大学生物化学考试名词解释,简答题库
生物化学 名词解释

五、问答题
1.生物样品的含氮量能表示其蛋白质含量,为什么?试验中是如何计算的。
答:
由于蛋白质是体内的主要含氮物,且平均含氮量为16%,因此测定生物样品的含氮量就可以按照下列公式推算出蛋白质的大致含量:
蛋白质沉淀:
在一定条件下,蛋白疏水侧链暴露在外,肽链融会相互缠绕继而聚集,因而从溶液中析出。
变性的蛋白质易于沉淀,沉淀的蛋白质不一定变性
蛋白质的凝固作用:
蛋白质经强酸、强碱作用发生变性后,若将PH调至等电点,则变性蛋白质立即结成絮状的不溶解物,此絮状物仍可溶解于强酸强碱中。如再加热则絮状物可变成比较坚固的凝块,此凝块不易再溶于强酸和强碱中,这种现象称为蛋白质的凝固作用。
分子筛又称凝胶过滤,是层析的一种,层析柱内填满带有小孔的颗粒,一般由葡聚糖制成。蛋白质溶液加于顶部,任其往下渗漏,小分子蛋白质进入孔内,因而在柱中滞留时间较长,大分子蛋白质不能进入孔内而径直流出,因而不同大小的蛋白质得以分离。超速离心利用的是蛋白质在离心场中沉降系数不同而达到分离的目的。
7.举例说明蛋白质一级结构、空间结构与功能之间的关系。
在许多蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。三级结构:
整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。结构域是三级结构层次上的局部折叠区。(主要化学键是次级键:
疏水键、盐键、氢键和Van der Waals力等结构域:
(四)理化性质:
1.两性解离及等电点:
蛋白质分子除两端的氨基和羧基可解离外,氨基酸残基侧链中某些基团,在一定的溶液pH条件下都可解离成带负电荷或正电荷的基团。蛋白质是两性电解质,其解离程度取决于所处溶液的酸碱度。蛋白质的等电点(pI):
生物化学 名词解释

四、名词解释1 . peptide unit —肽单元,是指一个氨基酸的α - 羧基与另一个氨基酸的α - 氨基脱水生成的酰胺键称为肽键。
参与肽键形成的 6 个原子( C a 1 、 C 、 O 、 N 、 H 、 C a2 ) 位于同一平面, Ca 1 和 C a 2 在平面上所处的位置为反式构型,此同一平面上的 6 个原子构成所谓的肽单元。
2 . motif —模体,是具有特殊功能的超二级结构,由两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。
一个模体总有其特征性的氨基酸序列,并发挥特殊的功能。
3 . cooperativity —协同效应,指一个亚基与其配体( Hb 中的配体为 O 2 )结合后,能影响此寡聚体中另一亚基与配体的结合能力。
如果能促进作用称为正协同效应;反之,则为负协同效应。
4 . electrophoresis —电泳,指带电粒子在电场中向带相反电荷一极泳动的现象。
5 . salt precipitation —盐析,指将中性盐加入蛋白质溶液中,使蛋白质水化膜脱去,电荷被中和,导致蛋白质在水溶液中的稳定因素去除而沉淀。
6 .分子病—指蛋白质分子中起关键作用的氨基酸残基缺失或被替代,都会严重影响空间构象乃至生理功能,甚至导致疾病产生。
这种蛋白质发生变异所导致的疾病,被称之为分子病。
其病因为基因突变所致。
7 . primary structure of protein —一级结构,是蛋白质分子中,从 N- 端到 C- 端的氨基酸排列顺序。
