整式的乘除经典讲义

合集下载

整式的乘除(讲义及答案)

整式的乘除(讲义及答案)

整式的乘除(讲义)课前预习1. 整式的分类:___________________________________⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩定义:数字与字母的乘积组成的代数式单项式系数:单项式前面的次数:所有字母的整式定义:几个单项式的和项:组成多项式的每个单项式次数:项的次数2. ________________________________________________叫做同类项;把同类项合并成一项叫做合并同类项;合并同类项时,________________________________________________.3. 乘法分配律:()a b c +=_______________.4. 类比迁移:老师出了一道题,让学生计算52x y x ÷.小聪是这么做的:55232x y x x x x x y x y x x y x x x ⋅⋅⋅⋅⋅÷===⋅ 请你类比小聪的做法计算:22282m n m n ÷.知识点睛1. 单×单:_______乘以________,_________乘以________.2. 单×多:根据________________,转化为单×单.3. 多×多:握手原则.4. 单÷单:系数除以系数,字母除以字母.5. 多÷单:借用乘法分配律.精讲精练1. ①■342xy xy z ⋅=_______; ②2323(2)x y x y ⋅-=_______; ③231(4)2x y y ⎛⎫-⋅-= ⎪⎝⎭______;④322(3)(2)a a -⋅-; ⑤332(2)(2)x xy xy ⋅-⋅-.2. ①222(53)ab ab a b ⋅+______________________; ②221232ab c ab ab ⎛⎫-⋅= ⎪⎝⎭____________________; ③31(2)14a a ⎛⎫-⋅-= ⎪⎝⎭_________________;④222(2)()x y xy -⋅=_________________________; ⑤2222(3)x y z x x y -+-⋅=_________________________.3. 计算:①(34)(34)x y x y +⋅-; ②()(321)m n m n -⋅-+;③(2)(32)m n m n --⋅-; ④2(2)x y -;⑤()()a b c a b c +-⋅-+.4. 计算:①2 56(13)x x x x --+; ②210(23)(42)x x x --+.5. ①2212a b c ab ÷=_____;②3532(3)(0.5)m n m n -÷-=______; ③62(2)()xy xy -÷=______;④22(2)(_______)2a b a -÷=; ⑤4348()()3a b a b ⎡⎤-÷-=⎢⎥⎣⎦___________; ⑥23243(2)(7)14x y xy x y ⋅-÷.6. ①532(46)(2)x x x -÷-=_____________; ②2211322x y xy xy xy ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________; ③234432214633ab a b a b ab ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭___________________; ④23222()(2)a b a b ab -÷=_____________; ⑤43522(2)()m n m n mn --÷=________________; ⑥23(____________________)3231a a a ÷=-+-.7. 计算:①423322223(3)(2)(2)4a b ab a b a b a b --⋅---÷;②322()(2)(48)(4)a b a b ab a b ab +-+-÷-;③2222(1)(1)(2)a a a --++;④433222113()(2)22a a a a a a a ⎛⎫⎛⎫-+÷--÷⋅+ ⎪ ⎪⎝⎭⎝⎭.【参考答案】课前预习1.数字因数,指数和,多项式,次数最高2.所含字母相同,并且相同字母的指数也相同的项,把同类项的系数相加,字母和字母的指数不变3.ab +ac4.4n知识点睛1.系数,系数;字母,字母2.乘法分配律精讲精练1. ①248x y z②536x y - ③242x y④818a - ⑤7432x y2. ①10a 2b 3+ 6a 3b 2 ②232213a b c a b - ③4122a a +-④44252x y x y - ⑤3234226x y x y z x y --+3. ①22916x y -②22352m mn m n n ++-- ③2262m mn n -++④2244x xy y -+ ⑤2222a b bc c -+-4. ①32618x x x -+-②2286x x ++ 5. ①2abc②36n ③44 64x y④322a b ⑤66a b -⑥324x y - 6. ①323x x -+②621x y -+- ③22312182a b a b -- ④11b 44- ⑤232m n m --⑥532693a a a +-- 7. ①424a b -②223a ab b +- ③251a --④4361a a ---。

