2020届高三数学小题狂练二十八含答案

合集下载

2020届高三数学小题狂练三十二含答案

2020届高三数学小题狂练三十二含答案

2020届高三数学小题狂练三十二班级 姓名 学号1.设全集U =R ,集合{|0}M x x =>,{|1}N x x =≤,则M N =U ________.2.函数y =__________.3.已知命题:p x ∀∈R ,2210x +>,则p ⌝是______________.4.计算:2(12)1i i+=-________. 5.已知函数2sin ()x f x x=,则'()f x =____________. 6.等差数列{}n a 中,若18153120a a a ++=,则9102a a -=________.7.函数3sin(2)([0,])6y x x ππ=+∈的单调减区间是___________.8.椭圆22143x y +=的右焦点到直线y =的距离是________. 9.在ABC ∆中,边a ,b ,c 所对角分别为A ,B ,C ,且sin cos cos A B C a b c ==,则A ∠=________. 10.已知O 为坐标原点,(3,1)OA =-u u u r ,(0,5)OB =u u u r ,且//AC OB u u u r u u u r ,BC AB ⊥u u u r u u u r ,则点C 的坐标为_________.11.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30o ,60o ,则塔高为______米.12.方程ln 620x x -+=的解为0x ,则满足0x x ≤的最大整数x 的值等于________.13.已知n a n =,把数列{}n a 的各项排列成如下的三角形状: 1a2a 3a 4a5a 6a 7a 8a 9a…………………………………记(,)A m n 表示第m 行的第n 个数,则(10,12)A =__________.14.取棱长为a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体,则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为23a ;⑤体积为365a .以上结论正确的是_________.(要求填上所有正确结论的序号)参考答案1.R2.[0,2]3.x ∃∈R ,2210x +≤ 4.7122i -+ 5.3cos 2sin x x x x - 6.24 7.2[,]63ππ8.29.90o 10.29(3,)4- 11.4003 12.213.9314.①②⑤。