8 . chromatography —层析,是蛋白质分离纯化的重要手段之一,待分离蛋白溶液(流动相)经过一种固态物质时,根据溶液中待分离的蛋白质颗粒大小、电荷多少及亲和力等,将待分离的蛋白质组分在两相中反复分配,并以不同的速度流经固定相而达到分离蛋白质的目的。
9 . protein coagulation —蛋白质凝固作用,指蛋白质经强酸、强碱作用发生变性后,仍能溶解于强酸或强碱溶液中,若将 pH 调至等电点,则变性蛋白立即结成絮状的不溶解物,此絮状物仍能溶解于强酸或强碱溶液中。
生化简答题与名词解释

生物化学(仅供参考)简答题:一、蛋白质的二级结构,主要有哪几种?答:二级结构既肽链主链的局部构象,尤其是那些有规律的周期性的结构,其中有一些非常的稳定,而且在蛋白质中广泛存在,常见的二级结构包括α-螺旋、β–折叠、β–转折,另外把那些没有规律性的局部构象称为无规则卷曲。
二:何为蛋白质的两性电离?答:蛋白质是两性电解质,在蛋白质分子中可解离的基团除再每条肽链上的氨基末端和羧基的末端外,还有肽链侧链上那些可电离的基团。
蛋白质分子在溶液中是解离成正离子还是解离成负离子,既取决于其分子上酸性基团还是碱性基团的多少以及俩者的相对比例,同时还受该溶液PH值影响。
在酸性较强的溶液中,碱性基团被抑制,则蛋白质分子解离成正离子,带正电荷,在碱性较强的溶液中,碱性基团解离被抑制,则蛋白质分子解离成负电荷,带负电。
这种现象被称为蛋白质的俩性电离。
三、简述DNA双螺旋结构的特点?答:1、两个链平行,核苷酸绕同轴但方向相反。
2、磷酸脱氧核糖主链位于螺旋的外侧,碱基位于螺旋内侧。
3、每10个核苷酸螺旋上升一圈,螺距3.4nm直径2nm。
4、两条链之间形成氢键有碱基互补配对规律5、双螺旋稳定性氢键与碱基堆积力。
四、蛋白质的α-螺旋结构?答:是单股右手螺旋,主链由-C-Cα、-N-重复构成,在螺旋的内侧,侧链在氨基酸侧链,在螺旋外侧,每个螺距5.4nm ,含3.6个氨基酸残基。
五、生物体内RNA种类以及功能?答:RNA有rRNA、tRNA 和mRNA三种。
rRNA与蛋白质构成核蛋白体,是蛋白质合成的场所;tRNA携带、运输活化的氨基酸;mRNA是蛋白质合成的模板,三种RNA均参与蛋白质的生物合成。
六、比较DNA与RNA在分子组成和结构的异同点?答:相同点:分子组成都含有碱基、戊糖和磷酸,碱基A、G、C。
分子结构上单核苷酸是基本结构单位,并以3′5′-磷酸二脂键相连成一级结构。
不同点:比较项目DNA RNA化学组成戊糖脱氧核糖核糖碱基AGCT AGCU分子结构二级结构的双螺旋,真核生物三级结构为核小体RNA为单链发夹形结构tRNA的二级结构为三叶草型结构,三级结构为倒L型细胞内分布细胞核其次为线粒体细胞浆其次为细胞仁生理功能遗传信息的储存与传递遗传信息传递参与蛋白质合成七、底物浓度对酶促反应的影响?答:在底物浓度较低时,反应速度随着底物浓度的提高而加快,两者成正比例关系;此后,随着底物浓度继续提高,反应速度还在加快,但是变化幅度越来越小,不再成正比例关系;最后,即使底物浓度在提高,反应速度也已经基本不变。
生物化学填空名词解释简答题

填空:1、结合酶,其蛋白质部分称酶蛋白,非蛋白质部分称辅助因子,二者结合其复合物称全酶。
2、三羧酸循环是由乙酰辅酶A与草酰乙酸缩合成柠檬酸开始的,每循环一次有4次脱氢、2次脱羧和1次底物水平磷酸化。
3、体内缺乏酪氨酸酶引起白化病,缺乏葡萄—6—磷酸脱氢酶引起蚕豆病,缺乏维生素C引起坏血病。