整式乘除全章讲义

整式乘除全章讲义

整式乘除全章讲义集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#幂的乘方【学习目标】1.会根据乘方的意义推导幂的乘方法则.2.熟练运用幂的乘方法则进行计算. 预习案一、知识3(-5)底数为_______,指数为_____,幂为______二、探究新知1想一想()3210等于多少分析:()3210将括号里的数看作整体,()3210表示3个210相乘,即(210)×(210)×(210)321010222⨯==++2.仔细阅读第一上面部分,计算下列各式,并说明理由。

(1)()426=( )×( )×( )×( )=()()()()()()⨯+++=66=(2)32)(a =( )×( )×( )=()()()()()⨯++=a a(3)2)(m a =( )×( )=()()()()⨯+=a a(4)n m a )(=( )×( )×……×( )×( )=()()()()()⨯+++=a a总结为:()=nma ____即:幂的乘方,底数______,指数______ 3牛刀小试 (1)()5310=_______(2)()24a =____________(3) ()3m a =___________ ⑷()4mx =_________(5)x 2·x 4+(x 3)2=___________ (6)、()()()()234612====x教学案 例1、⑴ ()1033 ⑵ ()x 32 ⑶()x m 5- ⑷ ()a a 533•(5)()4p p -⋅- (6) ()2332)(a a ⋅(7)()t t m⋅2(8)()()8364x x -例2、已知3,2==n m a a (m 、n 是正整数).求n m a 23+ 的值.例3.已知3460x y +-=,求816x y ⋅ 当堂检测1、43)2(2、()23a -3、2221⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛ 4、()423)(p p -⋅- 5、 -(a2)7 6、(103)37、4332⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛8、()[]436-9、(x3)4·x 2 ; 10;()()3232a a a --⋅(11)[-(a +b )4]3(12)523423)()(2)()(c c c c ----⋅⋅2若()[]1223xxm=,则m=________。

(完整版)整式的乘除经典讲义(可直接用)

(完整版)整式的乘除经典讲义(可直接用)

整式的乘除讲义同底数幂的乘法同底数幂的乘法法则:n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a++=⋅⋅(其中m 、n 、p 均为正数); ⑤公式还可以逆用:n m n m a a a ⋅=+(m 、n 均为正整数)幂的乘方与积的乘方1. 幂的乘方法则:mn n m a a=)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆. 2. ),()()(都为正数n m a a a mn m n n m ==.3. 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3 ⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。

5.要注意区别(ab )n 与(a+b )n 意义是不同的,不要误以为(a+b )n =a n +b n (a 、b 均不为零)。

6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即n n n b a ab =)((n为正整数)。

7.幂的乘方与积乘方法则均可逆向运用。

同底数幂的除法1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a-=÷ (a ≠0,m 、n 都是正数,且m>n).2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0.②任何不等于0的数的0次幂等于1,即)0(10≠=a a ,如1100=,(-2.50=1),则00无意义.③任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即p p a a 1=-( a ≠0,p 是正整数), 而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的; 当a<0时,a -p 的值可能是正也可能是负的,如41(-2)2-=,81)2(3-=-- ④运算要注意运算顺序.整式的乘法1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

