高三数学二轮复习 第1部分 技法强化训练(4) 转化与化归思想 理

合集下载

转化与化归的思想

转化与化归的思想

转化与化归的思想「思想方法解读」 转化与化归思想是指在研究解决数学问题时,采用某种手段将问题通过转化,使问题得以解决的一种思维策略,其核心是把复杂的问题化归为简单的问题,将较难的问题化归为较容易求解的问题,将未能解决的问题化归为已经解决的问题.常见的转化与化归思想应用具体表现在:将抽象函数问题转化为具体函数问题,立体几何和解析几何中一般性点或图形问题转化为特殊点或特殊图形问题,以及“至少”或“是否存在”等正向思维受阻问题转化为逆向思维问题,空间与平面的转化,相等问题与不等问题的转化等.热点题型探究热点1 特殊与一般的转化例1 (1)过抛物线y =ax 2(a >0)的焦点F ,作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长度分别为p ,q ,则1p +1q 等于( )A .2aB .12a C .4a D .4a答案 C解析 抛物线y =ax 2(a >0)的标准方程为x 2=1a y (a >0).焦点F ⎝ ⎛⎭⎪⎫0,14a ,取过焦点F 的直线垂直于y 轴,则|PF |=|QF |=12a ,所以1p +1q =4a .(2)在平行四边形ABCD 中,|AB →|=12,|AD →|=8.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM→=( ) A .20 B .15 C .36 D .6答案 C解析 解法一:由BM→=3MC →,DN →=2NC →知,点M 是BC 的一个四等分点,且BM =34BC ,点N 是DC 的一个三等分点,且DN =23DC ,所以AM→=AB →+34AD →,AN →=AD →+DN →=AD →+23AB →,所以NM →=AM →-AN →=AB →+34AD →-⎝ ⎛⎭⎪⎫AD →+23AB →=13AB →-14AD →,所以AM →·NM→=⎝ ⎛⎭⎪⎫AB →+34AD →·⎝ ⎛⎭⎪⎫13AB →-14AD →=13⎝ ⎛⎭⎪⎫AB →+34AD →·⎝ ⎛⎭⎪⎫AB →-34AD →=13⎝ ⎛⎭⎪⎫AB →2-916AD →2=13⎝ ⎛⎭⎪⎫144-916×64=36,故选C.解法二:不妨设∠DAB 为直角,以AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系.则M (12,6),N (8,8),所以AM →=(12,6),NM →=(4,-2),所以AM →·NM→=12×4+6×(-2)=36,故选C.一般问题特殊化,使问题处理变的直接、简单;特殊问题一般化,可以把握问题的一般规律,使我们达到成批处理问题的效果.对于客观题,当题设条件提供的信息在普通条件下都成立或暗示答案是一个定值时,可以把题中变化的量用特殊值代替,可以快捷地得到答案.1.(2019·甘青宁高三3月联考)若函数f (x )=1+x 3,则f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12=( )A .2B .4C .-2D .-4答案 A解析 ∵f (x )=1+x 3,∴f (-x )+f (x )=2,∵lg 12=-lg 2,∴f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12=2,故选A.2.(2019·济南市高三3月模拟)已知函数f (x )=⎩⎪⎨⎪⎧13x 3-12x 2,x <0,e x ,x ≥0,则f (3-x 2)>f (2x )的解集为( )A .(-∞,-3)∪(1,+∞)B .(-3,1)C .(-∞,-1)∪(3,+∞)D .(-1,3) 答案 B解析 当x <0时,f (x )=13x 3-12x 2,f ′(x )=x 2-x ,∵x <0,∴f ′(x )>0,f (x )单调递增,且x →0时,f (x )→0,∴f (x )<0;当x ≥0时,f (x )=e x 单调递增,且f (x )≥f (0)=1.因此可得f (x )在整个定义域上单调递增,∴f (3-x 2)>f (2x )可转化为3-x 2>2x .解得-3<x <1,故选B.热点2 函数、方程、不等式间的转化例2 (1)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎢⎡⎦⎥⎤12,3,∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是( )A .(-∞,1]B .[1,+∞)C .(-∞,0]D .[0,+∞)答案 C解析 当x ∈⎣⎢⎡⎦⎥⎤12,3时,f (x )≥2x ·4x =4,当且仅当x =2时等号成立,此时f (x )min =4.当x ∈[2,3]时,g (x )min =22+a =4+a .依题意f (x )min ≥g (x )min ,∴a ≤0.选C.(2)(2019·河南十所名校高三第二次联考)已知函数f (x )=ax (x 2-1)+x (a >0),方程f [f (x )]=b 对于任意b ∈[-1,1]都有9个不等实根,则实数a 的取值范围为( )A .(1,+∞)B .(2,+∞)C .(3,+∞)D .(4,+∞)答案 D解析 ∵f (x )=ax (x 2-1)+x (a >0),∴f ′(x )=3ax 2+(1-a ).若a ≤1,则f ′(x )≥0,f (x )单调递增,此时方程f [f (x )]=b 不可能有9个不等实根,故a >1.令f ′(x )=0,得x =±a -13a ,不妨令x 1=-a -13a ,x 2=a -13a .∵当a >1时,a -1<3a ,∴-1<x 1<0,0<x 2<1.f (-x )=a (-x )·[(-x )2-1]+(-x )=-[ax (x 2-1)+x ]=-f (x ),∴f (x )是奇函数,又函数f (x )过定点(1,1),(-1,-1)和(0,0),则作出函数f (x )的大致图象如图所示.令f (x )=t ,方程f (t )=b 对于任意b ∈[-1,1]都有9个不等实根,即方程f (x )=t 1,f (x )=t 2,f (x )=t 3,一共有9个不等实根,∴f (x )在极小值点处的函数值小于-1,即f ⎝⎛⎭⎪⎫a -13a =23(1-a )a -13a <-1,即(a -4)(2a +1)2>0,解得a >4,故实数a 的取值范围为(4,+∞).故选D.函数、方程与不等式相互转化的应用函数、方程与不等式三者之间存在着密不可分的联系,解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式之间的转化可以将问题化繁为简,常常将不等式的恒成立问题转化为函数的最值问题;将证明不等式问题转化为函数的单调性与最值问题,将方程的求解问题转化为函数的零点问题.1.(2019·安徽马鞍山二次质检)已知函数f (x )=x +(2-kx )e x (x >0),若f (x )>0的解集为(a ,b ),且(a ,b )中恰有两个整数,则实数k 的取值范围为( )A.⎝ ⎛⎭⎪⎫-∞,1e 2 B .⎣⎢⎡⎭⎪⎫1e 4+12,1e 3+23C.⎣⎢⎡⎭⎪⎫1e 3+23,1e 2+1 D .⎣⎢⎡⎭⎪⎫1e 2+1,1e +2答案 C解析 f (x )=x +(2-kx )e x >0⇒x >(kx -2)e x ⇒xe x >kx -2,设g (x )=xe x (x >0),h (x )=kx -2,问题就转化为在(a ,b )内,g (x )>h (x ),且(a ,b )中恰有两个整数.先研究函数g (x )的单调性,g ′(x )=1-xe x (x >0),当x >1时,g ′(x )<0,所以函数g (x )在(1,+∞)上单调递减;当0<x <1时,g ′(x )>0,所以函数g (x )在(0,1)上单调递增,所以g (x )max =g (1)=1e .注意到g (0)=0,当x >0时,g (x )>0.h (x )=kx -2,恒过(0,-2),要想在(a ,b )内,g (x )>h (x ),且(a ,b )中恰有两个整数,必须要满足以下两个条件:⎩⎨⎧g (2)>h (2),g (3)≤h (3)⇒⎩⎪⎨⎪⎧k <1e 2+1,k ≥1e 3+23⇒1e 3+23≤k <1e 2+1,故选C.2.已知a =13ln 94,b =45ln 54,c =14ln 4,则( ) A .a <b <c B .b <a <c C .c <a <b D .b <c <a 答案 B解析 a =13ln 94=13ln ⎝ ⎛⎭⎪⎫322=23ln 32=ln 3232,b =45ln 54=ln 5454,c =14ln 4=14×2ln 2=ln 22.故构造函数f (x )=ln x x ,则a =f ⎝ ⎛⎭⎪⎫32,b =f ⎝ ⎛⎭⎪⎫54,c =f (2).因为f ′(x )=1-1·ln x x 2=1-ln xx 2,由f ′(x )=0,解得x =e.