2020高考高三数学小题专项训练

2020高考高三数学小题专项训练

2020年高考虽然延期一个月,但是练习一定要跟上,加油!班级 学号 姓名 得分 1.sin600︒ = ( ) (A) –23 (B)–21. (C)23. (D) 21.2.设A = { x| x ≥ 2}, B = { x | |x – 1|< 3}, 则A ∩B= ( )(A)[2,4] (B)(–∞,–2] (C)[–2,4] (D)[–2,+∞)3.若|a |=2sin150,|b |=4cos150,a 与b 的夹角为300,则a ·b 的值为 ( )(A)23. (B)3. (C)32. (D)21. 4.△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,则a cos C+c cos A 的值为 ( )(A)b. (B)2cb +. (C)2cosB. (D)2sinB. 5.当x ∈ R 时,令f (x )为sinx 与cosx 中的较大或相等者,设a ≤ f ( x ) ≤ b, 则a + b 等于 ( )(A)0 (B) 1 +22. (C)1–22. (D)22–1.6、函数1232)(3+-=x x x f 在区间[0,1]上是( )(A )单调递增的函数. (B )单调递减的函数. (C )先减后增的函数 . (D )先增后减的函数. 7.对于x ∈[0,1]的一切值,a +2b > 0是使ax + b > 0恒成立的( )(A)充要条件 (B)充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件8.设{a n }是等差数列,从{a 1,a 2,a 3,··· ,a 20}中任取3个不同的数,使这三个数仍成等差数列,则这样不同的等差数列最多有( )(A)90个 . (B)120个. (C)180个. (D)200个.9.已知函数y = f ( x )(x ∈R )满足f (x +1) = f ( x – 1),且x ∈[–1,1]时,f (x) = x 2,则y = f ( x ) 与y = log 5x 的图象的交点个数为 ( )(A)1. (B)2 . (C)3 . (D)4.10.给出下列命题:(1) 若0< x <2π, 则sinx < x < tanx . (2) 若–2π < x< 0,则sin x < x < tanx.(3) 设A ,B ,C 是△ABC 的三个内角,若A > B > C, 则sinA > sinB > sinC.(4) 设A ,B 是钝角△ABC 的两个锐角,若sinA > sinB > sinC 则A > B > C..其中,正确命题的个数是( )(A) 4. (B )3. (C )2. (D )1.11. 某客运公司定客票的方法是:如果行程不超过100km ,票价是0.5元/km , 如果超过100km , 超过100km 部分按0.4元/km 定价,则客运票价y 元与行程公里数x km 之间的函数关系式是 .12. 设P 是曲线y = x 2 – 1上的动点,O 为坐标原点,当|→--OP |2取得最小值时,点P 的坐标为 .11、 . 12.高三数学小题专项训练(1)11.⎩⎨⎧>+≤≤100104.010005.0x x x x. 12. (–22, –21)或 (22,–21)1.如果向量 =(k ,1),与 = (4,k )共线且方向相反,则k =A .±2B .-2C .2D .0 2.函数f (x)=( )x (1<x≤2)的反函数f -1(x )等于21A.log x (1<x ≤2)B. log x (2<x ≤4)C.-log2x (≤x < ﹞ D. -log2x ( ≤x <1〕3.已知P={x ︱x ≤0},Q={x ︱x < },则Q ∩C R P 等于A.{x ︱x ≤0}B.{x ︱0≤x < }C. {x |0<x < }D. {x |x >0}4.已知α、β都是第二象限角,且cos >cosβ,则A . <β B.sin >sinβ C.tan >tanβ D.cot <cotβ5.已知奇函数f (x )的定义域为:{x |x +2-a |<a ,a >0},则a 的值为A .1B .2C .3D .4 6.方程Ax +By +C =0表示倾斜角为锐角的直线,则必有:A. A ﹒B>0 B .A ﹒B<0 C .A>0且B<0 D .A>0或B<07.已知f (x )=a x (a >0且a ≠1),f -1(2)<0,则f -1(x +1)的图象是2121214121414141ααααα8.如果方程 表示双曲线,则下列椭圆中,与该双曲线共焦点的是A. B.C. D.9.把正整数按下图所示的规律排序,则从2003到2005的箭头方向依次为10.已知函数f(x )=2sin(ωx + )图象与直线y =1的交点中,距离最近两点间的距离为 , 么此函数的周期是 A . B . C .2πD .4π11.点p 到点A ( ,0),B(a ,2)及到直线x =- 的距离都相等,122=+-qy P x 1222=++qy p q x 1222-=++py p q x 1222=++qy q p x 1222-=++py q p x ϕ3π3ππ2121如果这样的点恰好只有一个,那么a 的值是 A. B. C. 或 D.- 或12.设 P (x ,y )是曲线 上的点,F 1(-4,0),F 2(4,0),则A.|F 1P ︳+ ︱F 2P ︳<10 B .|F 1P |+|F 2P |>10C.|F 1P ︳+|F 2P ︳≤10 D.|F 1P |+|F 2P |≥1013.若函数 y =2x 2+4x +3的图象按向量 平移后,得到函数y=2x 2的图象,则: =.14.已知(x ,y )在映射f 下的象是(x +Y ,-x ),则(1,2)在f 下原象是 .15.圆x 2+y 2+x -6y +3=0上两点P 、Q 关于直线kx -y +4=0对称,则k = .16.在△ABC 中,B (-2,0),C (2,0),A (x,y ),给出△ABC 满足的条件,就能得到动点A 的轨迹方程,下面给出了一些条件及方程,请你用线把左边满足的条件及相应的右边A 点的轨迹方程连起来:212321232121192522=+y x(错一条连线得0分)高三数学小题专项训练(4)一、1.B 2.C 3.C 4.B 5.B 6.B 7.A 8.D 9.B 10.B 11.D 12.C二、13.(1,-1) 14.(-2,3) 15.2 16. (①→○c②→○a③→○b)。

