2020届高三数学小题狂练二十含答案

合集下载

山东省2020届高三高三高考模拟数学试题 Word版含解析

山东省2020届高三高三高考模拟数学试题 Word版含解析

山东省2020年高三高考模拟数学试题一、单项选择题:1.已知集合{1,2}A =-,{|1}B x ax ==,若B A ⊆,则由实数a 的所有可能的取值组成的集合为( )A. 11,2⎧⎫⎨⎬⎩⎭B. 11,2⎧⎫-⎨⎬⎩⎭ C. 10,1,2⎧⎫⎨⎬⎩⎭D.11,0,2⎧⎫-⎨⎬⎩⎭【答案】D 【解析】 【分析】分B 为空集和B 不为空集两种情况讨论,分别求出a 的范围,即可得出结果. 【详解】因为集合{1,2}A =-,{|1}B x ax ==,B A ⊆, 若B 为空集,则方程1ax =无解,解得0a =; 若B 不为空集,则0a ≠;由1ax =解得1x a=,所以11a =-或12a =,解得1a =-或12a =,综上,由实数a 的所有可能的取值组成的集合为11,0,2⎧⎫-⎨⎬⎩⎭. 故选D【点睛】本题主要考查由集合间的关系求参数的问题,熟记集合间的关系即可,属于基础题型.2.若1iz i =-+(其中i 是虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】分析:变形1iz i =-+,利用复数代数形式的乘除运算化简,求出z 的坐标即可得结论. 详解:由i 1i z =-+, 得()()21i i 1i 1i i iz -+--+===+-,1z i =-∴复数z 的共轭复数在复平面内对应的点的坐标为()1,1-,位于第四象限,故选D.点睛:本题主要考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,意在考查学生对基础知识掌握的熟练程度,属于简单题. 3.函数()()22ln x xf x x -=+的图象大致为( )A. B.C. D.【答案】B 【解析】 【分析】根据函数奇偶性的判断可知函数为偶函数,图象关于y 轴对称,排除D ;根据()0,1x ∈时,()0f x <,排除,A C ,从而得到正确选项.【详解】()f x 定义域为{}0x x ≠,且()()()()22ln 22ln xx x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C . 本题正确选项:B【点睛】本题考查函数图象的辨析,关键是能够通过函数的奇偶性、特殊值的符号来进行排除.4.《九章算术⋅衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中错误的是( ) A. 甲付的税钱最多 B. 乙、丙两人付的税钱超过甲 C. 乙应出的税钱约为32 D. 丙付的税钱最少【答案】B 【解析】 【分析】通过阅读可以知道,A D 说法的正确性,通过计算可以知道,B C 说法的正确性.【详解】甲付的税钱最多、丙付的税钱最少,可知,A D 正确:乙、丙两人付的税钱占总税钱的3511002<不超过甲。

2020届高三数学小题狂练二十八含答案

2020届高三数学小题狂练二十八含答案

2020届高三数学小题狂练二十八班级 姓名 学号1.设0.76a =,60.7b =,0.7log 6c =,则a ,b ,c 的大小关系为 .2.设P 是曲线3233+-=x x y 上的任意一点,则点P 处切线倾斜角α的取值范围是 . 3.若复数z 满足||||2z i z i ++-=,则|1|z i ++的最小值是 .4.设函数()f x x x bx c =++,给出下列四个命题:①0c =时,()y f x =是奇函数;②0b =,0c >时,方程()0f x =只有一个实根;③()y f x =的图象关于(0,)c 对称;④方程()0f x =至少两个实根.其中真命题序号是 .5.若双曲线221x y -=的右支上一点(,)P a b 到直线y x =,则a b += .6.长方体的一个顶点上的三条棱长分别为3,4,5,其八个顶点均在同一个球面上,则球面面积为__________.7.有以下四个命题:①223sin sin y x x =+的最小值是32;②已知()f x =,则(4)(3)f f >;③log (2) (0x a y a a =+>,1)a ≠在R 上是增函数;④函数2sin(2)6y x π=-的图象的一个对称点是)0,12( π.其中所有真命题的序号是 . 8.已知数列{}n a 满足11a =,1231111 (1)231n n a a a a a n n -=++++>-L ,若2018n a =,则n = .9.已知三个不等式:①0ab >;②b d a c -<-;③bc ad >.以其中两个作为条件,余下一个作为结论组成命题,则真命题的个数为 .10.若曲线4y x x =+在P 点处的切线与直线30x y +=平行,则P 点的坐标是 .11.若实数x ,y 满足不等式组⎪⎩⎪⎨⎧≥≤+≤,0,2,y y x x y 那么函数3z x y =+的最大值是 .12.已知定义在R 上的函数()f x 的图象关于点3(,0)4-成为中心对称图形,且满足3()()2f x f x =-+,(1)1f -=,(0)2f =-,则(1)(2)(2018)f f f +++K 的值为 .参考答案1.c b a <<2.2[0,)[,)23πππ⋃ 3.14.①②③5.126.π507.③④8.4036(相减得121122n n a a a n n -===-,(1)2n n a n =>) 9.310.(1,0)-11.412.2:3T =;33333()()()()44424f x f x f x f x -+=---=--+=-,故为偶函数, (1)(1)(2)1f f f =-==,(3)(0)2f f ==-。