故当x ∈(0,e)时,f ′(x )>0,函数f (x )在(0,e]上单调递增;当x ∈(e ,+∞)时,f ′(x )<0,函数f (x )在[e ,+∞)上单调递减.因为54<32<2<e ,所以f ⎝ ⎛⎭⎪⎫54<f ⎝ ⎛⎭⎪⎫32<f (2),即b <a <c ,故选B. 热点3 正难则反的转化例3 (1)(2019·湖南邵阳高三10月大联考)若命题“∃x 0∈R ,x 20+2mx 0+m +2<0”为假命题,则m 的取值范围是( )A .(-∞,-1]∪[2,+∞)B .(-∞,-1)∪(2,+∞)C .[-1,2]D .(-1,2)答案 C解析 若命题“∃x 0∈R ,x 20+2mx 0+m +2<0”为假命题,则命题等价于∀x∈R ,x 2+2mx +m +2≥0恒成立,故只需要Δ=4m 2-4(m +2)≤0⇒-1≤m ≤2.故选C.(2)已知函数f (x )=ax 2-x +ln x 在区间(1,2)上不单调,则实数a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫0,18解析 f ′(x )=2ax -1+1x .(ⅰ)若函数f (x )在区间(1,2)上单调递增,则f ′(x )≥0在(1,2)上恒成立,所以2ax -1+1x ≥0,得a ≥12⎝ ⎛⎭⎪⎫1x -1x 2.①令t =1x ,因为x ∈(1,2),所以t =1x ∈⎝ ⎛⎭⎪⎫12,1.设h (t )=12(t -t 2)=-12⎝ ⎛⎭⎪⎫t -122+18,t ∈⎝ ⎛⎭⎪⎫12,1,显然函数y =h (t )在区间⎝ ⎛⎭⎪⎫12,1上单调递减,所以h (1)<h (t )<h ⎝ ⎛⎭⎪⎫12,即0<h (t )<18.由①可知,a ≥18.(ⅱ)若函数f (x )在区间(1,2)上单调递减,则f ′(x )≤0在(1,2)上恒成立,所以2ax -1+1x ≤0,得a ≤12⎝ ⎛⎭⎪⎫1x -1x 2.②结合(ⅰ)可知,a ≤0.综上,若函数f (x )在区间(1,2)上单调,则实数a 的取值范围为(-∞,0]∪⎣⎢⎡⎭⎪⎫18,+∞.所以若函数f (x )在区间(1,2)上不单调,则实数a 的取值范围为⎝ ⎛⎭⎪⎫0,18.正与反的转化法正难则反,利用补集求得其解,这就是补集思想,一种充分体现对立统一、相互转化的思想方法.一般地,题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单,因此,间接法多用于含有“至多”“至少”情形的问题中.1.若抛物线y =x 2上的所有弦都不能被直线y =k (x -3)垂直平分,则k 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,12 B .⎝ ⎛⎭⎪⎫-∞,12C.⎝ ⎛⎭⎪⎫-12,+∞ D .⎣⎢⎡⎭⎪⎫-12,+∞答案 D解析 当k =0时,显然符合题意.当k ≠0时,设抛物线y =x 2上两点A (x 1,x 21),B (x 2,x 22)关于直线y =k (x -3)对称,AB 的中点为P (x 0,y 0),则x 0=x 1+x 22,y 0=x 21+x 222.由题设知x 21-x 22x 1-x 2=-1k ,所以x 1+x 22=-12k .又AB 的中点P (x 0,y 0)在直线y =k (x -3)上,所以x 21+x 222=k ⎝ ⎛⎭⎪⎫x 1+x 22-3=-6k +12,所以中点P ⎝ ⎛⎭⎪⎫-12k,-6k +12.由于点P 在y >x 2的区域内,则-6k +12>⎝ ⎛⎭⎪⎫-12k 2,整理得(2k +1)(6k 2-2k +1)<0,解得k <-12.因此当k <-12时,抛物线y =x 2上存在两点关于直线y =k (x -3)对称,于是当k ≥-12时,抛物线y =x 2上不存在两点关于直线y =k (x -3)对称.所以实数k 的取值范围为⎣⎢⎡⎭⎪⎫-12,+∞.故选D.2.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,则实数p 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-3,32解析 若在区间[-1,1]内不存在c 满足f (c )>0,因为Δ=36p 2≥0恒成立, 则⎩⎨⎧f (-1)≤0,f (1)≤0,解得⎩⎪⎨⎪⎧p ≤-12或p ≥1,p ≤-3或p ≥32.所以p ≤-3或p ≥32,取补集得-3<p <32, 即满足题意的实数p 的取值范围是⎝ ⎛⎭⎪⎫-3,32.热点4 形体位置关系的转化例4 (1)(2019·延安市高考模拟)正三角形ABC 的边长为2,将它沿高AD 折叠,使点B 与点C 间的距离为3,则四面体ABCD 外接球的表面积为( )A .6πB .7πC .8πD .9π答案 B解析 根据题意可知四面体ABCD 的三条侧棱BD ⊥AD ,DC ⊥DA ,底面△BDC 是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,在三棱柱底面△BDC 中,BD =CD =1,BC =3,∴∠BDC =120°,∴△BDC 的外接圆的半径为12×3sin120°=1,由题意可得,球心到底面的距离为12AD =32,∴球的半径为r =34+1=72.故外接球的表面积为4πr 2=7π,故选B.(2)(2019·天津市滨海新区高三摸底考试)如图所示,已知多面体ABCDEFG中,AB ,AC ,AD 两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为________.答案 4解析 解法一:(分割法)因为几何体有两对相对面互相平行,如图所示,过点C 作CH ⊥DG 于H ,连接EH ,即把多面体分割成一个直三棱柱DEH -ABC 和一个斜三棱柱BEF -CHG .由题意,知V 三棱柱DEH -ABC =S △DEH ·AD =⎝ ⎛⎭⎪⎫12×2×1×2=2,V三棱柱BEF -CHG =S △BEF ·DE =⎝ ⎛⎭⎪⎫12×2×1×2=2.故所求几何体的体积为V 多面体ABCDEFG =2+2=4.解法二:(补形法)因为几何体有两对相对面互相平行,如图所示,将多面体补成棱长为2的正方体,显然所求多面体的体积即该正方体体积的一半.又正方体的体积V 正方体ABHI -DEKG =23=8,故所求几何体的体积为V 多面体ABCDEFG =12×8=4.形体位置关系的转化是通过切割、补形、等体积转化等方式转化为便于观察、计算的常用几何体,由于新的几何体是转化而来的,一般需要对新几何体的位置关系、数据情况进行必要分析,准确理解新几何体的特征.1. (2019·东北三省三校高三第二次模拟)如图,直三棱柱ABC-A1B1C1中,点D是棱B1C1的中点,AB=AC=2,BC=BB1=2.(1)求证:AC1∥平面A1BD;(2)求点D到平面ABC1的距离.解(1)证明:连接AB1,交A1B于点O,则O为AB1的中点,连接OD,又D是B1C1的中点,∴OD∥AC1,∵OD⊂平面A1BD,AC1⊄平面A1BD,∴AC1∥平面A1BD.(2)由已知,AB=AC,取BC的中点H,则BC⊥AH,∵BB1⊥平面ABC,AH ⊂平面ABC,∴BB1⊥AH,∵BC∩BB1=B,∴AH⊥平面BCC1B1.又AB=AC=2,BC=2,∴AH=1,∵BB1⊥C1D,∴S △BC 1D =12C 1D ·BB 1=12×1×2=1,∴V D -ABC 1=V A -BC 1D =13S △BC 1D ·AH =13×1×1=13. ∵AC 1=2+4=6,BC 1=4+4=22,∴AC 21+AB 2=BC 21,∴△ABC 1是直角三角形,∴S △ABC 1=12×2×6=3,设点D 到平面ABC 1的距离为h ,则13×3×h =13,得h =33,即点D 到平面ABC 1的距离为33.2.(2019·山东师范大学附属中学高三上学期二模)已知等腰梯形ABCE (图1)中,AB ∥EC ,AB =BC =12EC =4,∠ABC =120°,D 是EC 的中点,将△ADE 沿AD 折起,构成四棱锥P -ABCD (图2).(1)求证:AD ⊥PB ;(2)当平面P AD ⊥平面ABCD 时,求三棱锥C -P AB 的体积. 解 (1)证明:取AD 的中点K ,连接PK ,BK ,BD ,∵P A =PD ,K 为AD 的中点,∴PK ⊥AD ,又AD =AB ,∠DAB =60°,∴△ADB 为等边三角形,则AB =BD ,则BK ⊥AD ,又PK ∩BK =K ,∴AD ⊥平面PBK ,又PB ⊂平面PBK ,则AD ⊥PB .(2)由平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PK ⊂平面P AD ,PK ⊥AD ,得PK ⊥平面ABCD ,由已知AB =BC =4,∠ABC =120°,得S △ABC =43,又PK=23,∴V C-P AB =V P-ABC=13×43×23=8.。