2020届高三数学小题狂练二十含答案

2020届高三数学小题狂练二十含答案

2020届高三数学小题狂练二十姓名 得分1.已知集合2{|log 1}M x x =<,{|1}N x x =<,则M N I = .2.双曲线2213x y -=的两条渐近线的夹角大小为 .3.设a 为常数,若函数1()2ax f x x +=+在(2,2)-上为增函数,则a 的取值范围是 . 4.函数)2(log log 2x x y x +=的值域是 .5.若函数()23f x ax a =++在区间)1,1(-上有零点,则a 的取值范围是 .6.若1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的取值范围是 .7.已知函数12||4)(-+=x x f 的定义域是[,]a b (a ,b 为整数),值域是[0,1],则满足条件的整数数对),(b a 共有 个.8.设P ,Q 为ABC ∆内的两点,且2155AP AB AC =+u u u r u u u r u u u r ,AQ uuu r 23AB =u u u r 14+AC u u ur ,则ABP ∆的面积与ABQ ∆的面积之比为 . 9.在等差数列{}n a 中,59750a a +=,且95a a >,则使数列前n 项和n S 取得最小值的n 等于 . 10.设x ,y ∈R +,312121=+++y x ,则xy 11.在正三棱锥A BCD -中,E ,F 分别是AB ,BC EF DE ⊥,1BC =,则正三棱锥A BCD -的体积是 .12.设()f x 是定义在R 上的偶函数,满足(1)()1f x f x ++=,且当[1,2]x ∈时,()2f x x =-,则(2016.5)f -=_________.DCQ BAP答案1.(0,1) 2.60︒ 3.),21(+∞4.),3[]1,(+∞--∞Y 5.(3,1)-- 6.)23,2[- 7.5(||[0,2]x ∈) 8.459.610.16(8xy x y =++,8xy ≥+16xy ≥)11.242(EF DE ⊥,EF ∥AC ,∴AC DE ⊥.又AC BD ⊥,∴AC ⊥平面ABD .∵1BC =,∴2AB AC AD ===,3162V =24=)12.0.5(2T =,(0.5)(0.5)(1.5)0.5f f f =-==)。

2020届高三数学小题狂练二十二含答案

2020届高三数学小题狂练二十二含答案

2020届高三数学小题狂练二十二姓名 得分1.函数20.5log (2)y x x =-的单调减区间是 .2.已知函数()sin cos f x a x x =+,且()4f x π-()4f x π=+,则a 的值为 . 3.设O 为坐标原点,F 为抛物线x y 42=的焦点,A 为抛物线上的一点,若4-=⋅,则点A 的坐标为 .4.从原点向圆0271222=+-+y y x 作两条切线,则该圆夹在两条切线间的劣弧长为 .5.若函数32()26f x x x m =-+(m 为常数)在[2,2]-上有最大值3,则()f x 在[2,2]-上的最小值为 .6.设等比数列{}n a 的公比为q ,其前n 项的和为n S ,若1n S +,n S ,2n S +成等差数列,则公比q 等于 .7.规定一种运算:,,,,a a b a b b a b ≤⎧⊗=⎨>⎩则函数x x x f cos sin )(⊗=的值域为 . 8.已知当x ∈R 时,函数)(x f y =满足1(2.1)(1.1)3f x f x +=++,且1)1(=f ,则)100(f 的值为 .9.设函数)(x f 是定义在R 上的奇函数,1(1)2f =,)2()()2(f x f x f +=+,则=)5(f .10.双曲线222015x y -=的左、右顶点分别为1A ,2A ,P 为其右支上一点,且12124A PA PA A ∠=∠,则12PA A ∠的大小为 .11.已知3450a b c ++=r r r r ,且||||||1a b c ===r r r ,则()a b c ⋅+=r r r .12.已知α,β均为锐角,且sin cos()sin ααββ+=,则tan α的最大值是 .答案1.(2,)+∞2.1(取4x π=)3.(1,2)±4.2π5.37-6.2-7.]22,1[- 8.349.2.5((12)(1)(2)f f f -+=-+,故(2)1f =,(3) 1.5f =,(5)(3)1f f =+)10.12π(tan y x a α=+,tan 5y x aα=-,由222015x y -=得tan tan51αα=,于是得cos60α=) 11.35-(534c a b -=+r r r ,435b a c -=+r r r ,两式分别平方得0a b =r r g ,35a c =-r r g )12αβ+也为锐角,tan()αβ+存在.由cos()sin sin[()]αββαββ+=+-展开得tan()2tan αββ+=.从而有tan tan[()]ααββ=+-2tan 41tan ββ=≤+)。