2024年中考数学一轮复习提高讲义:整式的乘除

2024年中考数学一轮复习提高讲义:整式的乘除

整式的乘除知识梳理1.同底数幂的运算(1) 乘法: aᵐ⋅aⁿ=aᵐ⁺ⁿ,(aᵐ)ⁿ=aᵐⁿ,(ab)ⁿ=aⁿbⁿ(其中m,n 都是正整数). 注意事项:①am⋅a′′=am+n区别加法aᵐ+aⁿ≠aᵐ⁺ⁿ(如2³+2²=12≠32=2⁵);②区分−aᵐ⋅aⁿ与((--a)" · a" ,-一个是积的符号,另一个是底数的符号;③推广(aᵐ)ⁿ=aᵐⁿ:[(aᵐ)ⁿ]ᵖ=aᵐⁿᵖ.(2)除法(将除法转化为乘法计算):circle1a m÷a n=a m⋅1a n =a m−n=a m⋅a−n,由此我们还可以得到1a n=a−n;②a⁰=1,因为aᵐ÷a′′=1=a′m−m=a⁰.2.单项式相乘单项式与单项式相乘的法则:把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式.3.多项式相乘(1)多项式与单项式相乘:利用分配律,用单项式去乘以多项式的每一项,再把所得的积相加.m(a+b+c)=ma+mb+mc(2)多项式与多项式相乘:先用一个多项式中的每一项乘以另一个多项式中的每一项,再把所得的积相加.(a+b+c)(d+e)=ad+ae+bd+be+cd+ce多项式乘法结束后,一般按照各项的次数高低进行排列.4.重要公式(1)平方差公式:a²−b²=(a+b)(a−b)(2)完全平方公式:(a+b)²=(a+b)(a+b)=a²+2ab+b²(a−b)²=(a−b)(a−b)=a²−2ab+b²典型例题例 1计算:(1)(−2x²)⋅(−3x²y³z)(2)−6x2y⋅(a−b)3⋅13xy2⋅(b−a)2(3)(−4ab3)⋅(−18ab)−(12ab2)2分析本题主要考查单项式的乘法运算和混合运算,乘法运算可以根据单项式与单项式的乘法法则进行.特别是第(3)题注意运算顺序,先算乘方,再算乘法,最后算减法.解 (1)原式: =(−2)⋅(−3)⋅x²⋅x²y³z=6x⁴y³z(2) 原式=−6x2y⋅13xy2⋅(a−b)3⋅(b−a)2=−6x2y⋅13xy2⋅(a−b)3⋅(a−b)2=−6⋅13⋅x2y⋅xy2⋅[(a−b)3⋅(a−b)2]=−2⋅x3y3⋅(a−b)5(3) 原式=(−4ab3)⋅(−18ab)−14a2b4=12a2b4−14a2b4=14a2b4例 2计算:(1)(x+1)(x²−1)(2)(x−y)(x²+x+y)分析本题考查的是多项式的乘法运算,可以根据多项式与多项式的乘法法则进行. 解 (1)原式=x³−x+x²−1=x³+x²−x−1(2) 原式=x³+x²+xy−x²y−xy−y²=x³−x²y+x²−y=:例 3计算:(1)(−13x+34y3)(−34y3−13x)(2)(2a²+b)(−2a²+b)分析本题主要考查平方差公式的运用.解(1) 原式=−(34y3−13x)(34y3+13x)=−(34y3)2+(13x)2=−916y6+19x3(2) 原式: =(b+2a²)(b−2a²)=b²−4a⁴双基训练1.