2020高考高三数学小题专项训练

2020高考高三数学小题专项训练

2020年高考虽然延期一个月,但是练习一定要跟上,加油!班级 学号 姓名 得分 1.sin600︒ = ( ) (A) –23 (B)–21. (C)23. (D) 21.2.设A = { x| x ≥ 2}, B = { x | |x – 1|< 3}, 则A ∩B= ( )(A)[2,4] (B)(–∞,–2] (C)[–2,4] (D)[–2,+∞)3.若|a |=2sin150,|b |=4cos150,a 与b 的夹角为300,则a ·b 的值为 ( )(A)23. (B)3. (C)32. (D)21. 4.△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,则a cos C+c cos A 的值为 ( )(A)b. (B)2cb +. (C)2cosB. (D)2sinB. 5.当x ∈ R 时,令f (x )为sinx 与cosx 中的较大或相等者,设a ≤ f ( x ) ≤ b, 则a + b 等于 ( )(A)0 (B) 1 +22. (C)1–22. (D)22–1.6、函数1232)(3+-=x x x f 在区间[0,1]上是( )(A )单调递增的函数. (B )单调递减的函数. (C )先减后增的函数 . (D )先增后减的函数. 7.对于x ∈[0,1]的一切值,a +2b > 0是使ax + b > 0恒成立的( )(A)充要条件 (B)充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件8.设{a n }是等差数列,从{a 1,a 2,a 3,··· ,a 20}中任取3个不同的数,使这三个数仍成等差数列,则这样不同的等差数列最多有( )(A)90个 . (B)120个. (C)180个. (D)200个.9.已知函数y = f ( x )(x ∈R )满足f (x +1) = f ( x – 1),且x ∈[–1,1]时,f (x) = x 2,则y = f ( x ) 与y = log 5x 的图象的交点个数为 ( )(A)1. (B)2 . (C)3 . (D)4.10.给出下列命题:(1) 若0< x <2π, 则sinx < x < tanx . (2) 若–2π < x< 0,则sin x < x < tanx.(3) 设A ,B ,C 是△ABC 的三个内角,若A > B > C, 则sinA > sinB > sinC.(4) 设A ,B 是钝角△ABC 的两个锐角,若sinA > sinB > sinC 则A > B > C..其中,正确命题的个数是( )(A) 4. (B )3. (C )2. (D )1.11. 某客运公司定客票的方法是:如果行程不超过100km ,票价是0.5元/km , 如果超过100km , 超过100km 部分按0.4元/km 定价,则客运票价y 元与行程公里数x km 之间的函数关系式是 .12. 设P 是曲线y = x 2 – 1上的动点,O 为坐标原点,当|→--OP |2取得最小值时,点P 的坐标为 .11、 . 12.高三数学小题专项训练(1)11.⎩⎨⎧>+≤≤100104.010005.0x x x x. 12. (–22, –21)或 (22,–21)1.如果向量 =(k ,1),与 = (4,k )共线且方向相反,则k =A .±2B .-2C .2D .0 2.函数f (x)=( )x (1<x≤2)的反函数f -1(x )等于21A.log x (1<x ≤2)B. log x (2<x ≤4)C.-log2x (≤x < ﹞ D. -log2x ( ≤x <1〕3.已知P={x ︱x ≤0},Q={x ︱x < },则Q ∩C R P 等于A.{x ︱x ≤0}B.{x ︱0≤x < }C. {x |0<x < }D. {x |x >0}4.已知α、β都是第二象限角,且cos >cosβ,则A . <β B.sin >sinβ C.tan >tanβ D.cot <cotβ5.已知奇函数f (x )的定义域为:{x |x +2-a |<a ,a >0},则a 的值为A .1B .2C .3D .4 6.方程Ax +By +C =0表示倾斜角为锐角的直线,则必有:A. A ﹒B>0 B .A ﹒B<0 C .A>0且B<0 D .A>0或B<07.已知f (x )=a x (a >0且a ≠1),f -1(2)<0,则f -1(x +1)的图象是2121214121414141ααααα8.如果方程 表示双曲线,则下列椭圆中,与该双曲线共焦点的是A. B.C. D.9.把正整数按下图所示的规律排序,则从2003到2005的箭头方向依次为10.已知函数f(x )=2sin(ωx + )图象与直线y =1的交点中,距离最近两点间的距离为 , 么此函数的周期是 A . B . C .2πD .4π11.点p 到点A ( ,0),B(a ,2)及到直线x =- 的距离都相等,122=+-qy P x 1222=++qy p q x 1222-=++py p q x 1222=++qy q p x 1222-=++py q p x ϕ3π3ππ2121如果这样的点恰好只有一个,那么a 的值是 A. B. C. 或 D.- 或12.设 P (x ,y )是曲线 上的点,F 1(-4,0),F 2(4,0),则A.|F 1P ︳+ ︱F 2P ︳<10 B .|F 1P |+|F 2P |>10C.|F 1P ︳+|F 2P ︳≤10 D.|F 1P |+|F 2P |≥1013.若函数 y =2x 2+4x +3的图象按向量 平移后,得到函数y=2x 2的图象,则: =.14.已知(x ,y )在映射f 下的象是(x +Y ,-x ),则(1,2)在f 下原象是 .15.圆x 2+y 2+x -6y +3=0上两点P 、Q 关于直线kx -y +4=0对称,则k = .16.在△ABC 中,B (-2,0),C (2,0),A (x,y ),给出△ABC 满足的条件,就能得到动点A 的轨迹方程,下面给出了一些条件及方程,请你用线把左边满足的条件及相应的右边A 点的轨迹方程连起来:212321232121192522=+y x(错一条连线得0分)高三数学小题专项训练(4)一、1.B 2.C 3.C 4.B 5.B 6.B 7.A 8.D 9.B 10.B 11.D 12.C二、13.(1,-1) 14.(-2,3) 15.2 16. (①→○c②→○a③→○b)。

