第六章控制系统误差分析新
合集下载
控制工程基础6章

H(S) +
Xor(S)
+ N(S)
+
-
E(S)
G1(S)
G2(S)
X0(S)
设xor (t )是控制系统希望的输出信号,而 xo (t ) 是实际的输出信号, 一般把二者之差定义为 误差信号,记做e(t), e(t) = xor (t ) - xo (t )
m(p) 是理想算子,是认为规 定的。一般情况下, m( s) =1/H(s)。
时的系统输出端的稳态误差。
1 2 例题:求下图所示系统 在1(t), t, 和 t 分别作用下的稳态误差 。 2
五、扰动引起的误差
+
G1(s) N(s) G2(s) Xo(s)
Xi(s) +
+
Y(s) H(s)
要想求稳态偏差,可以利用叠加原理,分别求
出给定信号Xi(s) 和N(s)单独作用时的偏差,然
2 2
对于0型系统,Ka=0,ess=
对于I型系统, Ka=0, ess=
对于II型系统, Ka=K, ess= 1/K 对于III型及以上系统, Ka= , ess= 0
0和I型系统不能跟踪单位斜坡输入,I I型系统能跟踪单 位斜坡输入但有静差,需要III型以上系统才能消除静差。
10 G 例:设有一非单位反馈控制系统, ( s) = s 1 H(s)=Kh,输入为单位阶跃。试求, Kh=1和0.1
结构形式 输入形 式
1 例:设单位反馈控制系统的 G( s) = ,输 2 Ts t 入信sint , 2 试求系统的稳态误差。
为什么? 因为:E(s) = s (s 2 2 )(s 1 ) T T 1 T s T 2 3 1 =- 2 2 2 2 2 2 2 2 1 T 1 s 2 T 1 s 2 T 1 s T 求拉式反变换 T
Xor(S)
+ N(S)
+
-
E(S)
G1(S)
G2(S)
X0(S)
设xor (t )是控制系统希望的输出信号,而 xo (t ) 是实际的输出信号, 一般把二者之差定义为 误差信号,记做e(t), e(t) = xor (t ) - xo (t )
m(p) 是理想算子,是认为规 定的。一般情况下, m( s) =1/H(s)。
时的系统输出端的稳态误差。
1 2 例题:求下图所示系统 在1(t), t, 和 t 分别作用下的稳态误差 。 2
五、扰动引起的误差
+
G1(s) N(s) G2(s) Xo(s)
Xi(s) +
+
Y(s) H(s)
要想求稳态偏差,可以利用叠加原理,分别求
出给定信号Xi(s) 和N(s)单独作用时的偏差,然
2 2
对于0型系统,Ka=0,ess=
对于I型系统, Ka=0, ess=
对于II型系统, Ka=K, ess= 1/K 对于III型及以上系统, Ka= , ess= 0
0和I型系统不能跟踪单位斜坡输入,I I型系统能跟踪单 位斜坡输入但有静差,需要III型以上系统才能消除静差。
10 G 例:设有一非单位反馈控制系统, ( s) = s 1 H(s)=Kh,输入为单位阶跃。试求, Kh=1和0.1
结构形式 输入形 式
1 例:设单位反馈控制系统的 G( s) = ,输 2 Ts t 入信sint , 2 试求系统的稳态误差。
为什么? 因为:E(s) = s (s 2 2 )(s 1 ) T T 1 T s T 2 3 1 =- 2 2 2 2 2 2 2 2 1 T 1 s 2 T 1 s 2 T 1 s T 求拉式反变换 T
第六章 控制系统的误差分析和计算

解
+
E ( s)
10 s
X o ( s)
e ( s ) =
1 1 s = = 1 + G ( s ) 1 + 10 s + 10 s s ess = lim si iXi (s) s →0 s + 10 1 Xi ( s) = s s 1 ess = lim si i =0 s →0 s + 10 s