下面是某同学在一次作业中的计算摘录:⑬a+2b=5ab;②4m³n−5mn³=−m³n;③4x³⋅(−2x²)=−6x³;④4a³b÷(−2a²b)=−2a;⑤(a³)²=a⁵;⑥(−a)³÷(−a)== -a²其中正确的个数有( ).A. 1个B.2个C.3 个D. 4个2.计算(x²−3x+n)(x²+mx+8)的结果中不含x²和 x³的项,则 m,n 的值分别为( ).A. m=3,n=1B. m=0,n=0C. m=-3,n=-9D. m=-3,n=83.下列分解因式不正确的是( ).A.x³−x=x(x²−1)B.m²+m−6=(m+3)(m−2)C.(a+4)(a−4)=a²−16D.x²+y²=(x+y)(x−y)4.我们约定a⊗b=10“×10”,如: 2⊗3=10²×10³=10⁵,,那么 4⊗8 为 ( ).A.32B. 10³²C.10¹²D. 12¹⁰5.下列各式是完全平方式的是( ).A.x2−x+14B.1+4x²C.a²+ab+b²D.x²+2x−16.如图18-1所示,矩形花园ABCD 中,AB=a,AD=b,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RST K.若 LM=RS=c,则花园中可绿化部分的面积为( ).A.bc−ab+ac+b²B.a²+ab+bc−acC.ab−bc−ac+c²D.b²−bc+a²−ab7.如图18-2(a)所示,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分裁剪后拼成一个矩形(如图18-2(b)所示),上述操作所能验证的等式是( ).A.a²−b²=(a +b )(a −b )B.(a −b )²=a²−2ab +b²C.(a +b )²=a²+2ab +b²D.a²+ab =a (a +b )8.下列多项式中能用平方差公式分解因式的是( )A.a²+(−b )²B.5m²−20mnC.−x²−y²D.−x²+99.若 9x²+mxy +16y²是一个完全平方式,那么 m 的值是 .10.(23)2007×(1.5)2008÷(−1)2009=¯.11.分解因式: a²−1+b²−2ab =.12.如果((2a+2b+1)(2a+2b-1)=63,那么a+b 的值为 .13.把20厘米长的一根铁丝分成两段,将每一段围成一个正方形,如果这两个正方形的面积之差是5平方厘米,则这两段铁丝分别长 .14. 多项式 9x²+1加上一个单项式后,能成为一个完全平方式,那么加上的单项式可能是 .15. 若 3x =12,3y =23,则 3ˣ⁻²ʸ等于 .16. 比较3⁵⁵⁵,4⁴⁴⁴,5³³³的大小: > > .17.计算.(1)(23a 2b)3÷(13ab 2)2×34a 3b 2(2)(x 4+3y)2−(x 4−3y)2(3)(2a-3b+1)²(4)(x²−2x −1)(x²+2x −1)18.化简求值: [(x +12y)2+(x −12y)2](2x 2−12y 2),其中 x =−3,y =4.19.已知实数x 满足x+1x =3,求x2+1x2的值.20.已知.A=2x+y,B=2x-y,计算A²−B².能力提升21.若x+y=2m+1, xy=1,且21x²−48xy+21y²=2010,则m= .22. 设(1+x)²(1−x)=a+bx+cx²+dx³,则。