4、DNA复制的保真性至少要依赖三种机制遵守严格的碱基配对规律、聚合酶在复制延长中对碱基的选择功能、复制出错时有即时的校读功能。
5、氨基酸活化需要氨酰tRNA合成酶催化,使氨基酸的羧基与tRNA3'-OH之间以脂链相连,产物是氨酰tRNA。
6、通风是尿酸生成过多而引起的。
7、嘌呤核苷酸的从头合成分为两个阶段,首先合成IMP,然后再将其转化变成AMP和GMP。
8、蛋白质胶体状态的稳定因素是蛋白质分子上的表面电荷和水化膜。
9、糖酵解的最终产物是乳酸,糖有氧氧化的终产物是二氧化碳和水。
10、氨基酸在等电点(pl)时,以兼性离子形式存在,在pH>pl时以阴离子存在,在pH<pl 时,以阳离子形式存在。
11、尿素分子中的2个氮原子,一个来自氨,一个来自天冬氨酸。
12、糖原合成中,除A TP供能外,还需UTP供能,关键酶是糖原合酶,葡萄糖的供体是UDPG。
13、Cyt aa3可直接将电子传个氧,故又称为细胞色素氧化酶。
14、体内生成A TP的方式有氧化磷酸化和底物水平磷酸化两种。
15、原核生物RNA聚合识别酶、结合模板DNA的部位,也是控制转录的关键部位,称为启动子。
16、Watson-Crick提出的双螺旋结构中,磷酸核糖处于分子外侧,碱基处于分子内侧,螺旋每上升一圈核苷酸数为10。
17、无活性状态的酶的前体称为酶原。
18、酮体由乙酰乙酸、β-羟丁酸和丙酮组成。
名词解释:1、增色效应:是指变性后的DNA溶液的紫外吸收增强的效应。
DNA吸收高峰的波长为260nm。
2、底物水平磷酸化:底物分子内部能量重新分布,生成高能键,使ADP磷酸化生成A TP的过程。
生物化学的名词解释和问答题答案

24、胆汁酸的肠肝循环:在肠道中重吸收的各种胆汁酸,经门静脉重新入肝脏。肝脏再把游离胆汁酸转变成结合胆汁酸,与重吸收的结合胆汁酸一道,重新随胆汁排入肠腔,此过程称为胆汁酸的肠肝循环。
25、胆色素:胆色素是铁卟啉化合物在体内的主要分解代谢产物,包括胆红素、胆绿素、胆素原和胆素等,主要随胆汁、粪便排出。
17、中心法则:是DNA、RNA和蛋白质之间基本功能关系的解释,即DNA是自身复
制及转录合成RNA的模板,RNA是翻译合成蛋白质的模板,因此,遗传信息的流向是DNA →RNA →蛋白质
18、半保留复制:(半保留复制是DNA复制最重要的特征。)当DNA进行复制时,亲代DNA双链必须解开,两股链分别作为模板,按照碱基互补配对原则指导合成一股新的互补链,最终得到与亲代DNA碱基序列完全一样的两个子代DNA分子,每个子代DNA分子都含有一股亲代DNA链和一股新生DNA链,这种复制方式称为半保留复制。
(3)神经和激素调节:正副交感神经调节;胰岛β细胞分泌的胰岛素是唯一能降低血糖的激素;而能升高血糖浓度的激素主要有胰岛细胞分泌的胰高血糖素、肾上腺髓质分泌的肾上腺素、肾上腺皮质分泌的糖皮质激素、腺垂体分泌的生长激素和甲状腺分泌的甲状腺激素等。这些激素主要通过调节糖代谢的各主要途径来维持血糖浓度。
2、试叙述DNA与RNA的结构和组分的异同点。
4、试叙述进食过量糖类食物可导致发胖的生化机理
答:体内糖转化成脂肪的过程:
糖代谢产生的乙酰CoA可以合成脂肪酸和胆固醇,糖代谢产生的磷酸二羟丙酮可以还原生成3-磷酸甘油。糖代谢可产生ATP、NADPH+H+,然后由ATP供能,NADPH+H+供氢,在3-磷酸甘油基础上逐步结合3分子脂肪酸,合成甘油三脂。所以从食物中摄取的糖可以生成脂肪酸和3-磷酸甘油,进而合成甘油三酯,进入脂库。
生物化学期末复习(简答、名词解释)

