控制工程基础 第6章 控制系统的误差分析和计算

合集下载

控制工程基础6章

控制工程基础6章
H(S) +
Xor(S)
+ N(S)
+
-
E(S)
G1(S)
G2(S)
X0(S)
设xor (t )是控制系统希望的输出信号,而 xo (t ) 是实际的输出信号, 一般把二者之差定义为 误差信号,记做e(t), e(t) = xor (t ) - xo (t )
m(p) 是理想算子,是认为规 定的。一般情况下, m( s) =1/H(s)。
时的系统输出端的稳态误差。
1 2 例题:求下图所示系统 在1(t), t, 和 t 分别作用下的稳态误差 。 2
五、扰动引起的误差
+
G1(s) N(s) G2(s) Xo(s)
Xi(s) +
+
Y(s) H(s)
要想求稳态偏差,可以利用叠加原理,分别求
出给定信号Xi(s) 和N(s)单独作用时的偏差,然
2 2
对于0型系统,Ka=0,ess=
对于I型系统, Ka=0, ess=
对于II型系统, Ka=K, ess= 1/K 对于III型及以上系统, Ka= , ess= 0
0和I型系统不能跟踪单位斜坡输入,I I型系统能跟踪单 位斜坡输入但有静差,需要III型以上系统才能消除静差。
10 G 例:设有一非单位反馈控制系统, ( s) = s 1 H(s)=Kh,输入为单位阶跃。试求, Kh=1和0.1
结构形式 输入形 式
1 例:设单位反馈控制系统的 G( s) = ,输 2 Ts t 入信sint , 2 试求系统的稳态误差。
为什么? 因为:E(s) = s (s 2 2 )(s 1 ) T T 1 T s T 2 3 1 =- 2 2 2 2 2 2 2 2 1 T 1 s 2 T 1 s 2 T 1 s T 求拉式反变换 T

第六章 控制系统误差分析与计算

第六章  控制系统误差分析与计算

23
6.3 综合分析
静态误差
提高系统的准确度,增加系统的抗干扰能力,必须增 大干扰作用点之前的回路的放大倍数K1,以及增加这 一段回路中积分环节的数目。 增加干扰作用点之后到输出量之间的放大系数K2,或 增加积分环节的数目,对减少干扰引起的误差是没有 好处的。
24
6.4
动态误差
系统的动态误差
6.1
2.系统偏差
误差的概念
系统误差e(t)与偏差ε(t)
系统偏差ε (t). E(s)是输入信号与反馈信号的差。 若输入信号xi(t)作为期望值,反馈信号b(t)作为实际 值。 则偏差: ε (t)= xi(t)- b(t) L变换: E(s)= Xi(s)- B(s) = Xi(s)-H(s) • Xo(s) ---(2)
系统误差:
E1(s) = Xor(s)- Xo(s) =Xi(s)/H(s)- Xo(s) =〔1/ H(s) - Gxi(s)〕•Xi(s)+(-GN(s))•N(s) = Φ xi(s) •Xi(s)+Φ N(s) •N(s)
可见,系统的误差不仅与系统的结构和参数有关,而且 8 与系统的输入和干扰的特性有关。
前面讲的是静态误差,是一个静态值。即当 t→∞时系统误差的极限值。 E(S)逆变换,是一个时间的函数。
时间在t→∞是一个有限的变化过程。 实际控制系统的稳态误差往往表现为时间的函数,----即动态误差。
25
6.4
例:如图系统:
动态误差
动态误差实例
其误差传递函数为:
Φxi(s)= E(s)/ Xi(s)=1/[1+G(s)H(s)]
13
6.3
静态误差
与输入有关的静态偏差

第六章 控制系统的误差分析和计算

第六章 控制系统的误差分析和计算

+
E ( s)
10 s
X o ( s)
e ( s ) =
1 1 s = = 1 + G ( s ) 1 + 10 s + 10 s s ess = lim si iXi (s) s →0 s + 10 1 Xi ( s) = s s 1 ess = lim si i =0 s →0 s + 10 s
K a = lim s 2 iG ( s )
s →0
对0型系统 型系统
K a = lim s 2 i
s →0
K 0 (Ta s + 1)(Tb s + 1) (Tm s + 1) =0 (T1s + 1)(T2 s + 1) (Tn s + 1)
对Ⅰ型系统
K a = lim s 2 i
s →0
K1 (Ta s + 1)(Tb s + 1) (Tm s + 1) s (T1s + 1)(T2 s + 1) (Tn s + 1)
=0
自动控制原理
对Ⅱ型系统
K2 (Ta s +1)(Tb s +1)(Tms +1) Ka = lim s i 2 = K2 s→0 s (T1s +1)(T2s +1)(Tn s +1)
2
所以, 就是Ⅱ 所以,静态加速度误差系数 Ka 就是Ⅱ型系统的开环放大倍 对于Ⅲ型或高于Ⅲ型的系统, 数 K 2 。对于Ⅲ型或高于Ⅲ型的系统, K a 才为 ∞ 。 在单位加速度输入下 型系统, 对0型系统, ess = ∞ 型系统 型系统, 对Ⅰ型系统,
这就是求去单位反馈系统稳态误差的方法