《整式的乘除》全章复习与巩固(基础)知识讲解(猪猪老师)

《整式的乘除》全章复习与巩固(基础)知识讲解(猪猪老师)

《整式的乘除》全章复习与巩固(猪猪老师)
【知识网络】
【要点梳理】
要点一、幂的运算
1.同底数幂的乘法:
(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:
(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方: (n 为正整数);积的乘方,等于各因数乘方的积.
4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).
同底数幂相除,底数不变,指数相减.
5.零指数幂:()0
10.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n n a a
-=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.
要点二、整式的乘法和除法
1.单项式乘以单项式
单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
2.单项式乘以多项式
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即c b a m ,,,mc mb ma c b a m ++=++)((都是单项式).
3.多项式乘以多项式
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.。

(完整版)整式的乘除法专题讲义

(完整版)整式的乘除法专题讲义

第151讲整式的乘除法专题一、知识框架二、本节重点1.幂的乘法运算:(1)同底数幂的乘法:同底数幂相乘底数不变指数相加.(注意当底数互为相反数时要化成同底数幂,再运用同底数幂乘法法则进行运算).表示:m n m na a a+⋅=(,m n都是整数)(2)幂的乘方:幂的乘方,底数不变指数相乘.表示:()n m mna a=(,m n都是整数);逆运算:()()n mmn m na a a==(3)积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.表示:()n n nab a b=(n是整数);逆运用:()nn na b ab=2.同底数幂的除法:同底数幂相除,底数不变,指数相减.表示:m n m na a a-÷=(0,,a m n≠都是整数).3.整式的乘法运算:(1)单项式乘法法则:单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有字母,连同它的指数作为积的一个因式.(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.(3)多项式与多项式相乘:多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加.4.整式的除法运算:(1)单项式除以单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;(2)多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数.三、学生笔记四、经典题型题型一:幂的乘法运算1. 计算(1)()()()3225a a a a -⋅-⋅-⋅ (2)()()()24s t t s s t -⋅-⋅-(3)()()3224233a b ab ⋅- (4)()()()()32232228x y x x y +⨯-⨯-(5)()()2003200231515530.12522135⎛⎫⎛⎫⋅+⋅ ⎪ ⎪⎝⎭⎝⎭ (6)()()23m n x y y x ⎡⎤⎡⎤-⋅-⎣⎦⎣⎦2. (1)如果1128164n n ⋅⋅=,则_________n =.(2)已知()()535,7x y x y +=+=,则()812x y +的值为_____________. (3)已知333,2m n a b ==,求()()332242m n m n m n a b a b a b +-⋅⋅⋅的值_________________. 3. 若()22nab -与29m a b -互为相反数,求m n 的值.4. (1)已知31416181,27,9a b c ===,则,,a b c 的大小关系____________________.(2)比较5554443333,4,5的大小______________________.题型二:同底数幂的除法5. (1)()()()()33323423a a a a ⎡⎤⋅-÷÷⎢⎥⎣⎦(2)1381x =6. 用科学记数法表示下列各数:(1)0.0000512(2)-0.00000717. 计算:(用科学记数法表示结果)(1)()()479101810⨯÷-⨯ (2)()()347210210---⨯÷-⨯8. 若34,97x y ==,则23x y -的值____________.9. 已知()321x x +-=,整数x 的值为________________.10. 计算21103,105αβ--==,求6210αβ+的值.题型三:整式的乘法运算11. (1)()()3252345a a a a -+-⋅-(2)()()2221354a b ab a b a ab b ⎡⎤+--⎣⎦(3)()()()3121x x x x +---+ (4)()()()()221124x x x x -+---12. (1)已知56x y +=,求2530x xy y ++的值.(2)已知+5,6x y xy ==,求22x y xy +的值.13. ()()222762x xy y x y x y A x y B -----=-+++.求__________,___________A B ==.14. 若多项式28x px ++和多项式23x x q -+的乘积中不含3x 和2x 项,求p 和q 的值.15. 先化简,再求值:()()()()122322x y x y x y x y ----+,其中22,5x y =-=.题型四:整式的除法运算16. (1)()35223123a b c a b -÷- (2)232443232113248a b c ab c a b ⎡⎤⎛⎫⎛⎫⎛⎫--÷÷-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦17. 化简求值:()()()2544545x y y x y x ⎡⎤+-+÷-⎣⎦,其中1,3x y =-=.18. 若x 取整数,则使分式6321x x +-的值为整数的x 值有___________个. 19. 若13x x+=,则2421x x x ++的值为_______________.。

(文德教育材料)整式的乘除讲义

(文德教育材料)整式的乘除讲义

整式的乘除讲义知识总结:1、知识框图单项式式多项式同底数幂的乘法幂的乘方积的乘方幂运算同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、同底数幂的乘法1、n个相同因式(或因数)a相乘,记作a n,读作a的n次方(幂),其中a为底数,n为指数,a n的结果叫做幂。