2024年中考数学二轮复习模块专练—化归思想(含答案)

2024年中考数学二轮复习模块专练—化归思想(含答案)

2024年中考数学二轮复习模块专练—化归思想(含答案)在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题.三角函数,几何变换,因式分解,乃至古代数学的尺规作图等数学理论无不渗透着转化的思想.常见的转化方式有:一般特殊转化,等价转化,复杂简单转化,数形转化,构造转化,联想转化,类比转化等.转化思想亦可在狭义上称为化归思想.化归思想就是将待解决的或者难以解决的问题A 经过某种转化手段,转化为有固定解决模式的或者容易解决的问题B ,通过解决问题B 来解决问题A 的方法.考点解读:有理数减法转化为有理数的加减,有理数的除法转化为有理数的乘法;多项式乘以多项式转化为单项式乘以单项式,异分母的分式相加减转化为同分母的分式相加减;数式的化归,递进式变化,构建起数式知识与方法的脉络.【例1】(2023·广东江门·统考一模)1.在《九章算术》“割圆术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种由有限到无限的转化思想.比如在求234111112222+++++⋅⋅⋅的和中,“…”代表按此规律无限个数相加不断求和.我们可设234111112222x =+++++⋅⋅⋅.则有234111*********x ⎛⎫=++++++⋅⋅⋅ ⎪⎝⎭,即112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地,请你计算:2468111113333+++++⋅⋅⋅=.(直接填计算结果即可)【变1】考点解读:从一般的三角形到等腰三角形、等边三角形,从平行四边形到矩形、菱形,试卷第2页,共14页A .BEA ∠B .DEB ∠C .ECA ∠D .ADO∠【变1】(2023·浙江·统考中考真题)4.小贺在复习浙教版教材九上第81页第5题后,进行变式、探究与思考:如图1,O 的直径CD 垂直弦AB 于点E ,且8CE =,2DE =.(1)复习回顾:求AB 的长.(2)探究拓展:如图2,连接AC ,点G 是 BC上一动点,连接AG ,延长CG 交AB 的延长线于点F .①当点G 是 BC的中点时,求证:GAF F ∠=∠;②设CG x =,CF y =,请写出y 关于x 的函数关系式,并说明理由;③如图3,连接DF BG ,,当CDF 为等腰三角形时,请计算BG 的长.考点解读:三元一次方程转化为二元一次方程,分式方程转化为整式方程,一元二次方程转化为一元一次方程.方程化归,构成了方程知识和方法体系.【例1】(2019·浙江台州·统考中考真题)考点解读:由正比例函数图像的平移来研究一次函数图像及性质,试卷第4页,共14页(1)求点C,D的坐标;(2)当13a=时,如图1,该抛物线与x轴交于A,B直线AD上方抛物线上一点,将直线PD沿直线AD 2试卷第6页,共14页三、解答题(2023·山西忻州·校联考模拟预测)16.下面是小彬同学解二元一次方程组的过程,请认真阅读并完成相应的任务.用上面方法所作出的正方形,有一个顶点恰好是直角三角形的直角顶点.△的内接正方形的一边恰好在斜边AB上,我就可用如下方法,如图2,如果Rt ABC⊥,垂足为D;第一步:过直角顶点C作CD AB第二步,延长AB到M,使得BM AD=,连接CM;试卷第8页,共14页试卷第10页,共14页试卷第12页,共14页(1)求EPF ∠的度数;(2)设PE x =,PF y =,随着点P 的运动,32x y +的值是否会发生变化?若变化,请求出它的变化范围;若不变,请求出它的值;(3)求EF 的取值范围(可直接写出最后结果).试卷第14页,共14页参考答案:答案第2页,共31页∵O 的直径CD 垂直弦∴10CD CE DE =+=,∴152OA OD CD ===在Rt OAE △中,AE =∵点G 是 BC的中点,∴»»CGBG =,∴GAF D ∠=∠,答案第4页,共31页∵O 的直径CD 垂直弦AB 于点∴ AC BC=,∴CAF CGA ∠=∠,在Rt CEF △中,2EF CF CE =-在Rt DEF △中,2EF DF DE =-在Rt CEF △中,2CF CE EF =+∴464BF EF BE =-=-,同理FGB FAC ∽△△,答案第6页,共31页次方程转化为二元一次方程组是解题关键.7.D【分析】利用“倍值点”的定义得到方程()210t x tx s +++=,则方程的0∆>,可得2440t ts s -->,利用对于任意的实数s 总成立,可得不等式的判别式小于0,解不等式可得出s 的取值范围.【详解】解:由“倍值点”的定义可得:()()2212x t x t x s =++++,整理得,()210t x tx s +++=∵关于x 的二次函数()()212y t x t x s =++++(,s t 为常数,1t ≠-)总有两个不同的倍值点,∴()22=41440,t t s t ts s ∆-+=-->∵对于任意实数s 总成立,∴()()24440,s s --⨯-<整理得,216160,s s +<∴20,s s +<∴()10s s +<,∴010s s <⎧⎨+>⎩,或010s s >⎧⎨+<⎩,当010s s <⎧⎨+>⎩时,解得10s -<<,当010s s >⎧⎨+<⎩时,此不等式组无解,∴10s -<<,故选:D .【点睛】本题主要考查了二次函数图象上点的坐标特征,一元二次方程根的判别式以及二次函数与不等式的关系,理解新定义并能熟练运用是解答本题的关键.答案第8页,共31页答案第10页,共31页(3)解:①当1a =时,抛物线解析式为∴4EH EF FG ===,∴()16H ,,()56G ,,②如图3-1所示,当抛物线与∵当正方形EFGH 的边与该抛物线有且仅有两个交点,∴点T 的纵坐标为2+151 4.5a -++=如图3-2所示,当抛物线与∵当正方形EFGH的边与该抛物线有且仅有两个交点,∴15 2.5a-=,解得0.4a=(舍去,因为此时点如图3-3所示,当抛物线与∵当正方形EFGH的边与该抛物线有且仅有两个交点,∴21152 a aa a⎛⎫-⋅+⋅+⎪⎝⎭17 3.5aa=.综上所述,0.5【点睛】本题主要考查了二次函数综合,勾股定理,轴对称的性质,正方形的性质等等,利用分类讨论和数形结合的思想求解是解题的关键.9.C答案第12页,共31页答案第14页,共31页抛物线223y x x =+-交于C 、D 两点,∵0m n >>,关于x 的方程2230x x m +--=的解为()1212,x x x x <,关于x 的方程2230x x n +--=的解为3434,()x x x x <,∴1234,,,x x x x 分别是A 、B 、C 、D 的横坐标,∴1342x x x x <<<,故选B .【点睛】本题主要考查了抛物线与一元二次方程的关系,正确把一元二次方程的解转换成直线与抛物线交点的横坐标是解题的关键.13.12x y =⎧⎨=⎩【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【详解】解:∵一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),∴联立y =3x -1与y =kx 的方程组31y x y kx =-⎧⎨=⎩的解为:12x y =⎧⎨=⎩,即310x y kx y -=⎧⎨-=⎩的解为:12x y =⎧⎨=⎩,答案第16页,共31页答案第18页,共31页证明:FD AB ⊥ ,FE AC ⊥,90AEG GDF ∴∠=∠=︒,AGE FGD ∠=∠ ,180BAC ∠=BAC DFE ∴∠=∠;(2)解:BC CD ⊥ ,90BCD ∴∠=︒,在Rt BCD 中,tan BC CD BDC =∠在Rt BCE 中,BC CE =答案第20页,共31页解得:9m BC =,9 1.610.6m AB BC AC ∴=+=+=,答:大树的高度AB 为10.6m .【点睛】本题考查了三角形的内角和定理,解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.19.(1)当Δ0=时,方程有两个相等的实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像有一个交点;当Δ0<时,方程没有实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像没有交点;(2)16t =;(3)y x =-,答案不唯一,合理即可.【分析】(1)根据一元二次方程根的判别式说明根的情况和函数图像交点的情况即可;(2)联立方程组,化简成一元二次方程的一般形式,用根的判别式Δ0=,代入求解;(3)函数图像有两个交点,保证根的判别式0∆>即可.【详解】(1)解:根据一元二次方程根的判别式可得:当Δ0=时,方程有两个相等的实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像有一个交点;当Δ0<时,方程没有实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像没有交点;(2)联立函数表达式:253y x x y x t ⎧=-+⎨=-+⎩,可得:253x x x t -+=-+,答案第22页,共31页由旋转的性质,可证明△BPP ′是等边三角形,再证明C 、P 、A ′、P ′四点共线,最后由勾股定理解答.【详解】(1)解:∵ACP ABP ' ≌,∴AP ′=AP =3、CP ′=BP =4,∠AP ′C =∠APB ,由题意知旋转角∠PAP ′=60°,∴△APP ′为等边三角形,PP ′=AP =3,∠AP ′P =60°,由旋转的性质可得:AP ′=AP =PP ′=3,CP ′=4,PC=5,∵32+42=52∴△PP ′C 为直角三角形,且∠PP ′C =90°,∴∠APB =∠AP ′C =∠AP ′P +∠PP ′C =60°+90°=150°;故答案为:150°;(2)证明:∵点P 为△ABC 的费马点,∴120APB ∠=︒,∴60APD ∠=︒,又∵AD AP =,∴APD 为等边三角形∴AP PD AD ==,60PAD ADP ∠=∠=︒,∴120ADE ∠=︒,∴ADE APC ∠=∠,在△APC 和△ADE 中,PAC DAE AP AD APC ADE ∠=∠⎧⎪=⎨⎪∠=∠⎩【点睛】本题考查全等三角形的判定与性质、等边三角形的判定与性质、勾股定理、旋转的性质、费马点等知识,是重要考点,有难度,掌握相关知识,正确做出辅助线是解题关键.21.(1)120︒(2)不会;9(3)9219 7EF≤<【分析】(1)延长EP交BC于点G,根据平行线的性质得出答案第24页,共31页,∵PE CD∠=∠,∴PGB DCB∥,∵PF AB∠=∠,∴PFC ABC答案第26页,共31页则90EHP ∠=︒,∵120EPF ∠=︒,∴18012060EPH ∠=︒-︒=︒,∴906030PEH ∠=︒-︒=︒,22.(1)60︒;(2)①丙;②10【分析】(1)连接BC ',则A BC ''△为等边三角形,即可求得既不相交也不平行的两条直线BA '与AC 所成角的大小;(2)①根据正方体侧面展开图判断即可;②根据对称关系作辅助线即可求得PM PN +的最小值.【详解】解:(1)连接BC ',∵//AC A C '',BA '与A C ''相交与点A ',即既不相交也不平行的两条直线BA '与AC 所成角为BA C ''∠,根据正方体性质可得:A B BC A C ''''==,∴A BC ''△为等边三角形,∴=60BA C ''∠︒,即既不相交也不平行的两条直线BA '与AC 所成角为60︒;(2)①根据正方体展开图可以判断,甲中与原图形中对应点位置不符,乙图形不能拼成正方体,故答案为丙;②如图:作M 关于直线AB 的对称点M ',答案第28页,共31页∵90ABC ∠=︒,DQ ∴四边形DBNQ 是矩形,∴90DQN ∠=︒,QN答案第30页,共31页∵A ABN BNQ AQN ∠+∠+∠+∠∴180ABN AQN ∠+∠=︒,∴AQN PBN ∠=∠.。