第6章 控制系统的误差分析和计算

第6章 控制系统的误差分析和计算
H(s) H(s)
ess = lime(t ) = lims ⋅ E(s) = lims ⋅
t →∞ s→0 s→0
H(s)
ε (s)
H(s)
控制系统的误差分析和计算
输入及干扰引起的稳态误差计算 输入作用下的偏差传递函数及稳态偏差计算
1 ΦRε (s) = = R(s) 1+ G1(s)G2 (s)H(s)
满足由0<K<6,显然调整 值也无法使稳态误差小于 。 调整K值也无法使稳态误差小于 调整 值也无法使稳态误差小于0.1。
式中:K − 开环放大系数; ν − 积分环节个数; 控制系统的误差分析和计算 G0 (s) −开环传递函数去掉积分和比例环节; 输入及干扰引起的稳态误差分析
G 0 (0) = 1 ,
s→0
KP的大小反映了系统在阶跃输入下的稳态精度。KP越大, 的大小反映了系统在阶跃输入下的稳态精度。 越大, ess越小。所以说 P 反映了系统跟踪阶跃输入的能力。 越小。所以说K 反映了系统跟踪阶跃输入的能力。 稳态误差为零的系统称为无差系统,为有限值称有差系统。 稳态误差为零的系统称为无差系统,为有限值称有差系统。 无差系统 有差系统 在单位阶跃作用下, 的系统为有差系统, 在单位阶跃作用下,υ=0 的系统为有差系统, 系统为无差系统 为无差系统。 υ>=1 的系统为无差系统。
ν = 0 → Kν = lims ⋅ Gk (s) = 0 → ess−r = ∞
s→0
ν = 1 → Kν = lims ⋅ Gk (s) = K → ess−r = 1/ K
s→0
ν ≥ 2 → Kν = lims ⋅ Gk (s) = ∞ → ess−r = 0
s→0
Kυ的大小反映了系统在斜坡输入下的稳态精度。K υ越大, 的大小反映了系统在斜坡输入下的稳态精度。 越大, 斜坡输入下的稳态精度 ess越小。所以说 Kυ 反映了系统跟踪斜坡输入的能力。 越小。 反映了系统跟踪斜坡输入的能力。 斜坡输入的能力

第六章 控制系统的误差分析与计算

第六章  控制系统的误差分析与计算

第三章 时域分析法 不同类型系统的稳态误差系数及稳态误差 0型系统
K (1s 1)( 2 s 1) ( m s 1) G( s) H ( s) (T1s 1)(T2 s 1) (Tnv s 1)
K p lim G(s) H (s) K
s0
ss
G (s) H (s) K ( 1s 1)( 2 s 1) ( m s 1) s 2 (T1s 1)(T2 s 1) (Tnv s 1)
1 0 1 K p
K p lim G(s) H (s)
s0
ss
Kv lim sG(s) H (s)
2 2
cost
T 2 2 T 1
2 2
sin t
而如果采用拉氏变换的终值定理求解,将得 到错误得结论:
Ts ess lim s 0 2 2 s 0 Ts 1 s
此例表明,输入信号不同,系统的稳态误差 也不相同。
第三章 时域分析法 稳态误差系数 稳态误差系数的概念 稳态位置误差(偏差)系数 单位阶跃输入时系统的稳态偏差
G ( s) H ( s) K (1s 1)( 2 s 1) ( m s 1) s v (T1s 1)(T2 s 1) (Tnv s 1) K ~ G ( s) v s
则: ss
sX i (s) lim (t ) lim s (s) lim t s0 s0 1 G( s) H ( s)
在单位加速度输入下的稳态误差为:
ess lim s
s0
1 Ts 1 X i ( s) lim s 3 s0 Ts 1 s 1 G( s)
第三章 时域分析法