2020届高三数学小题狂练二十二含答案

2020届高三数学小题狂练二十二含答案

2020届高三数学小题狂练二十二姓名 得分1.函数20.5log (2)y x x =-的单调减区间是 .2.已知函数()sin cos f x a x x =+,且()4f x π-()4f x π=+,则a 的值为 . 3.设O 为坐标原点,F 为抛物线x y 42=的焦点,A 为抛物线上的一点,若4-=⋅,则点A 的坐标为 .4.从原点向圆0271222=+-+y y x 作两条切线,则该圆夹在两条切线间的劣弧长为 .5.若函数32()26f x x x m =-+(m 为常数)在[2,2]-上有最大值3,则()f x 在[2,2]-上的最小值为 .6.设等比数列{}n a 的公比为q ,其前n 项的和为n S ,若1n S +,n S ,2n S +成等差数列,则公比q 等于 .7.规定一种运算:,,,,a a b a b b a b ≤⎧⊗=⎨>⎩则函数x x x f cos sin )(⊗=的值域为 . 8.已知当x ∈R 时,函数)(x f y =满足1(2.1)(1.1)3f x f x +=++,且1)1(=f ,则)100(f 的值为 .9.设函数)(x f 是定义在R 上的奇函数,1(1)2f =,)2()()2(f x f x f +=+,则=)5(f .10.双曲线222015x y -=的左、右顶点分别为1A ,2A ,P 为其右支上一点,且12124A PA PA A ∠=∠,则12PA A ∠的大小为 .11.已知3450a b c ++=r r r r ,且||||||1a b c ===r r r ,则()a b c ⋅+=r r r .12.已知α,β均为锐角,且sin cos()sin ααββ+=,则tan α的最大值是 .答案1.(2,)+∞2.1(取4x π=)3.(1,2)±4.2π5.37-6.2-7.]22,1[- 8.349.2.5((12)(1)(2)f f f -+=-+,故(2)1f =,(3) 1.5f =,(5)(3)1f f =+)10.12π(tan y x a α=+,tan 5y x aα=-,由222015x y -=得tan tan51αα=,于是得cos60α=) 11.35-(534c a b -=+r r r ,435b a c -=+r r r ,两式分别平方得0a b =r r g ,35a c =-r r g )12αβ+也为锐角,tan()αβ+存在.由cos()sin sin[()]αββαββ+=+-展开得tan()2tan αββ+=.从而有tan tan[()]ααββ=+-2tan 41tan ββ=≤+)。