⽣物化学期末复习(简答、名词解释)⽣物化学期末复习(简答、名词解释)1. 什么是物质代谢?什么是能量代谢?⼆者之间的关系如何?答:物质代谢:研究各种⽣理活性物质(如糖、蛋⽩质、脂类、核酸等)在细胞内发⽣酶促反应的途径及调控机理,包含旧分⼦的分解和新分⼦的合成;能量代谢:研究光能或化学能在细胞内向⽣物能(ATP)转化的原理和过程,以及⽣命活动对能量的利⽤。
能量代谢和物质代谢是同⼀过程的两个⽅⾯,能量转化寓于物质转化过程之中,物质转化必然伴有能量转化。
2. 中间代谢:消化吸收的营养物质和体内原有的物质在⼀切组织和细胞中进⾏的各种化学变化称为中间代谢。
3. 呼吸商(respiratory quotient 简称RQ):指⽣物体在同⼀时间内,释放⼆氧化碳与吸收氧⽓的体积之⽐或摩尔数之⽐,即指呼吸作⽤所释放的CO2 和吸收的O2 的分⼦⽐。
4. ⾃养型⽣物:为能够利⽤⽆机物合成有机物的类型,⼜分为光合⾃养——绿⾊植物,和化能⾃养——硝化细菌等。
5. 异养型⽣物:不能⾃⼰合成有机物,必须依靠⾃养⽣物制造的有机物⽣存。
6. 简述活体内实验及其意义。
答:1)⽤整体⽣物材料或⾼等动物离体器官或微⽣物细胞群体进⾏中间代谢实验研究称为活体内实验,⽤“in vivo”表⽰。
2)活体内实验结果代表⽣物体在正常⽣理条件下,在神经、体液等调节机制下的整体代谢情况,⽐较接近⽣物体的实际。
7. 活体外实验:⽤从⽣物体分离出来的组织切⽚,组织匀浆或体外培养的细胞、细胞器及细胞抽提物进⾏中间代谢实验研究称为活体外实验,⽤“in vitro”表⽰。
8. 简述代谢途径的探讨⽅法答:1)代谢平衡实验;2)代谢障碍实验(代谢途径阻断实验);3)使⽤抗代谢物;4)代谢物标记追踪实验;5)测定特征性酶;6)核磁共振波谱法。
9. 简述糖的⽣理功能答:1)作为⽣物体的结构成分;2)作为⽣物体内的主要能源物质;3)在体内转变为其他物质;4)作为细胞识别的信息分⼦。
生物化学:名词解释&简答题

名词解释1、等电点(PI):在某一pH的溶液中,氨基酸或蛋白质解离成阳离子和阴离子的趋势或程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸或蛋白质的等电点。
2、模体(序)(motif):在蛋白质分子中,有两个或三个具有二级结构的肽段在空间上相互接近,形成一个具有特殊功能的空间结构,称为motif3、结构域(domain):在多肽链上相邻的模序结构紧密联系,形成二个或多个在空间上可以明显区别的局部区域,各自行使其功能。
4、DNA变性:在一定理化因素作用下,DNA双螺旋的空间构象破坏解体,但其一级结构仍完整的现象称变性。
5、DNA复性:变性DNA经过一定处理重新形成双螺旋DNA的过程称复性。
6、Tm值:融解温度,在DNA发生热变性时,紫外光吸收值达到最大值50%时的温度称为融解温度(Tm值)。
在Tm值时,DNA分子内50%的双螺旋结构被解开。
7、Km:米氏常数,单底物反应中酶与底物可逆地生成中间产物和中间产物转化为产物这三个反应的速度常数的综合,是酶的特征性常数之一,其值等于反应速度为最大速度一半时的底物浓度。
8、酶的竞争性抑制作用:有些抑制剂与酶的底物结构相似,可与酶的底物竞争酶的活性中心,从而阻断酶与底物结合形成中间产物。
由于抑制剂与酶的结合是可逆的,抑制程度取决于抑制剂与酶的相对亲和力和与底物浓度的相对比例,这种作用称为竞争性抑制。
9、同工酶(Isoenzyme):具有相同催化作用,但酶分子结构,理化性质和免疫学性质不同的一类酶。
10、糖酵解(glycolysis):在缺氧状况下,葡萄糖或糖原分解为乳酸的过程称为糖酵解。