2、底数相同的幂叫做同底数幂。

3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。

即:a m﹒a n=a m+n。

4、此法则也可以逆用,即:a m+n = a m﹒a n。

5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

二、幂的乘方1、幂的乘方是指几个相同的幂相乘。

(a m)n表示n个a m相乘。

2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。

(a m)n =a mn。

3、此法则也可以逆用,即:a mn =(a m)n=(a n)m。

三、积的乘方1、积的乘方是指底数是乘积形式的乘方。

2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。

即(ab)n=a n b n。

3、此法则也可以逆用,即:a n b n =(ab)n。

四、三种“幂的运算法则”异同点1、共同点:(1)法则中的底数不变,只对指数做运算。

(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。

(3)对于含有3个或3个以上的运算,法则仍然成立。

2、不同点:(1)同底数幂相乘是指数相加。

(2)幂的乘方是指数相乘。

(3)积的乘方是每个因式分别乘方,再将结果相乘。

五、同底数幂的除法1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:a m ÷a n =a m-n(a ≠0)。

2、此法则也可以逆用,即:a m-n = a m ÷a n(a ≠0)。

(完整版)整式的乘除法专题讲义

(完整版)整式的乘除法专题讲义

李甲数学让高分成为习惯第151讲整式的乘除法专题乘法运嘗•込够垃三方if 血.二 -(方伽:■、本节重点 1. 幕的乘法运算: (1) 同底数幕的乘法:同底数幕相乘底数不变指数相加 •(注意当底数互为相反数时要化成同底数幕,再运用同底数幕 乘法法则进行运算).表示:a m a n a m n ( m, n 都是整数)(2) 幕的乘方:幕的乘方,底数不变指数相乘 ^a ma mn ( m,n 都是整数);逆运算:a mn(3)积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幕相乘 nn nn nn表示: ab a b ( n 是整数);逆运用:a b ab2. 同底数幕的除法:同底数幕相除,底数不变,指数相减.表示:a m a n a mn ( a 0,m,n 都是整数)3. 整式的乘法运算:(1) 单项式乘法法则:单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含 有字母,连同它的指数作为积的一个因式 .(2) 单项式与多项式相乘:单项式乘以多项式,是通过乘法的分配律,把它转化为单项式乘以单项 式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加(3) 多项式与多项式相乘:多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的 每一项,再把所得的积相加. 4. 整式的除法运算:(1) 单项式除以单项式:单项式相除,把系数、同底数幕分别相除,作为商的因式,对于只在被除 式里含有的字母,则连同它的指数作为商的一个因式;(2) 多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商 相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数、知识框架表示: 反丸1袖魅三、学生笔记四、经典题型题型一:幕的乘法运算 1.计算(1) a 3 a 22. (1) 如果 n 2 8 n16411 ,则 n(2)已知x 5y 35, x y 7,则 1 x 8 y 的值为2(3) 已知3m a 3,b 31 n 2,求 a 2m 3b n 3a 2mb n a 4m b 2n 的值 3. 若 nab 2 2 与 9a 2b' m互为相反数,求 m n 的值4.( 1)已知 a 8131,b 2741,C 961,则 a,b,c 的大小关系 ___________________________ (2)比较 3555,4 444,5333 的大小 _________________________ .题型二:同底数幕的除法35. ( 1) a 3a4(3)3a 2 3ab 2(4) 2x 2y 3 8 x 2 $ x 2(5)150.1252152003 132320023 mn 2(6) x yy x24(2) st t s st(2)3x -818. 若 3x 4,9y 7,则 3x 2y 的值 _________________ . 9. 已知x 2x 31,整数x 的值为 __________________ 10. 计算 10 2 3,10-,求 106 12 的值•51 已知 x 5y 6,求 x2 5xy 2 已知 x+y 5,xy 6,求 x y11. (1)c3 c 22a 3a4a5a 51 2 2(2) a b 3ab a b4(3) x 3 x 1x x 2 12(4) x 1 x 1题型三:整式的乘法运算 5a ab b 22x 2 x 46. 用科学记数法表示下列各数:(1)0.00005127. 计算:(用科学记数法表示结果)(1) 9 10418 107(2)-0.0000071(2) 2 102 10 7 312. 30y 的值.2xy 的值.李甲数学让高分成为习惯2 213. x xy 2y x 7y 6 x 2y A x y B .求A李甲数学让高分成为习惯题型四:整式的除法运算 16. ( 1) 12a 3b 5c 23a 2b 318. 若x 取整数,则使分式的值为整数的x 值有 _____________ 个. 2x 1219. 若x13,则〒的值为 _____________________________ .xx x 114.若多项式x 22px 8和多项式x3x q 的乘积中不含x 3和x 2项,求p 和q 的值. 15.先化简,再求值:x y x 2y12 2x 3y x 2y ,其中 x2,y17.化简求值:25x 4y 4y 5x 4y5x ,其中 x 1,y 3.(2)21 2」4 4 a b c 3 1 ,3 2ab c-a 3b 2248。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘除讲义三. 同底数幂的乘法同底数幂的乘法法则:n m n m a a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a++=⋅⋅(其中m 、n 、p 均为正数); ⑤公式还可以逆用:n m n m a a a⋅=+(m 、n 均为正整数)四.幂的乘方与积的乘方1. 幂的乘方法则:mn n m a a=)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆. 2. ),()()(都为正数n m a a a mn m n n m ==.3. 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成-a 3 ⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。