2020届高三数学小题狂练十二含答案

2020届高三数学小题狂练十二含答案

2020届高三数学小题狂练十二姓名 得分1.若复数z 满足方程1-=⋅i i z ,则z = .2.A ,B ,C 三种不同型号的产品的数量之比依次为2:3:5,现用分层抽样的方法抽出样本容量为n 的样本,样本中A 型产品有16件,那么样本容量n 为 .3.底面边长为2的正四棱锥的体积为 .4.若点P 是曲线x x y ln 2-=上任意一点,则点P 到直线2-=x y 的最小距离为 .5.袋中有红、黄、绿色球各一个,每次任取一个有放回地抽取三次,球的颜色全相同的概率是 .6.数列{}n a 中,12a =,21a =,11112-++=n n n a a a (2n ≥,n ∈N ),则其通项公式为n a = .7.已知双曲线C 与椭圆221925y x +=有相同的焦点,它们离心率之和为145,则C 的标准方程是 .8.已知二次函数f x ()满足f x f x ()()11+=-,且f f ()()0011==,,若f x ()在区间[,]m n 上的值域是[,]m n ,则m n +的值等于 .9.已知函数()cos f x x ω=(0ω>)在区间π[0]4, 上是单调函数,且3π()08f =,则ω= .10.已知PA ,PB ,PC 两两互相垂直,且△PAB ,△PAC ,△PBC 的面积分别为1.5cm 2,2cm 2,6cm 2,则过P ,A ,B ,C 四点的外接球的表面积为 cm2.11.设椭圆22221y x a b+=(0a b >>)的两个焦点分别为1F ,2F ,点P 在椭圆上,且120PF PF ⋅=u u u r u u u u r ,12tan 2PF F ∠=,则该椭圆的离心率等于 .12.在ABC ∆中,已知4AB =,3AC =,P 是边BC 的垂直平分线上的一点,则BC AP ⋅u u u r u u u r = .答案1.1i-2.803.4 345.1 96.2 n7.221 412y x-=8.1(1n≤)9.43或410.26π(补形)1112.7 2 -。

2020届高三数学小题狂练十三含答案

2020届高三数学小题狂练十三含答案

2020届高三数学小题狂练十三姓名 得分1.函数2()12sin f x x =-的最小正周期为 .2.若函数()log (01)a f x x a =<<在闭区间[,2]a a 上的最大值是最小值的3倍,则a = .3.函数x y sin =的定义域为],[b a ,值域为21,1[-],则a b -的最大值和最小值之和为 .4.函数32()267f x x x =-+的单调减区间是 .5.若2(3),6,()log ,6,f x x f x x x +<⎧=⎨≥⎩则(1)f -的值为 .6.设等差数列{}n a 的公差0d ≠,19a d =.若k a 是1a 与2k a 的等比中项,则k = .7.在直角坐标系xOy 中,i r ,j r 分别是与x 轴,y 轴平行的单位向量,若直角ABC ∆中,AB i j =+u u u r r r ,2AC i m j =+u u u r r r ,则实数m = .8.若函数2()x f x x a=+(0a >)在[1,)+∞上的最大值为3,则a 的值为 . 9.若不等式1,0ax x a >-⎧⎨+>⎩的解集是空集,则实数a 的取值范围是 . 10.已知两圆1C :22210240x y x y +-+-=,2C :222280x y x y +++-=,则以两圆公共弦为直径的圆的方程是 .11.过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A ,B 两点,交其准线于点C ,且2BC FB =u u u r u u u r ,12AF =,则p 的值为 .12.从椭圆上一点A 看椭圆的两焦点1F ,2F 的视角为直角,1AF 的延长线交椭圆于B ,且2AF AB =,则椭圆的离心率为__________.答案1.π2.43.2π4.[0,2] 5.36.47.0或2-81-讨论a9.(,1]-∞-10.5)1()2(22=-++y x (圆心在公共弦上,3λ=-)11.6:作AH Ox ⊥,30AFH ∠=︒,12sin 30622A p p x =+︒=+,12cos 30A y =︒=12269-不扣分):2AF m =,2BF =,24m a +=,故(4m a =-,12AF a m =-,22212(2)AF AF c +=。