11、乳酸循环(Cori cycle):在肌肉中葡萄糖经酵解生成乳酸,乳酸经血循环运到肝脏,肝脏又将乳酸异生成葡萄糖,葡萄糖释放释入血液后又被肌肉摄取,这种代谢循环途径称为乳酸循环。
12、三羧酸循环(tricarboxylic acid cycle):由活性二碳化合物(乙酰CoA)与草酰乙酸缩合成柠檬酸开始,以四次脱氢、二次脱羧再生成草酰乙酸完成循环反应过程,成为三羧酸循环,又称kerb 循环和柠檬酸循环。
生物化学一名词解释及简答题

DNA的溶解温度(Tm值):引起DNA发生“溶解”的温度变化范围只不过几度,这个温度变化范围的中点称为氨的同化:由生物固氮和硝酸还原作用产生的氨,进入生物体后被转变为含氮有机化合物的过程氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的PH值,用符号PL表示氨基酸同功受体:每一个氨基酸可以有多过一个tRNA作为运载工具,这些tRNA称为该氨基酸同功受体半保留复制:双链DNA的复制方式,亲代链分离,每一子代DNA分子由一条亲代链和一条新合成的链组成必需脂肪酸:为人体生长所必需单不能自身合成,必须从食物中摄取的脂肪酸变构酶:或称别构酶,是代谢过程中的关键酶,它的催化活性受其三维结构中的构象变化的调节不对称转录:转录通常只在DNA的任一条链上进行,这称为不对称转录超二级结构:蛋白质分子中相邻的二构耽误组合在一起所形成的有规则的在空间上能辨认的二构组合体单体酶:只有一条多肽链的酶称为单体酶蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象蛋白质的沉淀作用:指在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象蛋白质的二级结构:指蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定球状分子结构的构象蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,一级二硫键的位置底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键,有此高能磷酸键提供能量使ADP磷酸化生成ATP的过程称为底物水平磷酸化底物专一性:酶对底物及其催化反应的严格选择性多酶体系:有几个酶彼此嵌合形成的复合体称为多酶体系发夹结构:RNA是单链线形分子,只有局部区域为双链结构,这些结构是由于RNA单链分子通过自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹结构反密码子:在tRNA链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA链上的密码反密码子:在转移RNA反密码子环中的三个核苷酸的序列,在蛋白质合成中通过互补的碱基配对,这部分结合到信使RNA的特殊密码上反义RNA:具有互补序列的RNA非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体内的各种组织和细胞分子杂交:不同的DNA片段之间,DNA片段与RNA片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名词解释:1、结构域:分子量较大的蛋白质在形成三级结构时,肽链中一些肽段可形成结构较为紧密、功能相对独立的特定区域称为结构域(domain),常包含多个超二级结构。