K a = lim s 2 iG ( s )
s →0
对0型系统 型系统
K a = lim s 2 i
s →0
K 0 (Ta s + 1)(Tb s + 1) (Tm s + 1) =0 (T1s + 1)(T2 s + 1) (Tn s + 1)
对Ⅰ型系统
K a = lim s 2 i
s →0
K1 (Ta s + 1)(Tb s + 1) (Tm s + 1) s (T1s + 1)(T2 s + 1) (Tn s + 1)
=0
自动控制原理
对Ⅱ型系统
K2 (Ta s +1)(Tb s +1)(Tms +1) Ka = lim s i 2 = K2 s→0 s (T1s +1)(T2s +1)(Tn s +1)
2
所以, 就是Ⅱ 所以,静态加速度误差系数 Ka 就是Ⅱ型系统的开环放大倍 对于Ⅲ型或高于Ⅲ型的系统, 数 K 2 。对于Ⅲ型或高于Ⅲ型的系统, K a 才为 ∞ 。 在单位加速度输入下 型系统, 对0型系统, ess = ∞ 型系统 型系统, 对Ⅰ型系统,
这就是求去单位反馈系统稳态误差的方法
+
E ( s)
10 s
X o ( s)
e ( s ) =
1 1 s = = 1 + G ( s ) 1 + 10 s + 10 s s ess = lim si iXi (s) s →0 s + 10 1 Xi ( s) = s s 1 ess = lim si i =0 s →0 s + 10 s
K a = lim s 2 iG ( s )
s →0
对0型系统 型系统
K a = lim s 2 i
s →0
K 0 (Ta s + 1)(Tb s + 1) (Tm s + 1) =0 (T1s + 1)(T2 s + 1) (Tn s + 1)
对Ⅰ型系统
K a = lim s 2 i
s →0
K1 (Ta s + 1)(Tb s + 1) (Tm s + 1) s (T1s + 1)(T2 s + 1) (Tn s + 1)
=0
自动控制原理
对Ⅱ型系统
K2 (Ta s +1)(Tb s +1)(Tms +1) Ka = lim s i 2 = K2 s→0 s (T1s +1)(T2s +1)(Tn s +1)
2
所以, 就是Ⅱ 所以,静态加速度误差系数 Ka 就是Ⅱ型系统的开环放大倍 对于Ⅲ型或高于Ⅲ型的系统, 数 K 2 。对于Ⅲ型或高于Ⅲ型的系统, K a 才为 ∞ 。 在单位加速度输入下 型系统, 对0型系统, ess = ∞ 型系统 型系统, 对Ⅰ型系统,
这就是求去单位反馈系统稳态误差的方法
控制工程基础 第6章 控制系统的误差分析和计算

C0 (s)
N (s)
R(s) B(s)
(s)
-
G1 ( s )
+ G2 (s)
H (s)
e(s) -
C(s)
(b)
误差
C0(s) (s) N(s)
R(s)
1 H(s)
R1(s) C0(s)
E1(s(s))H(s)
E(s)
G1(s)
G2(s) C(s)
(c)
e(s) -+ (s)
H (s)
E(s)
因为偏差 (s) R(s) B(s) H (s)C0 (s) H (s)C(s) H (s)e(s)
这里 R(s) H (s)C0 (s) 是基于控制系统在理想工作情况下
(s) 0 得到的。
即当控制系统的偏差信号 (s) 0 时,该控制系统无调节控制
作用,此时的实际输出信号C(s)就是希望输出信号 C0 (s) 。
G(s)H(s)
i1 nv
sv (Tis 1)
i1
(4)稳态误差系数和稳态误差的总结 (系统在控制信号作用下)
此表概括了0型、Ⅰ型和Ⅱ型反馈控制系统在不同输入信号作用下的
稳态误差。在对角线上,稳态误差为有限值;在对角线以上部分,
稳态误差为无穷大;在对角线以下部分,稳态误差为零。由此表可
以得如下结论:
何改变系统结构?
