基准测试函数如下:f(x,y)=z2--0.4cos(3,rx)+2y2—0.6cos(4,ry)一1其中一10≤z,y≤10,在[一10,103区间肉有1个全局最小值点(o,o),全局最小值为0。
算法的初始化参数如下:粒子群规模20,学习因子ct一1,c2—1。
带惯性因子的粒子群优化算法中的惯性因子W--=.0.9,杂交粒子群优化算法中的交叉概率只一0.5,带高斯变异的粒子群优化算法中的变异概率P。
一0.05,为评价算法的收敛性能,进化次数设为1000,混沌寻优次数为500,连续运行50次所得函数全局最小值点的平均值和全局最小值的平均值作为算法的衡量指标。
为便于图示说明,下面的仿真图中横轴表示进化次数,纵轴表示最优适应度值的对数(即每次进化所得全局最小值的对数)。
图1是函数,最优适应度值的对数(即每次进化所得全局最小值的对数)随进化次数变化的曲线图(50次独立运行的平均),图中,上面一条曲线对应于粒子群优化算法,而下面一条曲线对应混沌粒子群优化算法。