2、氨基酸的等电点:在某一PH值溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相同,成为兼性离子,呈电中性,此溶液的pH 值称该氨基酸的等电点。
3、蛋白质的等电点:在某一PH值溶液中,蛋白质解离成阳离子和阴离子的趋势相同,成为兼性离子,呈电中性,此溶液的pH值称该蛋白质的等电点。
4、蛋白质的变性:在某些物理因素或化学因素的作用下,蛋白质特定的空间构象被破坏,从而引起理化性质改变,生物活性丧失,这种现象称为蛋白质变性。
5、酶的活性中心:酶的必需基团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特意地结合并将底物转化为产物,这一区域称为活性中心。
辅酶或辅基参与组成酶的活性中心。
6、同工酶:同工酶是指在同种生物体内,催化同一种化学反应,但酶蛋白的分子结构和理化性质、免疫学特性都有所不同的一组酶。
7、酶的别构调节:一些代谢物与关键酶活性中心以外的某个部位可逆地结合,使其构象改变,活性也随之改变,这种调节称为酶的变构调节。
又称别构调节。
8、共价修饰:酶蛋白多肽链上的某些化学基团在另一种酶的催化作用下与某种化学基团发生可逆的共价结合,从而引起酶活性的改变,这种调节称为酶的化学修饰,也称共价修饰。
9、酶的竞争性抑制:竞争性抑制剂的化学结构与底物的化学结构相似,两者能够共同竟争同一酶的活性中心,结果影响了酶与底物的结合,使有活性的酶分子数减少,导致酶促反应速度下降,这种作用称为竞争性抑制作用。
竟争性抑制作用的强弱取决于抑制剂浓度与底物浓度的相对比例。
10、底物水平磷酸化:代谢物脱氢、脱水时,引起分子内能量重新分布,形成高能化学键,将底物分子中的高能键的能量直接转移给ADP 生成ATP的过程,称之为底物水平磷酸化。
11、脂肪动员:储存在脂肪组织中的脂肪,在脂肪酶的作用下逐步水解为甘油和脂肪酸并释放入血以供其它组织细胞摄取利用的过程叫脂肪动员。
12、氧化呼吸链:营养物质代谢脱下的成对氢原子以还原当量的形式存在(NADH+H+、FADH2),再通过多种酶和辅酶催化的氧化还原连锁反应逐步传递,最终与氧结合生成水。
这一过程与细胞呼吸有关,故称为氧化呼吸链,又称电子传递链(H=H++e)。
13、氧化磷酸化:代谢物脱下的氢,经线粒体氧化呼吸链电子传递释放能量,偶联驱动ADP磷酸化为ATP的过程,称为氧化磷酸化,又称为偶联磷酸化。
14、P/O 比值:是指氧化磷酸化过程中,每消耗1摩尔原子氧(即1/2 mol O2)时所对应消耗的无机磷酸的摩尔数(即合成ATP的摩尔数)。
15、化学渗透学说:此假说由英国科学家P.Mitchell于1961年提出,1978年获诺贝尔化学奖。
其基本要点是:电子经过呼吸链传递时,可将质子(H+)从线粒体内膜的基质侧泵到内膜外的胞浆侧,产生膜内外质子电化学梯度(H+浓度梯度和跨膜电位差),以此储存能量,当质子顺浓度梯度回流时驱动ADP与Pi生成ATP。
16、转氨基作用:在转氨酶的作用下,氨基酸与-酮酸之间进行氨基转移,氨基酸去掉-氨基生成相应的α-酮酸,而α-酮酸得到此氨基生成相应的氨基酸的过程。
17、一碳单位:是指某些氨基酸代谢过程中产生的只含有一个碳原子的基团,包括甲基(-CH3)、甲烯基(-CH2-)、甲炔基(-CH=)、甲酰基(-CHO)及亚氨甲基(-CH=NH)等。