思想方法 第4讲 转化与化归思想

思想方法 第4讲 转化与化归思想

方 法
可以把握问题的一般规律,使我们达到成批处理问题的效果.对于
客观题,当题设条件提供的信息在普通条件下都成立或暗示答案
是一个定值时,可以把题中变化的量用特殊值代替,可以快捷地
得到答案.
方法二 命题的等价转化
将题目已知条件或结论进行转化,使深奥的问题浅显化、繁杂的问 题简单化,让题目得以解决.一般包括数与形的转化、正与反的转化、常 量与变量的转化、图形形体及位置的转化.
假设平行四边形ABCD为矩形,以A为坐标原点,AB,AD所在直线分
别为x轴、y轴建立如图所示的平面直角坐标系,
则A(0,0),M(12,6),N(8,8), ∴A→M=(12,6),N→M=(4,-2), ∴A→M·N→M=12×4+6×(-2)=36.
规 律
一般问题特殊化,使问题处理变得直接、简单;特殊问题一般化,
思想方法
第4讲 转化与化归思想
思想概述 转化与化归思想方法适用于在研究、解决数学问题时,思维受阻或试图寻求 简单方法或从一种情形转化到另一种情形,也就是转化到另一种情形使问题 得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.
化 命题的等价转化 函数、方程、不等式之间的转化
批 此类题目一般都是采用方法一,赋值法求解,比较烦琐,所以可

以直接取满足条件的函数求解.
(2)在平行四边形 ABCD 中,|A→B|=12,|A→D|=8,若点 M,N 满足B→M=3M→C, D→N=2N→C,则A→M·N→M等于
A.20
B.15
√C.36
D.6
思路分析 假设平行四边形ABCD为矩形,建系→写出坐标→数量积运算
(2)(2023·天津模拟)某同学参加综合实践活动,设计了一个封闭的包装盒,

高考数学第4讲 转化与化归思想——峰回路转

高考数学第4讲 转化与化归思想——峰回路转
A 由 tan A=43,得1-2tatann22A2=43, 解得 tanA2=12. 所以 tanA2·tanC2=12×1=12.
大二轮复习 数学(文)
应用(二)
正难则反的转化
(2019·银川模拟)若对于任意 t∈[1,2],函数 g(x)=x3+ m2 +2x2-2x 在区间(t,3)上总不为单调函数,则实数 m 的取值范围是 ________.
大二轮复习 数学(文)
4 . (2019·济 南 模 拟 ) 已 知 e 为 自 然 对 数 的 底 数 , 若 对 任 意 的
x∈1e,1,总存在唯一的 y∈[-1,1],使得 ln x-x+1+a=y2ey 成立, 则实数 a 的取值范围是( B )
A.1e,e
B.2e,e
正与反的转化,体现“正难则反”的原则,先从反面求解,再取反 面答案的补集即可.一般地,题目若出现多种成立的情形,则不成立的 情形相对很少,从反面考虑较简单.因此,间接法多用于含有“至 多”“至少”及否定性命题情形的问题中.
大二轮复习 数学(文)
2.由命题“存在 x0∈R,使 e|x0-1|-m≤0”是假命题,得 m 的取
A→M·N→M=6×2+3×(-1)=9.
解法二:常规法 如图所示,由题设知:
大二轮复习 数学(文)
A→M=A→B+B→M=A→B+34A→D, N→M=N→C-M→C=13A→B-14A→D,
大二轮复习 数学(文)
所以A→M·N→M=A→B+34A→D·13A→B-14A→D =13|A→B|2-136|A→D|2+14A→B·A→D-14A→B·A→D =13×36-136×16=9.
(2)在处理多变元的数学问题时,我们可以选取其中的常数(或参 数),将其看作是“主元”,而把其他变元看作是常量,从而达到减少变 元简化运算的目的.

高中数学方法转化与化归思想

高中数学方法转化与化归思想

变式训练 4 设 g(x)=px-qx-2f(x),其中 f(x)=ln x,且 g(e) =qe-pe-2(e 为自然对数的底数).
(1)求 p 与 q 的关系;
(2)若 g(x)在其定义域内为增函数,求 p 的取值范围. 解 (1)由题意 g(x)=px-qx-2ln x, ∴g(e)=pe-qe-2, ∴pe-qe-2=qe-pe-2, ∴(p-q)e+(p-q)1e=0, ∴(p-q)e+1e=0, 而 e+1e≠0,∴p=q.
由aa≤ 2+21≥4 得aa≤ ≥2 3或a≤- 3 , ∴a≤- 3或 3≤a≤2. 即 A∩B=∅时,a 的取值范围为 a≤- 3或 3≤a≤2. 而 A∩B≠∅时,a 的取值范围显然是其补集,从而所求范围 为{a|a>2 或- 3<a< 3}.
三、抽象问题与具体问题的转化
例 3 已知等差数列{an}的公差 d≠0,且 a1、a3、a9 成等比
归纳拓展 本题的求解涉及两类题型和求解的方法:(1)求参 数的范围问题,方法是通过对函数单调性的研究,转化为不等 式的恒成立问题,进而转化为求函数的最值问题求解.(2)研 究函数的零点问题,方法是通过研究函数在某区间有最大(或 最小)值 f(t),而函数又在此区间有零点,则结合图形分析,可 得 f(t)≥0(或 f(t)≤0).
变式训练 1 1e64 ,2e55 ,3e66 (其中 e 为自然常数)的大小关系是 _1e_64_<__2_e5_5 _<__3e_66_.
解析 由于1e64 =e442,2e55 =5e52,3e66 =e662,故可构造函数 f(x) =xe2x,于是 f(4)=1e64 ,f(5)=2e55 ,f(6)=3e66 . 而 f′(x)=exx2′=ex·x2-x4 ex·2x=ex(x2x-4 2x),令 f′(x)>0