(s)
- G1 K1
解:(1)给定作用下的误差传递函数为
RE (s)
(s)
R(s)
1
1
K1
K2 s
s s K1K2
当给定输入为单位阶跃输入时,稳态误差为
N (s)
+
G2
K2 s
控制工程实验-第6章

• II 型或高于 II 型的系统能准确地跟踪斜坡输入。
• 如果对具有速度函数性质的输入信号要求稳态 误差为零,则系统必须是 II 型或高于I单位加速度输入的稳态误差是
essls i0m s1G 1(s)s13s2G 1(s)
定义静态加速度误差系数为
Ka
lims2G(s) s0
在一个给定的系统中,输出量可以是位置、
速度、压力、温度等,然而,输出量的物理形式 对控制系统的分析并不重要,因此,可称系统输 出量是“位置”,输出量的变化率为“速度”等。
将阶跃、斜坡、加速度等输入信号称为广义 位置、速度、加速度信号。
静态位置误差系数
系统对单位阶跃输入的稳态误差是
11 1 essls i0m s1G(s)s1G(0)
一般情况下, H(s)H为常值,因此
ess ss H • 稳态误差取决于系统结构参数和输入信号 • 求解稳态误差首先必须判断系统的稳定性
6.2.2 静态误差系数
1、控制系统的类型
控制系统可以按照它们跟踪阶跃输入、 斜坡(速度)输入、加速度输入等信号的 能力来分类,因为实际的输入往往可以认 为是这些输入的组合,所以这样的分类是 合理的。由这些特定的输入所引起的稳态 误差的大小表征了系统的“优良度”。
控制工程基础
第六章 控制系统的误差分析
和计算
系统在达到稳态时,输出量与希望输 出量之间的误差称为稳态误差。稳态误差 是控制系统准确度的一种度量。
对于稳定的控制系统,它的稳态性能 一般是根据阶跃、速度或加速度输入所引 起的稳态误差来判断的。本章所研究的稳 态误差是由于系统不能很好地跟踪特定形 式的输入信号或者由于扰动作用而引起的 稳态误差,即系统原理性误差。
本节要点:
了解动态误差系数概念及计算动态 误差的方法。
• 如果对具有速度函数性质的输入信号要求稳态 误差为零,则系统必须是 II 型或高于I单位加速度输入的稳态误差是
essls i0m s1G 1(s)s13s2G 1(s)
定义静态加速度误差系数为
Ka
lims2G(s) s0
在一个给定的系统中,输出量可以是位置、
速度、压力、温度等,然而,输出量的物理形式 对控制系统的分析并不重要,因此,可称系统输 出量是“位置”,输出量的变化率为“速度”等。
将阶跃、斜坡、加速度等输入信号称为广义 位置、速度、加速度信号。
静态位置误差系数
系统对单位阶跃输入的稳态误差是
11 1 essls i0m s1G(s)s1G(0)
一般情况下, H(s)H为常值,因此
ess ss H • 稳态误差取决于系统结构参数和输入信号 • 求解稳态误差首先必须判断系统的稳定性
6.2.2 静态误差系数
1、控制系统的类型
控制系统可以按照它们跟踪阶跃输入、 斜坡(速度)输入、加速度输入等信号的 能力来分类,因为实际的输入往往可以认 为是这些输入的组合,所以这样的分类是 合理的。由这些特定的输入所引起的稳态 误差的大小表征了系统的“优良度”。
控制工程基础
第六章 控制系统的误差分析
和计算
系统在达到稳态时,输出量与希望输 出量之间的误差称为稳态误差。稳态误差 是控制系统准确度的一种度量。
对于稳定的控制系统,它的稳态性能 一般是根据阶跃、速度或加速度输入所引 起的稳态误差来判断的。本章所研究的稳 态误差是由于系统不能很好地跟踪特定形 式的输入信号或者由于扰动作用而引起的 稳态误差,即系统原理性误差。
本节要点:
了解动态误差系数概念及计算动态 误差的方法。
《自动控制原理》第六章:控制系统误差分析

X i (s)
e(t)=μ(p)xi(t) εxo(t) x (t) - y(t) (t) =
i
X oi (s)
E (s )
(s)
Y (s)
N (s )
拉氏变换: E(s)=μ(s)Xi(s) -Xo(s)
G1 ( s )
+
G2 (s)
X o (s)
H (s )
ε(s) =Xi(s) - Y(s)
K1
+
K 2 xo (t ) s
解:(1)由于系统是一阶系统,故只要参数K1K2大于零,则 系统就稳定。
1 1 ]0 (2)输入引起的误差: ess1 lim[s K2 s 0 1 K1 S s