18、生物转化:机体对外源性和内源性非营养物质进行代谢转变,(通过氧化、还原、水解和结合反应),使其获得极性基团,增加水溶性,成为易于从胆道或肾脏排出的物质,这种化学转变过程称为生物转化。
19、胆汁酸的肠肝循环:肝脏合成分泌的胆汁酸(包括初级、次级、结合型与游离型)排入肠道,在完成脂类的消化吸收后,约95%的胆汁酸在小肠下段重新吸收经门静脉入肝脏,再次分泌入肠腔,参与下一次的脂类消化吸收过程,这个循环称为胆汁酸的肠肝循环。
20、DNA的半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板按碱基配对规律,合成与模板互补的子链。
子代细胞的DNA,一股单链从亲代完整地接受过来,另一股单链则完全从新合成。
两个子细胞的DNA都和亲代DNA碱基序列一致。
这种复制方式称为半保留复制。
21、受体:通常是细胞膜上或细胞内能识别外院化学信号并与之结合的一类物质,其化学本质都是蛋白质。
22、信号转导:细胞针对外源信息所产生的细胞内生物化学变化及效应的全过程。
23、细胞通讯:是体内一部分细胞发出信号,另一部分细胞接收信号并将其转变为细胞功能变化的过程。
问答题:1、DNA的双螺旋结构特点:(双链、骨架、螺距、稳定(双股螺纹)①.DNA分子通常由两条相互平行但走向相反的脱氧多核苷酸链组成(即一条链是3’→5’走向,另一条是5’→3’走向)。
一般以右手螺旋形式绕同一根中心轴盘旋成大沟与小沟相间并存的右手双螺旋结构。
②.两链以-脱氧核糖-磷酸-为骨架,位于螺旋外侧,碱基位于内侧,两条链之间通过碱基形成的氢键稳固在一起,并且两条链的碱基处于同一平面,双双互补配对。
总是A对T(两个氢键,A=T),G对C(三个氢键,G≡C)。
③.螺距3.54nm,每圈10.4bp,相邻碱基平面距离0.34nm,螺旋直径为2.37nm。
(1234507)④.氢键维持双链横向稳定性;碱基堆积力(碱基对的疏水作用力,层与层之间)维持双链纵向稳定性。
2、信使RNA的结构要点和功能:(1)结构:①5’-端有7-甲基鸟嘌呤核苷三磷酸的帽子;②3’-端有多聚腺苷酸尾部;③分子量各异,细胞中含量最少。
(2)功能:mRNA是单条多核苷酸链,从5’→3’端方向的特定位置起每相邻的三个核苷酸组成一个密码子。
mRNA以密码子的形式携带DNA传递的遗传信息,是指导蛋白质生物合成的直接模板,决定了蛋白质中氨基酸的种类,数量,顺序。
3、转运RNA的结构要点和功能:(1)结构:①二级结构呈三叶草型,三级结构呈倒L型;②有反密码环,有携带氨基酸的3’-CCA端;③分子量小,含稀有碱基多,细胞含量适中。
(2)功能:是转运氨基酸的工具,一种tRNA可转运一种氨基酸。
首先由tRNA3’-CCA-OH端结合成氨基酰-tRNA,活化的氨基酰-tRNA 通过反密码环的反密码子识别的mRNA的密码子,使携带的氨基酸准确对号进入核糖体大亚基上的A位(受体),按密码排列顺序来合成多肽链。
4、以磺胺药物为例说明竞争性抑制。
竞争性抑制剂的化学结构与底物的化学结构相似,两者能够共同竟争同一酶的活性中心,结果影响了酶与底物的结合,使有活性的酶分子数减少,使整个反应体系的反应速度变慢,这种抑制现象称之为竞争性抑制作用。
抑制作用的强弱取决于抑制剂浓度与底物浓度的相对比例。
增加底物浓度可减弱以致解除抑制作用,如磺胺药物抑菌原理即竞争性抑制,某些细菌生长需对氨基苯甲酸(PABA)→FH2→FH4→核酸,磺胺药物结构中,对氨基苯磺酰胺与PABA结构相似,当足够大浓度时可抑制二氢叶酸合成酶,影响FH4的合成,影响菌体生长繁殖。