5.要注意区别(ab )n 与(a+b )n 意义是不同的,不要误以为(a+b )n =a n +b n (a 、b 均不为零)。

6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即n n n b a ab =)((n为正整数)。

7.幂的乘方与积乘方法则均可逆向运用。

五. 同底数幂的除法1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a-=÷ (a ≠0,m 、n 都是正数,且m>n).2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0.②任何不等于0的数的0次幂等于1,即)0(10≠=a a ,如1100=,(-2.50=1),则00无意义.③任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即p p a a 1=-( a ≠0,p 是正整数), 而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的; 当a<0时,a -p 的值可能是正也可能是负的,如41(-2)2-=,81)2(3-=-- ④运算要注意运算顺序.六. 整式的乘法1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。

这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。

2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。

3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘ab x b a x b x a x +++=++)())((2,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。

对于一次项系数不为1的两个一次二项式(mx+a )和(nx+b )相乘可以得到ab x ma mb mnx b nx a mx +++=++)())((2七.平方差公式1.平方差公式:两数和与这两数差的积,等于它们的平方差,即22))((b ab a b a -=-+。

其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

八.完全平方公式1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍, 即2222)(b ab a b a +±=±;口决:首平方,尾平方,2倍乘积在中央;2.结构特征:①公式左边是二项式的完全平方;②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现222)(b a b a ±=±这样的错误。

九.整式的除法1.单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;2.多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