2012届高三数学第二轮复习《转化化归思想》专题四

2012届高三数学第二轮复习《转化化归思想》专题四

2012届高三数学第二轮复习【转化化归】专题四一.转化与化归的原则:(1)熟悉化原则;(2)简单化原则;(3)直观化原则;(4)正难则反原则.二.常见的转化方法:直接转化法,换元法,数形结合法,等价转化法,特殊化方法,构造法,坐标法,类比法,参数法,补集法.探究点一、高维与低维的转化【例题1】若不等式243x px x p +>+-对一切04p ≤≤恒成立,试求实数x 的取值围.【例题2】 如图所示三棱锥P ABC -的底面边长为a ,侧棱长为2a ,过A 作与,PB PC分别交于D 、E 的截面,求截面三角形ADE 的周长的最小值.探究点二 、特殊与一般的转化【例题3】 已知∆ABC 的外接圆的圆心为O ,两条边上的高的交点为H ,且满足 ()OH m OA OB OC =++ ,则实数m = .探究点三、抽象问题与具体问题的转化【例题4】已知等差数列{a n }的公差d ≠0,且a 1、a 3、a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10的值是________.1、① 22202x y x y x x y R ?+=+已知,,满足,则的最大值为 ;A .2-+B .2--C .2+D .2-② 设,a b R ∈,2226a b +=,则a b +的最小值是 ;A .-2 2B .-533C .-3D .-72③ 设,x y R ∈且22326x y x +=,则22x y +的取值范围为 ;A .[0,4]B .[2,4]C .[4,)+D .[2,6]2、已知数列{a n }满足p q p q a a a +=+且26a =-,那么a 10= ;3、在D ABC 中.222sin sin sin sin sin BC B C ?-,则A 的取值范围是 ; A .(0,6π] B .[ 6π,π) C .(0,3π] D .[ 3π,π)4、若0sin cos sin cos 4a b p a b a a b b <<<+=+=,,,则 ; A .a b < B .a b > C .1ab < D .2ab >5、已知定义在实数集R 上的函数y =f (x )恒不为零,同时满足: f (x +y )=f (x )·f (y ),且当x >0时,f (x )>1,那么当x <0时,一定有 (填序号).① f (x )<-1;② -1<f (x )<0;③ f (x )<1;④ 0<f (x )<1.6、设实数,x y 满足238xy ≤≤,249x y ≤≤,求34x y 的取值范围.2012届高三数学第二轮复习【转化化归】专题四答案【例题1】解:不等式x 2+px >4x +p -3对一切0≤p ≤4均成立,即(x -1)p +(x 2-4x +3)>0对一切0≤p ≤4均成立,令f(p)=(x -1)p +(x 2-4x +3),则⎩⎪⎨⎪⎧(x 2-4x +3)>0,4(x -1)+(x 2-4x +3)>0,解得x>3或x<-1. 【例题2】解答:311.44a a ADE AD DE EA a a D ++?++=截面周长的最小值为 【例题3】解答:不妨设∆ABC 是以∠A 为直角的直角三角形,则O 为斜边BC 上的中点,H 与A 重合,++==,于是得出m =1.【例题4】特殊数列a n =n1 ACA 2. -30 3. C 4. A 5.6.由已知得211183xy ≤≤,2216()81x y ≤≤,两式相乘得:3224212()27x x y xy y≤=⋅≤ 1③解析:设k =x 2+y 2,再代入消去y ,转化为关于x 的方程有实数解时求参数k 范围的问题。