2020届高三数学小题狂练十三含答案

2020届高三数学小题狂练十三含答案

2020届高三数学小题狂练十三姓名 得分1.函数2()12sin f x x =-的最小正周期为 .2.若函数()log (01)a f x x a =<<在闭区间[,2]a a 上的最大值是最小值的3倍,则a = .3.函数x y sin =的定义域为],[b a ,值域为21,1[-],则a b -的最大值和最小值之和为 .4.函数32()267f x x x =-+的单调减区间是 .5.若2(3),6,()log ,6,f x x f x x x +<⎧=⎨≥⎩则(1)f -的值为 .6.设等差数列{}n a 的公差0d ≠,19a d =.若k a 是1a 与2k a 的等比中项,则k = .7.在直角坐标系xOy 中,i r ,j r 分别是与x 轴,y 轴平行的单位向量,若直角ABC ∆中,AB i j =+u u u r r r ,2AC i m j =+u u u r r r ,则实数m = .8.若函数2()x f x x a=+(0a >)在[1,)+∞上的最大值为3,则a 的值为 . 9.若不等式1,0ax x a >-⎧⎨+>⎩的解集是空集,则实数a 的取值范围是 . 10.已知两圆1C :22210240x y x y +-+-=,2C :222280x y x y +++-=,则以两圆公共弦为直径的圆的方程是 .11.过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A ,B 两点,交其准线于点C ,且2BC FB =u u u r u u u r ,12AF =,则p 的值为 .12.从椭圆上一点A 看椭圆的两焦点1F ,2F 的视角为直角,1AF 的延长线交椭圆于B ,且2AF AB =,则椭圆的离心率为__________.答案1.π2.43.2π4.[0,2] 5.36.47.0或2-81-讨论a9.(,1]-∞-10.5)1()2(22=-++y x (圆心在公共弦上,3λ=-)11.6:作AH Ox ⊥,30AFH ∠=︒,12sin 30622A p p x =+︒=+,12cos 30A y =︒=12269-不扣分):2AF m =,2BF =,24m a +=,故(4m a =-,12AF a m =-,22212(2)AF AF c +=。

2020届高三数学小题狂练二十一含答案

2020届高三数学小题狂练二十一含答案

2020届高三数学小题狂练二十一姓名 得分1.已知等比数列{}n a 的前三项依次为1a -,1a +,4a +,则n a = . 2.抛物线24y x =上一点M 到其焦点的距离为3,则点M 的横坐标x = . 3.已知函数)(x f y =(x ∈R )满足)()2(x f x f =+,且]1,1[-∈x 时,2)(x x f =,则5()()log F x f x x =-的零点的个数为 .4.若(2,1)a =-v与(,2)b t =-v 的夹角为钝角,则实数t 的取值范围为 .5.函数2()lg(21)f x x ax a =-++在区间(1)-∞,上单调递减,则实数a 的取值范围是 . 6.设α为锐角,54)6sin(=+πα,则)32sin(πα+的值等于 . 7.已知0a >,且1a ≠,函数,0,()(14)2,0x a x f x a x a x ⎧<=⎨-+≥⎩满足对任意12x x ≠,都有1212()[()()]0x x f x f x --<成立,则a 的取值范围是 .8.已知a b >,1a b ⋅=,则22a b a b+-的最小值是 .9.已知数列{}n a ,{}n b 都是公差为1的等差数列,其首项分别为1a ,1b ,且115a b +=,1a ,1b ∈N *,则数列{}nb a (n ∈N *)前10项的和等于 .10.设椭圆1C 和双曲线2C 具有公共焦点1F ,2F ,其离心率分别为1e ,2e ,P 为1C 和2C 的一个公共点,且满足021=⋅PF PF ,则2212221)(e e e e +的值为 . 11.设22log 1()log 1x f x x -=+,12()(2)1f x f x +=(12x >),则12()f x x 的最小值为_______.12.对于一切实数x ,令[]x 为不大于x 的最大整数,则函数()[]f x x =称为高斯函数或取整函数.若()3n na f =(n ∈N *),n S 为数列{}n a 的前n 项和,则3n S =________.答案 1.134()2n -⋅2.2 3.44.(1,4)(4,)-+∞U 5.[1,2]6.2524(若3cos()65πα+=-,cos [cos()]066ππαα=+-<;或45<3πα<)7.11(,]428.222()2a b a b +=-+)9.85(11n a a n =+-,11n b b n =+-,113n b n a a b n =+-=+)10.2(2224m n c +=,12m n a +=,2||2m n a -=,后二式平方相加得22122e e --+=)11.23(21222122log 1log (2)11log 1log (2)1x x x x --+=++,化简得22214log log 1x x =-.于是212212221214log ()log log log 5log 1x x x x x x =+=+≥-,所以21212212212log ()122()1log ()1log ()13x x f x x x x x x -==-≥++(12x >))12.232n n -(33(1)(1)(1)n n S S n n n --=-+-+,311S ⨯=,3n S =232n n-)。