5、简述血糖的来源和去路。
来源:①食物中的淀粉经消化后,吸收进入血液;②肝糖原分解;③糖异生。
去路:①氧化分解供给能量;②肝、肌肉等组织合成糖原;③脂肪、肝等组织将糖转变为脂肪;④转变为其它糖类及其衍生物,如核糖;⑤转变为某些非必需氨基酸。
6、糖异生的生理意义。
(1).饥饿时维持血糖浓度的相对恒定是其最重要的作用;(2).糖异生是补充和恢复肝糖原的重要途径①间接途径(三碳途径):肝外组织产生的乳酸、丙氨酸、丙酮酸、甘油等进入肝脏异生为葡萄糖,再合成糖原的过程;这是合成糖原的主要途径。
②直接途径:肝细胞直接利用葡萄糖合成糖原的过程。
(3).肾糖异生增强有利于维持酸碱平衡。
①长期饥饿时,肾脏α-酮戊二酸因糖异生而减少;②肾脏摄取谷氨酰胺分解为谷氨酸后,再脱氨基生成α-酮戊二酸,脱氨基产生的氨气分泌入尿液中和酸。
关键酶:丙酮酸羧化酶、烯醇式丙酮酸羧激酶、果糖-1,6-磷酸酶、葡萄糖-6-磷酸酶7、磷酸戊糖途径的生理意义。
(1).磷酸戊糖途径是体内利用葡萄糖生成5-P-核糖的主要途径,为体内核苷酸的合成提供原料。
(2).此途径生成的NADPH,作为供氢体,参与多种代谢反应。
①作为供氢体,参与体内某些依赖NADPH 的生物合成。
如脂肪酸、胆固醇、类固醇激素的合成。
②NADPH是谷胱甘肽(GSH)还原酶的辅酶,能维持GSH成还原态,从而保护巯基蛋白、巯基酶的活性,保护红细胞膜结构的完整。
③参与羟化反应,如激素、药物、毒物的生物转化过程。
关键酶:6-磷酸葡萄糖脱氢酶8、以天冬氨酸或谷氨酸为例能够写出糖异生的关键酶和关键反应。
9、简述血浆脂蛋白的分类、生理功能、来源。
超速离心法将其分为:乳糜微粒、极低密度脂蛋白、低密度脂蛋白及高密度脂蛋白。
10、简述胆固醇的生理功能。
(1)胆固醇是生物膜的重要组分,维持细胞膜流动性和正常功能;(2)胆固醇是合成胆汁酸、类固醇激素及维生素D等重要生理活性物质的原料。
11、简述血氨的来源和去路。
来源:①氨基酸脱氨基生成的氨:这是代谢过程中按的主要来源。
②由肠管吸收的氨:主要是大肠内经腐败产生的氨,以及尿素经肠菌脲酶水解产生的氨。
③肾脏产生的氨,主要是谷氨酰胺的水解生成的氢。
去路:①最主要的去路是在肝内生成尿素由肾脏排出的;②合成谷氨酰胺;③合成某些非必须氨基酸及其它含氮化合物(如嘌呤、嘧啶);④经鸟氨酸循环的一氧化氮合酶支路氧化为NO;⑤在肾脏产生的氨可中和原尿中的酸以铵盐的形成随尿排出。
12、简述体内氨基酸代谢库有哪些来源和去路。
来源:①食物蛋白质的消化吸收;②组织蛋白质的分解;③体内合成非必须氨基酸;去路:①脱氨基分解;②脱羧基分解;③合成组织蛋白质;④转变成其它含氮化合物。
13、简述胆色素的代谢。
(p252)14,简述复制的酶类及其生理功能。
①解链酶:打开双链;②拓扑异构酶:解开DNA单链超螺旋结构;③DNA单链结合蛋白:结合在DNA分子上,使DNA单链保持稳定。
④引物酶:特殊的RNA聚合酶,催化一段引物RNA的合成,为DNA 复制提供3’-OH;⑤DNA聚合酶:将脱氧核苷酸聚合起来;⑥DNA连接酶:催化DNA链的两个DNA片段通过磷酸二酯键连接起来。
15,比较转录和复制的相似和区别。
相似:①过程:复制、延伸、终止;②模板:都以DNA为模板;③聚合酶:都需依赖DNA的聚合酶;④核苷酸之间的连接酶:都是3’,5’-磷酸二酯键;⑤新链合成方法:均为5’→3’;⑥碱基配对:都遵循碱基配对原则。
区别:15,①方向性:起始密码AUG位于5’末端,终止密码位于3’末端,阅读方向为5’→3’。