高中数学思想----转化与化归思想

高中数学思想----转化与化归思想

转化与化归思想[思想方法解读] 转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法.一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.转化与化归思想是实现具有相互关联的两个知识板块进行相互转化的重要依据,如函数与不等式、函数与方程、数与形、式与数、角与边、空间与平面、实际问题与数学问题的互化等,消去法、换元法、数形结合法等都体现了等价转化思想,我们也经常在函数、方程、不等式之间进行等价转化,在复习过程中应注意相近主干知识之间的互化,注重知识的综合性. 转化与化归思想的原则(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律. (4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.体验高考1.(2016·课标全国乙)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( ) A .100 B .99 C .98 D .97 答案 C解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.2.(2016·课标全国丙)已知4213532,4,25,a b c ===则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b答案 A解析 因为4243552,42,a b ===由函数y =2x 在R 上为增函数知b <a ;又因为24213,33324,255a c ====由函数23y x =在(0,+∞)上为增函数知a <c .综上得b <a <c .故选A.3.(2016·四川)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .(1)证明 根据正弦定理,可设a sin A =b sin B =csin C =k (k >0),则a =k sin A ,b =k sin B ,c =k sin C . 代入cos A a +cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin C k sin C,变形可得 sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C ,所以sin A sin B =sin C . (2)解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35,所以sin A =1-cos 2A =45.由(1)知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B .故tan B =sin B cos B=4.高考必会题型题型一 正难则反的转化例1 已知集合A ={x ∈R |x 2-4mx +2m +6=0},B ={x ∈R |x <0},若A ∩B ≠∅,求实数m 的取值范围.解 设全集U ={m |Δ=(-4m )2-4(2m +6)≥0}, 即U ={m |m ≤-1或m ≥32}.若方程x 2-4mx +2m +6=0的两根x 1,x 2均为非负,则⎩⎪⎨⎪⎧m ∈U ,x 1+x 2=4m ≥0,⇒m ≥32,x 1x 2=2m +6≥0所以使A ∩B ≠∅的实数m 的取值范围为{m |m ≤-1}.点评 本题中,A ∩B ≠∅,所以A 是方程x 2-4mx +2m +6=0①的实数解组成的非空集合,并且方程①的根有三种情况:(1)两负根;(2)一负根和一零根;(3)一负根和一正根.分别求解比较麻烦,我们可以从问题的反面考虑,采取“正难则反”的解题策略,即先由Δ≥0,求出全集U ,然后求①的两根均为非负时m 的取值范围,最后利用“补集思想”求解,这就是正难则反这种转化思想的应用,也称为“补集思想”.变式训练1 若对于任意t ∈[1,2],函数g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是__________. 答案 ⎝⎛⎭⎫-373,-5 解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立. 由①得3x 2+(m +4)x -2≥0, 即m +4≥2x -3x 在x ∈(t,3)上恒成立,所以m +4≥2t -3t 恒成立,则m +4≥-1,即m ≥-5;由②得m +4≤2x -3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以使函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5.题型二 函数、方程、不等式之间的转化 例2 已知函数f (x )=eln x ,g (x )=1e f (x )-(x +1).(e =2.718……)(1)求函数g (x )的极大值;(2)求证:1+12+13+…+1n >ln(n +1)(n ∈N *).(1)解 ∵g (x )=1ef (x )-(x +1)=ln x -(x +1),∴g ′(x )=1x -1(x >0).令g ′(x )>0,解得0<x <1; 令g ′(x )<0,解得x >1.∴函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴g (x )极大值=g (1)=-2.(2)证明 由(1)知x =1是函数g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立), 令t =x -1,得t ≥ln(t +1)(t >-1). 取t =1n (n ∈N *)时,则1n >ln ⎝⎛⎭⎫1+1n =ln ⎝⎛⎭⎫n +1n ,∴1>ln 2,12>ln 32,13>ln 43,…,1n >ln ⎝⎛⎭⎫n +1n ,叠加得1+12+13+…+1n >ln(2·32·43·…·n +1n )=ln(n +1).即1+12+13+…+1n >ln(n +1).点评 解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围. 变式训练2 设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1. (1)解 由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x -2,x ∈R . 令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,ln 2)ln 2 (ln 2,+∞)f ′(x ) - 0 + f (x )单调递减 ↘2-2ln 2+2a单调递增 ↗故f (x )的单调递减区间是(-∞,ln 2), 单调递增区间是(ln 2,+∞), f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2-2ln 2+2a .(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R , 于是g ′(x )=e x -2x +2a ,x ∈R . 由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0, 所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞), 都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0. 即e x -x 2+2ax -1>0,故e x >x 2-2ax +1. 题型三 主与次的转化例3 已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________. 答案 ⎝⎛⎭⎫-23,1 解析 由题意,知g (x )=3x 2-ax +3a -5, 令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1. 对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧ φ(1)<0,φ(-1)<0, 即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0, 解得-23<x <1.故当x ∈⎝⎛⎭⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0. 点评 主与次的转化法合情合理的转化是数学问题能否“明朗化”的关键所在,通过变换主元,起到了化繁为简的作用.在不等式中出现两个字母:x 及a ,关键在于该把哪个字母看成变量,哪个看成常数.显然可将a 视作自变量,则上述问题即可转化为在[-1,1]内关于a 的一次函数小于0恒成立的问题.变式训练3 设f (x )是定义在R 上的单调递增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为______________. 答案 (-∞,-1]∪[0,+∞) 解析 ∵f (x )是R 上的增函数, ∴1-ax -x 2≤2-a ,a ∈[-1,1].(*) (*)式可化为(x -1)a +x 2+1≥0对a ∈[-1,1]恒成立. 令g (a )=(x -1)a +x 2+1.则⎩⎪⎨⎪⎧g (-1)=x 2-x +2≥0,g (1)=x 2+x ≥0, 解得x ≥0或x ≤-1,即实数x 的取值范围是(-∞,-1]∪[0,+∞). 题型四 以换元为手段的转化与化归例4 是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间[0,π2]上的最大值是1?若存在,则求出对应的a 的值;若不存在,请说明理由. 解 y =sin 2x +a cos x +58a -32=1-cos 2x +a cos x +58a -32=-(cos x -a 2)2+a 24+58a -12.∵0≤x ≤π2,∴0≤cos x ≤1,令cos x =t ,则y =-(t -a 2)2+a 24+58a -12,0≤t ≤1.当a 2>1,即a >2时,函数y =-(t -a 2)2+a 24+58a -12在t ∈[0,1]上单调递增, ∴t =1时,函数有最大值y max =a +58a -32=1,解得a =2013<2(舍去);当0≤a2≤1,即0≤a ≤2时,则t =a2时函数有最大值,y max =a 24+58a -12=1,解得a =32或a =-4(舍去);当a2<0,即a <0时, 函数y =-(t -a 2)2+a 24+58a -12在t ∈[0,1]上单调递减,∴t =0时,函数有最大值y max =58a -12=1,解得a =125>0(舍去),综上所述,存在实数a =32,使得函数在闭区间[0,π2]上有最大值1.点评 换元有整体代换、特值代换、三角换元等情况.本题是关于三角函数最值的存在性问题,通过换元,设cos x =t ,转化为关于t 的二次函数问题,把三角函数的最值问题转化为二次函数y =-(t -a 2)2+a 24+58a -12,0≤t ≤1的最值问题,然后分类讨论解决问题.变式训练4 若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是____________. 答案 (-∞,-8]解析 设t =3x ,则原命题等价于关于t 的方程t 2+(4+a )t +4=0有正解,分离变量a ,得a +4=-⎝⎛⎭⎫t +4t , ∵t >0,∴-⎝⎛⎭⎫t +4t ≤-4, ∴a ≤-8,即实数a 的取值范围是(-∞,-8].高考题型精练1.若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A .(-∞,518] B .(-∞,3]C .[518,+∞) D .[3,+∞)答案 C解析 f ′(x )=3x 2-2tx +3, 由于f (x )在区间[1,4]上单调递减, 则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32(x +1x )在[1,4]上恒成立,因为y =32(x +1x )在[1,4]上单调递增,所以t ≥32(4+14)=518,故选C.2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是( )A .[23,+∞)B .(23,+∞)C .[4,+∞)D .(4,+∞) 答案 D解析 ∵f (x )=|log 12x |,若m <n ,有f (m )=f (n ),∴log 12m =-log 12n ,∴mn =1,∴0<m <1,n >1,∴m +3n =m +3m 在m ∈(0,1)上单调递减,当m =1时,m +3n =4,∴m +3n >4.3.过抛物线y =ax 2(a >0)的焦点F ,作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长度分别为p ,q ,则1p +1q 等于( )A .2a B.12a C .4a D.4a答案 C解析 抛物线y =ax 2(a >0)的标准方程为x 2=1a y (a >0),焦点F (0,14a ),取过焦点F 的直线垂直于y 轴, 则|PF |=|QF |=12a ,所以1p +1q=4a .4.已知函数f (x )=(e 2x +1+1)(ax +3a -1),若存在x ∈(0,+∞),使得不等式f (x )<1成立,则实数a 的取值范围是( ) A .(0,e +23(e +1))B .(0,2e +1)C .(-∞,e +23(e +1))D .(-∞,1e +1)答案 C解析 因为x ∈(0,+∞),所以2x +1>1, 则e 2x +1+1>e +1,要使f (x )<1,则ax +3a -1<1e +1,可转化为:存在x ∈(0,+∞)使得a <e +2e +1·1x +3成立.设g (x )=e +2e +1·1x +3,则a <g (x )max , 因为x >0,则x +3>3, 从而1x +3<13,所以g (x )<e +23(e +1),即a <e +23(e +1),选C.5.已知f (x )=33x +3,则f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=________.答案 2 016解析 f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x3+3x =3x +33x +3=1, ∴f (0)+f (1)=1,f (-2 015)+f (2 016)=1,∴f (-2 015)+f (-2 014)+…+f (0)+f (1)+…+f (2 016)=2 016.6.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,求实数p 的取值范围是________. 答案 (-3,32)解析 如果在[-1,1]内没有值满足f (c )>0,则⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0⇒⎩⎨⎧p ≤-12或p ≥1,p ≤-3或p ≥32⇒p ≤-3或p ≥32,取补集为-3<p <32,即为满足条件的p 的取值范围.故实数p 的取值范围为(-3,32).7.对任意的|m |≤2,函数f (x )=mx 2-2x +1-m 恒为负,则x 的取值范围是________________. 答案 (7-12,3+12) 解析 对任意的|m |≤2,有mx 2-2x +1-m <0恒成立, 即|m |≤2时,(x 2-1)m -2x +1<0恒成立. 设g (m )=(x 2-1)m -2x +1,则原问题转化为g (m )<0恒成立(m ∈[-2,2]).所以⎩⎪⎨⎪⎧g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧2x 2+2x -3>0,2x 2-2x -1<0, 解得7-12<x <3+12, 即实数x 的取值范围为(7-12,3+12). 8.(2016·天津模拟)已知一个几何体的三视图如图所示,如果点P ,Q 在正视图中所示位置:点P 为所在线段的中点,点Q 为顶点,则在几何体侧面上,从P 点到Q 点的最短路径的长为________.答案 a 1+π2解析 由三视图,知此几何体是一个圆锥和一个圆柱的组合体,分别沿P 点与Q 点所在母线剪开圆柱侧面并展开铺平,如图所示.则PQ =AP 2+AQ 2=a 2+(πa )2=a 1+π2. 所以P ,Q 两点在侧面上的最短路径的长为a 1+π2.9.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围. 解 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去.(2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧ f (-1)>0,f (1)>0, 即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0, 解得x <2或x >4.即x 的取值范围为(-∞,2)∪(4,+∞).10.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m ,n ∈[-1,1],m +n ≠0时,有f (m )+f (n )m +n>0. (1)证明f (x )在[-1,1]上是增函数;(2)解不等式f (x 2-1)+f (3-3x )<0;(3)若f (x )≤t 2-2at +1对∀x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围. 解 (1)任取-1≤x 1<x 2≤1,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1-x 2(x 1-x 2). ∵-1≤x 1<x 2≤1,∴x 1+(-x 2)≠0,由已知f (x 1)+f (-x 2)x 1-x 2>0,x 1-x 2<0, ∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上是增函数.(2)因为f (x )是定义在[-1,1]上的奇函数,且在[-1,1]上是增函数,不等式化为f (x 2-1)<f (3x -3),所以⎩⎪⎨⎪⎧ x 2-1<3x -3,-1≤x 2-1≤1,-1≤3x -3≤1,解得x ∈(1,43]. (3)由(1)知,f (x )在[-1,1]上是增函数,所以f (x )在[-1,1]上的最大值为f (1)=1,要使f (x )≤t 2-2at +1对∀x ∈[-1,1],a ∈[-1,1]恒成立,只要t 2-2at +1≥1⇒t 2-2at ≥0,设g (a )=t 2-2at ,对∀a ∈[-1,1],g (a )≥0恒成立,所以⎩⎪⎨⎪⎧g (-1)=t 2+2t ≥0,g (1)=t 2-2t ≥0 ⇒⎩⎪⎨⎪⎧t ≥0或t ≤-2,t ≥2或t ≤0, 所以t ≥2或t ≤-2或t =0.11.已知函数f (x )=2|x -1|-a ,g (x )=-|2x +m |,a ,m ∈R ,若关于x 的不等式g (x )≥-1的整数解有且仅有一解-2.(1)求整数m 的值;(2)若函数y =f (x )的图象恒在函数y =12g (x )的图象的上方,求实数a 的取值范围. 解 (1)由g (x )≥-1,即-|2x +m |≥-1,|2x +m |≤1,得-m -12≤x ≤-m +12. ∵不等式的整数解为-2,∴-m -12≤-2≤-m +12, 解得3≤m ≤5.又∵不等式仅有一个整数解-2,∴m =4.(2)函数y =f (x )的图象恒在函数y =12g (x )的上方, 故f (x )-12g (x )>0对任意x ∈R 恒成立, ∴a <2|x -1|+|x +2|对任意x ∈R 恒成立.设h (x )=2|x -1|+|x +2|,则h (x )=⎩⎪⎨⎪⎧ -3x ,x ≤-2,4-x ,-2<x ≤1,3x ,x >1,则h(x)在区间(-∞,1)上是减函数,在区间(1,+∞)上是增函数,∴当x=1时,h(x)取得最小值3,故a<3,∴实数a的取值范围是(-∞,3).--。