(一)填空题(每小题2分,共计20分)1.x 10=(-x 3)2·_________=x 12÷x ( )【答案】x 4;2.2.4(m -n )3÷(n -m )2=___________.【答案】4(m -n ).3.-x 2·(-x )3·(-x )2=__________.【答案】x 7.4.(2a -b )()=b 2-4a 2.【答案】-2a -b .5.(a -b )2=(a +b )2+_____________.【答案】-4ab .6.(31)-2+π0=_________;4101×0.2599=__________.【答案】10;16. 7.2032×1931=( )·( )=___________.【答案】20+32,20-32,39995. 8.用科学记数法表示-0.0000308=___________.【答案】-3.08×10-5.9.(x -2y +1)(x -2y -1)2=( )2-( )2=_______________.【答案】x -2y ,1x 2-4xy +4y .10.若(x +5)(x -7)=x 2+mx +n ,则m =__________,n =________.【答案】-2,35.(二)选择题(每小题2分,共计16分)11.下列计算中正确的是…………………………………………………………………( )(A )a n ·a 2=a 2n (B )(a 3)2=a 5 (C )x 4·x 3·x =x 7 (D )a 2n -3÷a 3-n =a 3n -6【答案】D .12.x 2m +1可写作…………………………………………………………………………( )(A )(x 2)m +1 (B )(x m )2+1 (C )x ·x 2m (D )(x m )m +1【答案】C .13.下列运算正确的是………………………………………………………………( )(A )(-2ab )·(-3ab )3=-54a 4b 4(B )5x 2·(3x 3)2=15x 12(C )(-0.16)·(-10b 2)3=-b 7(D )(2×10n )(21×10n )=102n 【答案】D . 14.化简(a n b m )n ,结果正确的是………………………………………………………( )(A )a 2n b mn (B )n m n b a 2 (C )mn n b a 2 (D )n m n b a 2【答案】C .15.若a ≠b ,下列各式中不能成立的是………………………………………………( )(A )(a +b )2=(-a -b )2 (B )(a +b )(a -b )=(b +a )(b -a )(C )(a -b )2n =(b -a )2n (D )(a -b )3=(b -a )3【答案】B .16.下列各组数中,互为相反数的是……………………………………………………( )(A )(-2)-3与23 (B )(-2)-2与2-2 (C )-33与(-31)3 (D )(-3)-3与(31)3【答案】D .17.下列各式中正确的是………………………………………………………………( )(A )(a +4)(a -4)=a 2-4 (B )(5x -1)(1-5x )=25x 2-1(C )(-3x +2)2=4-12x +9x 2 (D )(x -3)(x -9)=x 2-27【答案】C .18.如果x 2-kx -ab =(x -a )(x +b ),则k 应为…………………………………( )(A )a +b (B )a -b (C )b -a (D )-a -b【答案】B .(三)计算(每题4分,共24分)19.(1)(-3xy 2)3·(61x 3y )2; 【答案】-43x 9y 8. (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);【答案】516ax 4y . (3)(2a -3b )2(2a +3b )2;【答案】16a 4-72a 2b 2+81b 4.(4)(2x +5y )(2x -5y )(-4x 2-25y 2); 【答案】625y 4-16x 4.(5)(20a n -2b n -14a n -1b n +1+8a 2n b )÷(-2a n -3b );【答案】-10ab n -1+7a 2b n -4a n +3.(6)(x -3)(2x +1)-3(2x -1)2.【答案】-10x 2+7x -6.20.用简便方法计算:(每小题3分,共9分)(1)982;【答案】(100-2)2=9604.(2)899×901+1;【答案】(900-1)(900+1)+1=9002=810000.(3)(710)2002·(0.49)1000. 【答案】(710)2·(710)2000·(0.7)2000=49100. (四)解答题(每题6分,共24分)21.已知a 2+6a +b 2-10b +34=0,求代数式(2a +b )(3a -2b )+4ab 的值.【提示】配方:(a +3)2+(b -5)2=0,a =-3,b =5,【答案】-41.22.已知a +b =5,ab =7,求222b a +,a 2-ab +b 2的值. 【答案】222b a +=21[(a +b )2-2ab ]=21(a +b )2-ab =211. a 2-ab +b 2=(a +b )2-3ab =4.23.已知(a +b )2=10,(a -b )2=2,求a 2+b 2,ab 的值.【答案】a 2+b 2=21[(a +b )2+(a -b )2]=6, ab =41[(a +b )2+(a -b )2]=2. 24.已知a 2+b 2+c 2=ab +bc +ac ,求证a =b =c .【答案】用配方法,a 2+b 2+c 2-ab -bc -ac =0,∴ 2(a 2+b 2+c 2-ab -ac -bc )=0,即(a -b )2+(b -c )2+(c -a )2=0.∴ a =b =c .(五)解方程组与不等式(25题3分,26题4分,共7分)25.⎩⎨⎧+=-+=+-++.3)3)(4(0)2()5)(1(xy y x y x y x 【答案】⎪⎩⎪⎨⎧=-=.237y x26.(x +1)(x 2-x +1)-x (x -1)2<(2x -1)(x -3). 【答案】x >-31.。

相关文档
最新文档