(3)干扰引起的误差:
ess 2 lim sE 2 ( s ) lim[ s
以单位反馈为例,输入引起的误差分析:
X i (s)
E (s )
G (s )
X o (s)
X o ( s) G ( s) 1 E (s) (s) [ X i ( s )] G ( s) 1 G (s) G (s) ess lim sE ( s )
s 0
1 lim[ s X i ( s )] s 0 1 G (s)
ess 1 1 Kv
1 K
( 0) ( 1)
( 2) 0 0型系统误差无穷大;1型有限2型及以上 系统,Kv为无穷,而稳态误差为零。
加速度输入下稳态精度
定义: 静态加速度误差
2 K ( r s 1) ( k s 2 2 k k s 1) r 1
令系统中xi(t)=0 。
X i (s)
(s)
Y (s)
e(t)=μ(p)xi(t) εxo(t) x (t) - y(t) (t) =
i
X oi (s)
E (s )
(s)
Y (s)
N (s )
拉氏变换: E(s)=μ(s)Xi(s) -Xo(s)
G1 ( s )
+
G2 (s)
X o (s)
H (s )
ε(s) =Xi(s) - Y(s)
K1
+
K 2 xo (t ) s
解:(1)由于系统是一阶系统,故只要参数K1K2大于零,则 系统就稳定。
1 1 ]0 (2)输入引起的误差: ess1 lim[s K2 s 0 1 K1 S s
(3)干扰引起的误差:
ess 2 lim sE 2 ( s ) lim[ s
以单位反馈为例,输入引起的误差分析:
X i (s)
E (s )
G (s )
X o (s)
X o ( s) G ( s) 1 E (s) (s) [ X i ( s )] G ( s) 1 G (s) G (s) ess lim sE ( s )
s 0
1 lim[ s X i ( s )] s 0 1 G (s)
ess 1 1 Kv
1 K
( 0) ( 1)
( 2) 0 0型系统误差无穷大;1型有限2型及以上 系统,Kv为无穷,而稳态误差为零。
加速度输入下稳态精度
定义: 静态加速度误差
2 K ( r s 1) ( k s 2 2 k k s 1) r 1
令系统中xi(t)=0 。
X i (s)
(s)
Y (s)
第六章 控制系统的误差分析与计算

第三章 时域分析法 不同类型系统的稳态误差系数及稳态误差 0型系统
K (1s 1)( 2 s 1) ( m s 1) G( s) H ( s) (T1s 1)(T2 s 1) (Tnv s 1)
K p lim G(s) H (s) K
s0
ss
G (s) H (s) K ( 1s 1)( 2 s 1) ( m s 1) s 2 (T1s 1)(T2 s 1) (Tnv s 1)
1 0 1 K p
K p lim G(s) H (s)
s0
ss
Kv lim sG(s) H (s)
2 2
cost
T 2 2 T 1
2 2
sin t
而如果采用拉氏变换的终值定理求解,将得 到错误得结论:
Ts ess lim s 0 2 2 s 0 Ts 1 s
此例表明,输入信号不同,系统的稳态误差 也不相同。
第三章 时域分析法 稳态误差系数 稳态误差系数的概念 稳态位置误差(偏差)系数 单位阶跃输入时系统的稳态偏差
G ( s) H ( s) K (1s 1)( 2 s 1) ( m s 1) s v (T1s 1)(T2 s 1) (Tnv s 1) K ~ G ( s) v s
则: ss
sX i (s) lim (t ) lim s (s) lim t s0 s0 1 G( s) H ( s)
在单位加速度输入下的稳态误差为:
ess lim s
s0
1 Ts 1 X i ( s) lim s 3 s0 Ts 1 s 1 G( s)
第三章 时域分析法
控制系统的误差分析和计算

1 E s X i s 1 G s 1 e ss lim e t lim sE s lim s X i s t s0 s 0 1 G s
11
控制工程基础
第六章 控制系统的误差分析和计算
非单位反馈系统
1 X i s 1 G s H s
' '
( s) X or ( s) X o ( s) E ( s)
'
( s)
H ( s)