“转化与化归”思想在高中数学解题教学中的应用

“转化与化归”思想在高中数学解题教学中的应用

解题研究2023年12月上半月㊀㊀㊀转化与化归 思想在高中数学解题教学中的应用◉哈尔滨师范大学教师教育学院㊀李㊀硕㊀㊀转化与化归 思想是高学数学中的一种重要的数学思想,运用非常广泛,尤其是一些特殊的问题,运用 转化与化归 思想解题可以提高效率,同时还可以降低问题解决的难度.因此,在数学课堂引入并应用转化与化归思想,能够让学生在学习数学及解题的过程中,加深对数学概念的理解,同时也能有效锻炼数学思维,提高学习效率,进一步发展数学核心素养.在高中数学的解题过程中,基于 转化与化归 思想的三大原则,主要运用的解题方法包括特殊与一般的转化㊁命题的等价转化,以及函数㊁方程㊁不等式之间的转化等一些常见的转化方法.1特殊与一般的转化将一般问题进行特殊化处理,可使问题的解决变得更为直接和简便,并且还能从特殊情况中寻找问题解决的常规思维;除此之外,对特殊性问题进行概括性研究,实现特殊问题一般化,也能从宏观与全局的角度把握特殊性问题的普遍规律,并能有效地解决特殊性问题.例1㊀ 蒙日圆 涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆.若椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12,则椭圆C 的蒙日圆的方程为(㊀㊀).A.x 2+y 2=9㊀㊀㊀㊀㊀B .x 2+y 2=7C .x 2+y 2=5D.x 2+y 2=4分析:根据题目中的已知条件,在椭圆上,两条相互垂直的切线可以随意选择,但其交点位于与椭圆同心的圆却是唯一的,也即答案是唯一的.由此,可以通过选取一般问题的特殊情形找到一般的解题思路,不妨利用过椭圆的右顶点和上顶点的两条切线进行解题.解:因为椭圆C :x 2a +1+y 2a=1(a >0)的离心率为12,所以1a +1=12,解得a =3.所以椭圆C 的方程为x 24+y 23=1,且椭圆C 的上顶点为A (0,3),右顶点为B (2,0),则椭圆在A ,B 两点的切线方程分别为y =3和x =2,这两条切线的交点坐标为M (2,3).由题意可知,交点M 必在一个与椭圆C 同心的圆上,可得与椭圆C 同心的圆的半径r =22+(3)2=7.所以椭圆C 的蒙日圆方程为x 2+y 2=7.故选:B .以问题的特征为依据,对命题进行转化,将原问题转化为与之相关的㊁容易解决的新问题,这也是解决数学问题常见的转化思路,并且可以通过这种转化逐步培养识别关键信息的能力.2命题的等价转化把题目中已有的条件或者结论进行相应的转化,化难为易,是解决较难问题常用的转化手段.其主要方法包括:数与形的转化㊁正与反的转化㊁常量与变量的转化㊁图形形体及位置的转化等.例2㊀由命题 存在x 0ɪR ,使e |x -1|-m ɤ0是假命题,得m 的取值范围是(-ɕ,a ),则实数a 的值是.分析:利用转化思想可以将命题 存在x 0ɪR ,使e |x -1|-m ɤ0 是假命题转化为 对任意x ɪR ,e|x -1|-m >0是真命题,由此得出m <e |x -1|恒成立,进而通过m 的取值范围来求a 的值.解:由命题 存在x 0ɪR ,使e |x -1|-m ɤ0是假命题,可知 对任意x ɪR ,e |x -1|-m >0是真命题,由此可得m 的取值范围是(-ɕ,1),而(-ɕ,a )与(-ɕ,1)为同一区间,故a =1.例3㊀若对于任意t ɪ[1,2],函数g (x )=x 3+(m 2+2)x 2-2x 在区间(t ,3)上总不为单调函数,则实数m 的取值范围是.分析:根据函数g (x )=x 3+(m 2+2)x 2-2x 在区间(t ,3)上总不为单调函数,可以利用正难则反的转化思想先找出g (x )在(t ,3)上单调的条件,再利用补集思想求出m 的取值范围.852023年12月上半月㊀解题研究㊀㊀㊀㊀解:求得g ᶄ(x )=3x 2+(m +4)x -2.若g (x )在(t ,3)上单调递增,则g ᶄ(x )ȡ0,即3x 2+(m +4)x -2ȡ0,亦即m +4ȡ2x-3x 在x ɪ(t ,3)上恒成立.故m +4ȡ2t-3t 在t ɪ[1,2]上恒成立,则m +4ȡ-1,即m ȡ-5.若g (x )在(t ,3)上单调递减,则g ᶄ(x )ɤ0,即m +4ɤ2x-3x 在x ɪ(t ,3)上恒成立,所以m +4ɤ23-9,即m ɤ-373.综上,符合题意的m 的取值范围为-373<m <-5.根据命题的等价性对题目条件进行明晰化处理是解题常见的思路;对复杂问题采用正难则反的转化思想,更有利于问题得到快速解答.3函数㊁方程㊁不等式之间的转化函数与方程㊁不等式之间有着千丝万缕的关联,通过结合函数y =f (x )图象可以确定方程f (x )=0,不等式f (x )>0和f (x )<0的解集.例4㊀若2x -2y<3-x -3-y ,则(㊀㊀).A.l n (y -x +1)>0B .l n (y -x +1)<0C .l n |x -y |>0D.l n |x -y |<0分析:由题意,可将2x -2y<3-x -3-y 转化为2x -3-x <2y-3-y ,进而实现不等式与函数之间的转化,从而解得答案.解:由2x -2y <3-x -3-y ,得2x -3-x <2y -3-y .故构造函数y =2x -3-x ,即y =2x -(13)x.由于函数y =2x-(13)x 在R 上单调递增,因此x <y ,即y -x +1>1.所以l n (y -x +1)>l n 1=0.故选择:A .例5㊀已知函数f (x )=e l n x ,g (x )=1ef (x )-(x +1).(e =2.718 )(1)求函数g (x )的最大值;(2)求证:1+12+13+ +1n >l n (n +1)(n ɪN +).分析:第(1)问要求函数g (x )的最大值,关键在于需要运用转化与划归思想,通过g ᶄ(x )得出函数g (x )单调性,即可求出g (x )的最大值.将第(1)问得出的g (x )最大值-2转化成l n x -(x +1)ɤ-2,即l n x ɤx -1(当且仅当x =1时等号成立),再利用换元法最终证明出结论.解:(1)由g (x )=1ef (x )-(x +1),即g (x )=l n x -(x +1),得g ᶄ(x )=1x-1(x >0).令g ᶄ(x )>0,则0<x <1;令g ᶄ(x )<0,则x >1.所以,函数g (x )在区间(0,1)上单调递增,在区间(1,+ɕ)上单调递减.故g (x )的最大值为=g (1)=-2.(2)证明:由(1)知x =1是函数g (x )的极大值点,也是最大值点,故g (x )ɤg (1)=-2.所以l n x -(x +1)ɤ-2,即l n x ɤx -1(当且仅当x =1时等号成立).令t =x -1,则有t ȡl n (t +1)(t >-1).取t =1n (n ɪN +),则有1n >l n (1+1n)=l n(n +1n ).故1>l n2,12>l n 32,13>l n 43,,1n>l n(n +1n ).上面n 个不等式叠加,得1+12+13+ +1n>l n (2ˑ32ˑ43ˑ ˑn +1n)=l n (n +1).故1+12+13+ +1n >l n (n +1)(n ɪN +).在分析此类题目的过程中,利用函数㊁方程㊁不等式进行转化与化归更有利于问题的解决,因此,利用转化与划归思想不仅能让整个数学知识的体系变得更加紧密,同时也能对学生从系统性角度掌握数学知识之间的联系提供非常大的帮助.转化与化归思想所蕴含的内容丰富且深奥,为高中数学问题的解决提供了多种思路,对高中数学的学习也有极大的指导与启发作用,值得我们不断地探索与研究.因此,在解决高中数学问题的过程中,要灵活运用 转化与化归 的解题思想.有些数学问题看似复杂,但通过分析可知出题者采用的是 障眼法 ,其中有的是多余或无用的条件.同时,在高中数学课堂教学中,教师可以在解题教学过程中渗透转化与化归思想,加强学生在特殊与一般转化㊁命题的等价转化以及函数㊁方程㊁不等式之间的转化等方面的技能,逐步锻炼学生简化题目内容的能力和意识,最大程度提高解题效率.Z95。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