2020届高三数学小题狂练十九含答案

2020届高三数学小题狂练十九含答案

2020届高三数学小题狂练十九姓名 得分1.设a 是实数,且211i i a +++是纯虚数,则=a . 2.已知0a >,0b <,),(a b m ∈且0≠m ,则m 1的取值范围是 . 3.直线2(1)(3)750m x m y m ++-+-=与直线(3)250m x y -+-=垂直的充要条件是 .4.有一棱长为a 的正方体框架,其内放置一气球,使其充气且尽可能地膨胀(气球保持为球的形状),则气球表面积的最大值为 .5.若函数1)(2++=mx mx x f 的定义域是R ,则m 的取值范围是 .6.已知α,β均为锐角,且cos()sin()αβαβ+=-,则tan α的值等于 .7.设数列{}n a 的前n 项和为n S ,若11a =,13n n a S +=(n =1,2,3,…),则410log S = .8.已知定义在R 上的奇函数)(x f 满足)()2(x f x f -=+,则)6(f 的值为 .9.设双曲线C :22221x y a b-=(0a >,0b >)的右顶点为E ,左准线与两渐近线的交点分别为A ,B 两点,若60AEB ∠=︒,则双曲线C 的离心率e 等于 .10.函数)sin()(θ+=x x f (||2πθ<)满足对任意x ∈R 都有)6()6(x f x f --=+ππ,则θ= .11.在△ABC 中,AB =2BC =,CA =BC a =u u u r r ,CA b =u u u r r ,AB c =u u u r r ,则a b b c c a ⋅+⋅+⋅=r r r r r r .12.过抛物线214y x =准线上任一点作该抛物线的两条切线,切点分别为M ,N ,则直线MN 过定点__________.答案1.1-2.),1()1,(+∞⋃-∞ab3.3m =或2m =- 4.22a π5.[0,4]6.17.98.09.210.6π-11.6- 12.(0,1)(解法1:(,1)a -,2240i i x ax --=,122x x a +=,2222121212()248x x x x x x a +=+-=+,于是MN 中点为22(,)2a a +,21122122MN y y x x a k x x -+===-,直线MN :12a y x =+,过定点(0,1). 解法2:(,1)a -,1111()2y y x x x -=-,1111122y x a y --=-,11220ax y -+=.同理可得22220ax y -+=.故直线MN 方程为220ax y -+=,过(0,1))。