1 单位反馈系统H s 1,E s s E s s H ( s) H ( s) : 求稳态误差,应先求稳态偏差。
9
控制工程基础
n m
14
控制工程基础
第六章 控制系统的误差分析和计算
1、影响稳态误差的因素
G s K 1 s 1 2 s 1 v s T1 s 1T2 s 1
s 0
n m
e ss lim e ( t ) lim sE ( s )
t
输出量期望值的大小,即Xor(s)= Xi(s),由此得到:
( s) Xi ( s) H ( s) X 0 ( s) X or (s) X 0 (s) E (s)
单位反馈控制系统的偏差函数(s)和误差函数E(s)是相等的。
7
控制工程基础
第六章 控制系统的误差分析和计算
对于非单位负反馈控制系统,其输入量间接反映了输出量 期望值的大小,根据等效规则转变为单位负反馈控制系统。
Xi s
s
× -
( s)
Y s
G s
Xo s
H s
机械工程控制基础控制系统的误差分析和计算

12
对单位阶跃输入,稳态误差为
ess
lim
s0
s 1
G
1
s
H (s)
1 s
1
G
1
0 H (0)
静态位置误差系数的定义:
Kp
lim G
s0
s
H (s)
G
0 H (0)
则
ess
1 1 Kp
13
对0型系统
Gs
K 1s 1 2s 1 T1s 1 T2s 1
Kp
lim
s0
K0 t1s 1t2s 1L T1s 1T2s 1L
Gs
K 1s 1 2s 1 T1s 1 T2s 1
Kv
lim
s0
s
K 1s 1 2s 1 T1s 1 T2s 1
0
16
对I型系统
Gs
K 1s 1 2s 1 s T1s 1 T2s 1
Kv
lim
s0
s
K 1s 1 2s 1 s T1s 1 T2s 1
K1
对II型系统
Gs
K 1s 1 2s 1 s2 T1s 1 T2s 1
ε(s) =Xi(s) - Y(s) Y(s)=H(s)Xo(s)
(s) 1
H (s)
p202
Xi (s)
X oi (s)
(s)
(s)
G1 ( s )
N(s)
+ G2 (s)
Y (s)
H (s)
E(s)
1 H (s)
Xi (s)
X o (s)
ε(s) =Xi(s) - H(s)Xo(s)
1 (s)
t
s0
2. 利用终值定理计算系统的稳态误差:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Kvlsi m 0sK sT 11ss 11T 22ss 11L L K
对II型系统 GssK 2T1 1s s 1 1T2 2s s 1 1L L
Kvlsi m 0ssK 2T1 1ss 1 1T2 2ss 1 1L L
单位斜坡输入时,
1 e ss K v
对0型系统ess源自1 Kv1 0对I型系统
v 0 ——“0型系统”
v 1 ——“I型系统”
v 2 ——“II型系统”
对单位阶跃输入,稳态误差为
essls i0m s1G 1s1 s1G 10
静态位置误差系数的定义:
Kplsi m 0GsG0
则
ess
1 1 K
p
对0型系统
GsK T 1s1s 11 T 2s2s 11 L L
Kplsi m 0K T 1ts1s 11 T t22 ss 11 L LK
Gxi(s)Xi(s)GN(s)N(s)
xi(s) 为 无 干 扰 时 , 误 差e(t)对 输 入xi(t)的 传 递 函 数
N(s) 为 无 输 入 时 , 误 差e(t)对 输 入N(t)的 传 递 函 数
xi(s)和 N(s)总 称 为 误 差 传 递 函 数 , 反 映 了 系 统 的
结 构 与 参 数 对 误 差 的 影 响 。
机电控制系统中,元件的不完善,如静摩擦、间隙 以及放大器 的零点漂移、元件老化或变质都会造成误差 ,这种误差称为静差。
本章不研究静差,只研究由于系统不能很好地跟踪 输入信号而引起的稳态误差,或者由于扰动而引起的稳 态误差,即系统原理性误差。
6.1 稳态误差的基本概念
+
Xi s
s G1 s
-
Y s
-
s
XO s
s
1
1s
Xi s 1GsHs 1 10 s 10
X
i
s
1 s
s
ess
ss
lims s 10 s 0 s10s
物理意义
静态误差系数
单位反馈系统
XI s + s Gs XO s
XI s + s Gs XO s