2019-2020年高三理科数学复习:28高考模拟试卷 四 新人教A 含答案

2019-2020年高三理科数学复习:28高考模拟试卷 四 新人教A  含答案

2019-2020年高三理科数学复习:28高考模拟试卷 四 新人教A 含答案一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,若,则实数的取值范围是 A . B . C . D .2.已知,则实数分别为A. B. C. D.3.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩(如图),要测算两点的距离,测量人员在岸边定出基线,测得,,就可以计算出两点的距离为 A . B . C . D.4.下列命题中为真命题的是 A .若B .直线为异面直线的充要条件是直线不相交C .“”是“直线与直线互相垂直”的充要条件D .若命题,则命题的否定为:“” 5.设,且则的值为A .18B .12C .D . 6.已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为 A . B . C . D . 7. 若21(0,),sin cos 2,tan 24παααα∈+==且则 A. B. C. D.8.已知的最小值为,则二项式的展开式中的常数项是A .第10项B .第9项C .第8项D .第7项 9.函数的图象大致为A. B. C. D. 10.若,则的值使得过可以做两条直线与圆 相切的概率等于 A. B. C. D.不确定BAC11.点A是抛物线C1:与双曲线C2: (a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于A. B. C. D.12.设函数,为坐标原点,为函数图象上横坐标为n(n∈N*)的点,向量,向量,设为向量与向量的夹角,满足的最大整数是A.2 B.3 C.4 D.5第Ⅱ卷 (非选择题共90分)二、填空题:本大题共4个小题,每小题4分,共16分.13.已知实数满足约束条件则的最大值为______.14.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:队员i 1 2 3 4 5 6三分球个数下图(右)是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填,输出的= .15.在公比为4的等比数列中,若是数列的前项积,则有仍成等比数列,且公比为类比以上结论,在公差为3的等差数列中,若是的前项和,则有也成等差数列,该等差数列的公差为 .16.设是定义在R上的偶函数,满足且在[-1,0]上是增函数,给出下列关于函数的判断:(1)是周期函数;(2)的图象关于直线对称;(3)在[0,1]上是增函数;(4)其中正确判断的序号 .17.(本小题满分12分)设函数.(Ⅰ)求的最小正周期.(2)若函数与的图象关于直线对称,求当时的最大值.18.(本小题满分12分 )某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人.现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记表示抽取的3名工人中男工人的人数,求的分布列和数学期望.19.(本小题满分12分 )如图,在梯形中,,,四边形为矩形,平面平面,.(I)求证:平面;(II)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.20.(本小题满分12分 )已知等差数列满足:,,该数列的前三项分别加上1,1,3后顺次成为等比数列的前三项.(Ⅰ)分别求数列,的通项公式;(Ⅱ)设若恒成立,求c的最小值.21.(本小题满分12分)已知函数.(Ⅰ)当时,证明函数在R上是增函数;(Ⅱ)若时,当时,恒成立,求实数的取值范围.22.(本小题满分14分)已知以动点为圆心的圆与直线相切,且与圆外切.(Ⅰ)求动点的轨迹的方程;(Ⅱ)若是上不同两点,且,直线是线段的垂直平分线.(1)求直线斜率的取值范围;(2)设椭圆E的方程为.已知直线与抛物线交于A、B两个不同点, 与椭圆交于P、Q两个不同点,设AB中点为,PQ中点为,若,求离心率的范围.高考模拟试卷(四)参考答案及评分标准二.填空题:13.20 14. 15. 300 16.(1)(2)(4) 三.解答题17.(1本小题满分12分) 解:(Ⅰ)x x x x f 4cos6sin4cos6cos4sin)(πππππ--=. ………………4分故的最小正周期为 ………………6分(Ⅱ)解法一: 在的图象上任取一点,它关于的对称点 …………………………8分 由题设条件,点在的图象上,从而…………………………………………10分 当时,, ………………………11分 因此在区间上的最大值为………………12分解法二:因区间关于x = 1的对称区间为,且与的图象关于x = 1对称,故在上的最大值就是在上的最大值………10分由(Ⅰ)知,当时,………11分因此在上的最大值为 . ……………12分 18.(本小题满分12分)解:(I )由于甲组有10名工人,乙组有5名工人,根据分层抽样原理,若从甲、乙两组中共抽取3名工人进行技术考核,则从甲组抽取2名工人,乙组抽取1名工人;………2分 (2)记表示事件:从甲组抽取的工人中恰有1名女工人。