2020届高三数学小题狂练二十一含答案

2020届高三数学小题狂练二十一含答案

2020届高三数学小题狂练二十一姓名 得分1.已知等比数列{}n a 的前三项依次为1a -,1a +,4a +,则n a = . 2.抛物线24y x =上一点M 到其焦点的距离为3,则点M 的横坐标x = . 3.已知函数)(x f y =(x ∈R )满足)()2(x f x f =+,且]1,1[-∈x 时,2)(x x f =,则5()()log F x f x x =-的零点的个数为 .4.若(2,1)a =-v与(,2)b t =-v 的夹角为钝角,则实数t 的取值范围为 .5.函数2()lg(21)f x x ax a =-++在区间(1)-∞,上单调递减,则实数a 的取值范围是 . 6.设α为锐角,54)6sin(=+πα,则)32sin(πα+的值等于 . 7.已知0a >,且1a ≠,函数,0,()(14)2,0x a x f x a x a x ⎧<=⎨-+≥⎩满足对任意12x x ≠,都有1212()[()()]0x x f x f x --<成立,则a 的取值范围是 .8.已知a b >,1a b ⋅=,则22a b a b+-的最小值是 .9.已知数列{}n a ,{}n b 都是公差为1的等差数列,其首项分别为1a ,1b ,且115a b +=,1a ,1b ∈N *,则数列{}nb a (n ∈N *)前10项的和等于 .10.设椭圆1C 和双曲线2C 具有公共焦点1F ,2F ,其离心率分别为1e ,2e ,P 为1C 和2C 的一个公共点,且满足021=⋅PF PF ,则2212221)(e e e e +的值为 . 11.设22log 1()log 1x f x x -=+,12()(2)1f x f x +=(12x >),则12()f x x 的最小值为_______.12.对于一切实数x ,令[]x 为不大于x 的最大整数,则函数()[]f x x =称为高斯函数或取整函数.若()3n na f =(n ∈N *),n S 为数列{}n a 的前n 项和,则3n S =________.答案 1.134()2n -⋅2.2 3.44.(1,4)(4,)-+∞U 5.[1,2]6.2524(若3cos()65πα+=-,cos [cos()]066ππαα=+-<;或45<3πα<)7.11(,]428.222()2a b a b +=-+)9.85(11n a a n =+-,11n b b n =+-,113n b n a a b n =+-=+)10.2(2224m n c +=,12m n a +=,2||2m n a -=,后二式平方相加得22122e e --+=)11.23(21222122log 1log (2)11log 1log (2)1x x x x --+=++,化简得22214log log 1x x =-.于是212212221214log ()log log log 5log 1x x x x x x =+=+≥-,所以21212212212log ()122()1log ()1log ()13x x f x x x x x x -==-≥++(12x >))12.232n n -(33(1)(1)(1)n n S S n n n --=-+-+,311S ⨯=,3n S =232n n-)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高三数学小题狂练二十
姓名 得分
1.已知集合2{|log 1}M x x =<,{|1}N x x =<,则M N I = .
2.双曲线2
213
x y -=的两条渐近线的夹角大小为 .
3.设a 为常数,若函数1
()2
ax f x x +=
+在(2,2)-上为增函数,则a 的取值范围是 . 4.函数)2(log log 2x x y x +=的值域是 .
5.若函数()23f x ax a =++在区间)1,1(-上有零点,则a 的取值范围是 .
6.若1
(1)(1)2n n
a n
+--<+对于任意正整数n 恒成立,则实数a 的取值范围是 .
7.已知函数12
||4
)(-+=
x x f 的定义域是[,]a b (a ,b 为整数),值域是[0,1],则满足
条件的整数数对),(b a 共有 个.
8.设P ,Q 为ABC ∆内的两点,且2155AP AB AC =+u u u r u u u r u u u r ,AQ uuu r 23AB =u u u r 14
+AC u u u
r ,
则ABP ∆的面积与ABQ ∆的面积之比为 . 9.在等差数列{}n a 中,59750a a +=,且95a a >,
则使数列前n 项和n S 取得最小值的n 等于 . 10.设x ,y ∈R +,
31
2121=+++y x ,则xy 11.在正三棱锥A BCD -中,E ,F 分别是AB ,BC EF DE ⊥,1BC =,则正三棱锥A BCD -的体积是 .
12.设()f x 是定义在R 上的偶函数,满足(1)()1f x f x ++=,且当[1,2]x ∈时,
()2f x x =-,则(2016.5)f -=_________.
D
C
Q B
A
P
答案
1.(0,1) 2.60︒ 3.),2
1(+∞
4.),3[]1,(+∞--∞Y 5.(3,1)-- 6.)2
3,2[- 7.5(||[0,2]x ∈) 8.
4
5
9.6
10.16(8xy x y =++,8xy ≥+16xy ≥)
11.
24
2
(EF DE ⊥,EF ∥AC ,∴AC DE ⊥.又AC BD ⊥,∴AC ⊥平面
ABD .∵1BC =,∴2AB AC AD ===
,3162V =24
=)
12.0.5(2T =,(0.5)(0.5)(1.5)0.5f f f =-==)。

相关文档
最新文档