-
-
H s
系统的“型次 ” GssK T1 1ss 1 1T2 2ss 1 1L L
ess
1 Kv
1 K
对II型系统
ess
1 Kv
0
对单位加速度输入时,稳态误差为
e s s ls i m 0s1 G 1 ss 1 3 ls i m 0s 2 [1 1 G s] ls i m 0s 2 G 1 s
定义静态加速度误差系数:
Ka
lims2Gs s0
则
e ss
1 Ka
静态加速度误差系数:
0型系统静态位置误差系数
即系统的开环静态放大倍数K
对于Ⅰ型或高于Ⅰ型的系统,
Kplsi m 0sK T 1 1ss 1 1T2 2ss 1 1L L
单位阶跃输入时,稳态误差
0型系统
ess
1 1 K
Ⅰ型以上系统
ess 0
对单位斜坡输入时,稳态误差为
e s s ls i m 0s1 G 1 ss 1 2 ls i m 0s [1 1 G s] ls i m 0s G 1 s
控制工程基础
(第六章 )
2019年
6 控制系统误差分析
6.1 稳态误差的基本概念 6.2 输入引起的稳态误差 6.3 干扰引起的稳态误差 6.4 减小系统误差的途径 6.5 动态误差系数
对于控制系统的基本要求是快速、稳定、准确。 误差问题就是控制系统的准确度问题。
系统过渡完成后的误差称为系统稳态误差。 稳态误差是系统在过渡完成后控制准确度的一 种度量。 一个控制系统,只有满足要求的控制精度, 才有实际工程意义。
定义静态速度误差系数:
Kv
limsGs s0
则
e ss
1 Kv
静态速度误差系数:
Kv
limsGs s0
对0型系统
GsK T 1s1s 11 T 2s2s 11 L L
Kvlsi m 0sK T 1s1s 11 T 2s2s 11 L L 0
对I型系统
GsK sT 11 ss 1 1T 22ss 1 1L L
6.2 输入引起的稳态误差
偏差传递函数
XI s +
s
1
Xi s 1GsHs
s Gs XO s
-
H s
sslti m tlsi m 0s1G s 1 H sX is
由
Es
s H s
若H是常值
e ss
ss H
若H=1
ess ss
例:求当 xi(t)=1(t) 时的稳态误差
X I s + s 10
输入信号 xi (t) 与反馈信号比较后的信号 (t) 也能反映误差的大小,称为偏差,即
(t)xi(t)y(t)
一般情况下,系统的误差信号与偏差信号 并不相等。
由偏差信号( s)控制输出Xo(s)
当Xo(s)Xor(s)时,应有( s)0,即
(s) Xi (s)H(s)Xo(s) Xi (s)H(s)Xor(s) 0
Xi(s)H(s)Xor(s)
或
Xor
(s)
Xi(s) H(s)
当 有 偏 差 时 ,
sXisXosHsH(s)XorsXosHs
H(s)XorsXosH(s)E(s)
E
s
s H s
• 对实际使用的控制系统来说,H(s)往往 是一个常数,因此通常误差信号和偏差 信号之间存在简单的关系。
• 求出了稳态偏差,也就得到了稳态误差 。
• 对于单位反馈系统而言,
H ( s) 1,(s)E (s )
误差e(t)的一般公式
+
Xi s
s G1 s
-
Y s
N s
+ +
G2 s
H s
Xo s
E (s) X or (s) X o (s)
X i(s) H (s)
G
xi
(s
)
X
i
(s
)
G
N
(
s)
N
(s)
1 H (s)
G xi (s)
s Xor s +
N s
+ +
G2 s
H s
Es
-
Xo s
xor (t) 为系统希望的输出量,xo (t)为系统实际的输 出量,则误差定义为: e(t)xo(rt)xo(t)
指过渡过程结束后,实际的输出量与希望的输出量之间的偏差。它与 系统的结构与参数及输入的类型有关。
误差信号e(t ) 的稳态分量被称为稳态误差 ess 。
X
i(s)
GN
(s)N
(s)
1 H (s)
G xi (s)
X
i(s)
GN
(s)
N
(s)
设 输 入 Xi(s)与 干 扰 N ( s)同 时 作 用 于 系 统
xi (s) X i (s) N (s) N (s)
Xo(s)1G G 1(1s()sG )G ( 2( 2s)s) H(s)Xi(s)1G1(sG )( G 2( 2s) s)H(s)N(s)