2020届高三数学小题狂练八含答案

2020届高三数学小题狂练八含答案

2020届高三数学小题狂练八姓名 得分1.复数z 满足方程(2)z z i =+,则z = .2.设集合{|}M x x m =≤,{|2}xN y y -==,若M N ⋂≠∅,则实数m 的取值范围是 . 3.若函数2()2x x a f x a+=-是奇函数,则a = . 4.抛物线24x y =上一点A 的横坐标为2,则点A 与抛物线焦点的距离为 .5.掷一个骰子的试验,事件A 表示“大于2的点数出现”,事件B 表示“大于2的奇数点出现”,则一次试验中,事件A B +发生概率为 .6.过点(1,4)A -作圆22(2)(3)1x y -+-=的切线l ,则l 的方程为 .7.若ABC ∆的三条边长2a =,3b =,4c =,则C ab B ca A bc cos 2cos 2cos 2++的值为 .8.已知函数)(x f 的导数()(1)()f x a x x a '=+-,若()f x 在x a =处取到极大值,则常数a 的取值范围是 .9.已知二次函数2()f x ax bx c =++,且不等式()0f x <的解集为(,1)(3,)-∞+∞U ,若)(x f 的最大值小于2,则a 的取值范围是 .10.在OAB ∆中,M 为OB 的中点,N 为AB 的中点,ON ,AM 交于点P ,若AP mOA nOB =+u u u v u u u v u u u v (m ,n ∈R ),则n m -= .11.已知n S 为等差数列{}n a 的前n 项的和,n T 为等差数列{}n b 的前n 项的和,若n m S T =2(1)n m m +,则510a b =_________. 12.已知()f x 是定义在R 上的偶函数,它的图象关于直线2x =对称,当[02]x ∈,时,tan [01),()(1)[12],x x f x f x x ∈⎧=⎨-∈⎩,,,,则(5)6f π--=__________.答案1.1i -+2.(0,)+∞3.1±4.25.32 6.4y =或34130x y +-=7.298.(1,0)-9.(2,0)-10.1:连MN ,相似11.920(59101921929a Sb T =) 12.3(()()f x f x -=,(2)(2)f x f x +=-+,∴()(4)f x f x =-+((4))f x =--+,周期为4,(5)(1)(1)()tan 66666f f f f πππππ--=--=+===)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高三数学小题狂练二十八
班级 姓名 学号
1.设0.76a =,60.7b =,0.7log 6c =,则a ,b ,c 的大小关系为 .
2.设P 是曲线3233+-=x x y 上的任意一点,则点P 处切线倾斜角α的取值范围是 . 3.若复数z 满足||||2z i z i ++-=,则|1|z i ++的最小值是 .
4.设函数()f x x x bx c =++,给出下列四个命题:①0c =时,()y f x =是奇函数;②0b =,
0c >时,
方程()0f x =只有一个实根;③()y f x =的图象关于(0,)c 对称;④方程()0f x =至少两个实根.其中真命题序号是 .
5.若双曲线221x y -=的右支上一点(,)P a b 到直线y x =
,则a b += .
6.长方体的一个顶点上的三条棱长分别为3,4,5,其八个顶点均在同一个球面上,则球面
面积为__________.
7.有以下四个命题:①223sin sin y x x =+的最小值是32
;②已知()f x =,则(4)(3)f f >;③log (2) (0x a y a a =+>,1)a ≠在R 上是增函数;④函数2sin(2)6
y x π=-的图象的一个对称点是)0,12
( π.其中所有真命题的序号是 . 8.已知数列{}n a 满足11a =,1231111 (1)231
n n a a a a a n n -=++++>-L ,若2018n a =,则n = .
9.已知三个不等式:①0ab >;②b d a c -<-
;③bc ad >.以其中两个作为条件,余下一个作为结论组成命题,则真命题的个数为 .
10.若曲线4y x x =+在P 点处的切线与直线30x y +=平行,则P 点的坐标是 .
11.若实数x ,y 满足不等式组⎪⎩
⎪⎨⎧≥≤+≤,0,2,y y x x y 那么函数3z x y =+的最大值是 .
12.已知定义在R 上的函数()f x 的图象关于点3(,0)4
-成为中心对称图形,且满足3()()2
f x f x =-+,(1)1f -=,(0)2f =-,则(1)(2)(2018)f f f +++K 的值为 .
参考答案
1.c b a <<
2.2[0,)[,)23
πππ⋃ 3.1
4.①②③
5.12
6.π50
7.③④
8.4036(相减得
121122n n a a a n n -===-,(1)2n n a n =>) 9.3
10.(1,0)-
11.4
12.2:3T =;33333()()()()44424
f x f x f x f x -+=---=--+=-,故为偶函数, (1)(1)(2)1f f f =-==,(3)(0)2f f ==-。

相关文档
最新文档