技法强化训练(四) 转化与化归思想
题组1 正与反的相互转化
1.由命题“存在x 0∈R ,使e|x 0-1|-m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的取值是( )
A .(-∞,1)
B .(-∞,2)
C .1
D .2
C 命题“存在x 0∈R ,使e|x 0-1|-m ≤0”是假命题,可知它的否定形式“任意x ∈R ,使e
|x -1|
-m >0”是真命题,可得m 的取值范围是(-∞,1),而(-∞,a )与(-∞,1)为同一区
间,故a =1.]
2.(2016·开封模拟)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )
A.1
5 B .35 C.
7
10
D .910
D 甲或乙被录用的对立面是甲、乙均不被录用,故所求事件的概率为1-110=9
10.]
3.若二次函数f (x )=4x 2
-2(p -2)x -2p 2
-p +1在区间-1,1]内至少存在一个值c ,使得
f (c )>0,则实数p 的取值范围为________.
⎝ ⎛⎭⎪⎫-3,32 如果在-1,1]内没有值满足f (c )>0,则⎩
⎪⎨⎪⎧
f -,
f ⇒
⎩⎪⎨⎪⎧
p ≤-1
2或p ≥1,p ≤-3或p ≥32⇒p ≤-3或p ≥32,取补集为-3<p <3
2
,即为满足条件的p 的取值范
围.
故实数p 的取值范围为⎝
⎛⎭⎪⎫-3,32.] 4.若椭圆x 2
2+y 2
=a 2
(a >0)与连接两点A (1,2),B (3,4)的线段没有公共点,则实数a 的取
值范围为________.
⎝ ⎛⎭⎪⎫0,322∪⎝ ⎛⎭
⎪⎫822,+∞ 易知线段AB 的方程为y =x +1,x ∈1,3],
由⎩⎪⎨⎪⎧
y =x +1,x 2
2
+y 2=a 2
,得a 2
=32
x 2+2x +1,x ∈1,3],
∴92≤a 2
≤412
.
又a >0, ∴
322≤a ≤82
2
. 故当椭圆与线段AB 没有公共点时,实数a 的取值范围为⎝ ⎛⎭⎪⎫0,322∪⎝ ⎛⎭
⎪⎫822,+∞.]
5.已知点A (1,1)是椭圆x 2a 2+y 2
b
2=1(a >b >0)上一点,F 1,F 2是椭圆的两焦点,且满足|AF 1|+
|AF 2|=4.
(1)求椭圆的两焦点坐标;
(2)设点B 是椭圆上任意一点,当|AB |最大时,求证:A ,B 两点关于原点O 不对称.
解] (1)由椭圆定义,知2a =4,所以a =2.所以x 24+y 2
b
2=1.2分
把A (1,1)代入,得14+1b 2=1,得b 2
=43,所以椭圆方程为x 2
4+y 2
4
3=1.4分
所以c 2=a 2-b 2
=4-43=83,即c =263
.
故两焦点坐标为⎝ ⎛⎭⎪⎫-263,0,⎝ ⎛⎭
⎪⎫
263,0.6分
(2)反证法:假设A ,B 两点关于原点O 对称,则B 点坐标为(-1,-1),7分
此时|AB |=22,而当点B 取椭圆上一点M (-2,0)时,则|AM |=10,所以|AM |>|AB |.10分
从而知|AB |不是最大,这与|AB |最大矛盾,所以命题成立.12分 题组2 主与次的相互转化
6.设f (x )是定义在R 上的单调递增函数,若f (1-ax -x 2
)≤f (2-a )对任意a ∈-1,1]恒成立,则x 的取值范围为________.
【导学号:85952008】
(-∞,-1]∪0,+∞) ∵f (x )是R 上的增函数, ∴1-ax -x 2
≤2-a ,a ∈-1,1].①
①式可化为(x -1)a +x 2
+1≥0,对a ∈-1,1]恒成立. 令g (a )=(x -1)a +x 2+1,
则⎩⎪⎨⎪

g -=x 2
-x +2≥0,g
=x 2
+x ≥0,
解得x ≥0或x ≤-1.
即实数x 的取值范围是(-∞,-1]∪0,+∞).]
7.已知函数f (x )=x 3
+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________.
⎝ ⎛⎭
⎪⎫-23,1 由题意,知g (x )=3x 2-ax +3a -5,
令φ(a )=(3-x )a +3x 2
-5,-1≤a ≤1. 对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,
∴⎩
⎪⎨⎪⎧
φ<0,φ-
<0,
即⎩
⎪⎨⎪⎧
3x 2
-x -2<0,
3x 2
+x -8<0,
解得-2
3
<x <1.
故当x ∈⎝ ⎛⎭
⎪⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0.] 8.对于满足0≤p ≤4的所有实数p ,使不等式x 2
+px >4x +p -3成立的x 的取值范围是________.
(-∞,-1)∪(3,+∞) 设f (p )=(x -1)p +x 2-4x +3, 则当x =1时,f (p )=0,所以x ≠1.
f (p )在0≤p ≤4上恒正,等价于⎩⎪⎨
⎪⎧
f
>0,f >0,
即⎩
⎪⎨⎪⎧
x -
x ->0,
x 2
-1>0,解得x >3或x <-1.]
9.已知函数f (x )=13x 3+⎝ ⎛⎭⎪⎫a 2-43x 2+⎝ ⎛⎭
⎪⎫
43-23a x (0<a <1,x ∈R ).若对于任意的三个实数x 1,
x 2,x 3∈1,2],都有f (x 1)+f (x 2)>f (x 3)恒成立,求实数a 的取值范围.
解] 因为f ′(x )=x 2
+⎝ ⎛⎭⎪⎫a -83x +⎝ ⎛⎭⎪⎫43-23a =⎝ ⎛⎭
⎪⎫x -23(x +a -2),2分
所以令f ′(x )=0,解得x 1=2
3,x 2=2-a .3分
由0<a <1,知1<2-a <2.
所以令f ′(x )>0,得x <2
3或x >2-a ;4分
令f ′(x )<0,得2
3
<x <2-a ,
所以函数f (x )在(1,2-a )上单调递减,在(2-a,2)上单调递增.5分
所以函数f (x )在1,2]上的最小值为f (2-a )=a
6
(2-a )2
,最大值为max{f (1),f (2)}=
max ⎩⎨⎧⎭
⎬⎫
13-a 6,23a .6分 因为当0<a ≤25时,13-a 6≥2
3a ;7分
当25<a <1时,23a >13-a
6
,8分 由对任意x 1,x 2,x 3∈1,2],都有f (x 1)+f (x 2)>f (x 3)恒成立,得2f (x )min >f (x )max (x ∈1,2]). 所以当0<a ≤25时,必有2×a 6(2-a )2
>13-a 6
,10分
结合0<a ≤25可解得1-22<a ≤2
5;
当25<a <1时,必有2×a 6(2-a )2
>23a , 结合25<a <1可解得2
5<a <2- 2.
综上,知所求实数a 的取值范围是1-2
2
<a <2- 2.12分。

相关文档
最新文档