控制系统的误差分析和计算

控制系统的误差分析和计算

1 E s X i s 1 G s 1 e ss lim e t lim sE s lim s X i s t s0 s 0 1 G s
11
控制工程基础
第六章 控制系统的误差分析和计算
非单位反馈系统
1 X i s 1 G s H s
' '
( s) X or ( s) X o ( s) E ( s)
'
( s)
H ( s)
1 单位反馈系统H s 1,E s s E s s H ( s) H ( s) : 求稳态误差,应先求稳态偏差。
9
控制工程基础
n m
14
控制工程基础
第六章 控制系统的误差分析和计算
1、影响稳态误差的因素
G s K 1 s 1 2 s 1 v s T1 s 1T2 s 1
s 0
n m
e ss lim e ( t ) lim sE ( s )
t
输出量期望值的大小,即Xor(s)= Xi(s),由此得到:
( s) Xi ( s) H ( s) X 0 ( s) X or (s) X 0 (s) E (s)
单位反馈控制系统的偏差函数(s)和误差函数E(s)是相等的。
7
控制工程基础
第六章 控制系统的误差分析和计算
对于非单位负反馈控制系统,其输入量间接反映了输出量 期望值的大小,根据等效规则转变为单位负反馈控制系统。
Xi s
s
× -
( s)
Y s
G s
Xo s
H s

机械工程控制基础控制系统的误差分析和计算

机械工程控制基础控制系统的误差分析和计算

12
对单位阶跃输入,稳态误差为
ess
lim
s0
s 1
G
1
s
H (s)
1 s
1
G
1
0 H (0)
静态位置误差系数的定义:
Kp
lim G
s0
s
H (s)
G
0 H (0)

ess
1 1 Kp
13
对0型系统
Gs
K 1s 1 2s 1 T1s 1 T2s 1
Kp
lim
s0
K0 t1s 1t2s 1L T1s 1T2s 1L
Gs
K 1s 1 2s 1 T1s 1 T2s 1
Kv
lim
s0
s
K 1s 1 2s 1 T1s 1 T2s 1
0
16
对I型系统
Gs
K 1s 1 2s 1 s T1s 1 T2s 1
Kv
lim
s0
s
K 1s 1 2s 1 s T1s 1 T2s 1
K1
对II型系统
Gs
K 1s 1 2s 1 s2 T1s 1 T2s 1
ε(s) =Xi(s) - Y(s) Y(s)=H(s)Xo(s)
(s) 1
H (s)
p202
Xi (s)
X oi (s)
(s)
(s)
G1 ( s )
N(s)
+ G2 (s)
Y (s)
H (s)
E(s)
1 H (s)
Xi (s)
X o (s)
ε(s) =Xi(s) - H(s)Xo(s)
1 (s)
t
s0
2. 利用终值定理计算系统的稳态误差:

第6章_控制系统的误差分析和计算_6.3干扰引起的稳态误差

第6章_控制系统的误差分析和计算_6.3干扰引起的稳态误差

N (s ) R (s ) E (s )
-
G1 = K1
+
G2 =
K2 s
C (s )
(2)扰动作用下的误差传递函数为 K2 − E(s) − K2 s ΦNE (s) = = = N(s) 1+ K K2 s + K1K2 1 s 当扰动输入为单位阶跃输入时,稳态误差为
essn
1 − K2 1 1 = lim s ⋅ Φ NE ⋅ = lim s ⋅ ⋅ =− s →0 s s →0 s + K1 K 2 s K1
N (s )
X i (s )
ε (s )
B (s )
-
G1 ( s )
+
H (s )
G2 (s)
X o (s )
(2)稳态误差的计算 )
①给定作用下的偏差传递函数
N (s )
X i
X i (s )
-
G1 ( s )
+
H (s )
G2 (s)
X o (s )
ε (s )
ess = essr + essn 1 =− K1
(3)输入作用与扰动作用共同作用下的稳态误差为
N (s ) R (s ) E (s )
-
G1 =
K1 s
+
G2 =
K2 s
C (s )
(4)如果要求稳态误差为零,可以在G1中串联积分环节,令 K1 G1 = s 1 s2 1 essr = lim s ⋅ Φ RE ⋅ = lim s ⋅ 2 ⋅ =0 则有 s →0 s s →0 s + K1 K 2 s
④对于稳定的系统,采用拉氏变换的终值定理计算稳态偏差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C0 (s)
N (s)
R(s) B(s)
(s)
-
G1 ( s )
+ G2 (s)
H (s)
e(s) -
C(s)
(b)
误差
C0(s) (s) N(s)
R(s)
1 H(s)
R1(s) C0(s)
E1(s(s))H(s)
E(s)
G1(s)
G2(s) C(s)
(c)
e(s) -+ (s)
H (s)
E(s)
因为偏差 (s) R(s) B(s) H (s)C0 (s) H (s)C(s) H (s)e(s)
这里 R(s) H (s)C0 (s) 是基于控制系统在理想工作情况下
(s) 0 得到的。
即当控制系统的偏差信号 (s) 0 时,该控制系统无调节控制
作用,此时的实际输出信号C(s)就是希望输出信号 C0 (s) 。
G(s)H(s)
i1 nv
sv (Tis 1)
i1
(4)稳态误差系数和稳态误差的总结 (系统在控制信号作用下)
此表概括了0型、Ⅰ型和Ⅱ型反馈控制系统在不同输入信号作用下的
稳态误差。在对角线上,稳态误差为有限值;在对角线以上部分,
稳态误差为无穷大;在对角线以下部分,稳态误差为零。由此表可
以得如下结论:
何改变系统结构?
(s)
- G1 K1
解:(1)给定作用下的误差传递函数为
RE (s)
(s)
R(s)
1
1
K1
K2 s
s s K1K2
当给定输入为单位阶跃输入时,稳态误差为
N (s)
+
G2
K2 s
C(s)
essr
lim s0
s RE
1 s
lim s0
s
s s K1K2
1 s
0
R(s) (s)
(1) 同一个系统,如果输入的控制信号不同,其稳态误差也不同。
(2) 同一个控制信号作用于不同的控制系统,其稳态误差也不同。
(3) 系统的稳态误差与其开环增益有关,开环增益越大,系统的稳态
误差越小;反之,开环增益越小,系统的稳态误差越大。
(4)注意区分稳态偏差与稳态误差的区别,
只有单位反
馈系统,
影响稳态误差的因素: ·给定作用下的稳态误差与外作用有关。对同一系统 加入不同的输入,稳态误差不同。 ·与时间常数形式的开环增益有关;开环增益K↑,稳 态误差↓,但同时系统的稳定性和动态特性变差。 ·与积分环节的个数有关。积分环节的个数↑,稳态 误差↓,但同时系统的稳定性和动态特性变差。
求得 ssx 后,再按下式求出
m
K (is 1)
K p lim G(s)H (s) lim
s0
s0
i 1 n
K
(Tis 1)
i 1
单位阶跃信号输入
m
K(is 1)
Kv
lim sG(s)H(s)
s0
lim s
s0
i1 n
0
(Tis 1)
1 essv K v
i1
单位斜坡信号输入 m
K(is 1)
减小和消除稳态误差方法: ·提高系统的开环增益。 ·增加系统开环传递函数中积分环节的个数。 但是这两种方法会降低系统的稳定性。 由此可见,对稳态误差的要求往往与系统的稳定性和动态特 性的要求是矛盾的。 因此,系统的稳定性、准确性与快速性之间的关系是相互关 联和相互矛盾的。
线性系统在多个信号共同作用下总的稳态偏差(误 差),等于多个信号单独作用下的稳态偏差(误差) 之和。
0型系统:
GsH s
K0 1s 1 2s 1 m s 1 T1s 1T2s 1Tn s 1
I型系统:
GsH s
K11s 1 2s 1 m s 1 sT1s 1T2s 1Tn1s 1
II型系统:
GsH s
K 2 1s 1 2s 1 m s 1 s 2 T1s 1T2 s 1Tn2 s 1
稳态的定义:时间趋于无穷大(足够长)时的稳定响 应称为控制系统的稳定状态,简称稳态。
稳态误差:当系统在特定类型输入信号作用下,达到 稳态时系统精度的度量。
说明:误差产生的原因是多样的,我们只研究由于系 统结构、参量、以及输入信号的形式不同所引起的误 差。
误差及稳态误差的定义
系统误差 e(t) :输出量的希望值 c0 (t)和实际值c(t) 之差。即
1 s
0
ess essr essn 0
6.4 减小系统误差的途径
(1)前馈补偿闭环控制(按干扰补偿)
Gc(s) N(s)
R(s) E(s) G1(s)
-
C(s) G2(s)
(2)顺馈补偿闭环控制(按输入补偿)
Gc(s) R(s) E(s)
G1(s) -
C(s) G2(s)
作业
❖ 习题6-11② 扰Leabharlann 作用下的偏差传递函数C(s)
B(s)
N (s) G2 (s)
+
H (s)
(s) 1
G1 ( s )
NE (s)
(s)
N (s)
G2 (s)H (s) 1 G1(s)G2 (s)H (s)
③ 给定和扰动同时作用下的偏差表达式
(s) RE (s)R(s) NE (s)N(s)
R(s)
6.2.2 稳态误差系数
(1)系统的“型”的概 念闭环系统的开环传递函数一般可以表示为:
m
K ( is 1)
G(s)H (s)
i 1 n
s (Tis 1)
i 1
定义: 当ν=0时,称为0型系统,没有积分环节; 当ν=1时,称为I型系统,有1个积分环节; 当ν=2时,称为II型系统,有2个积分环节; 依次类推。
e(t) c0 (t) c(t)
系统稳态误差 ess :当t→∞时的系统误差,用 ess 表示。即
ess
lim e(t )
t
lim
s0
s e(s)
系统偏差 E(s) :系统的输入 r(t) 和主反馈信号b(t) 之差。即
(t) r(t) b(t)
系统稳态偏差 ss:当t→∞时的系统偏差,用 ss表示。即
稳态误差=跟随误差+扰动误差
ess= esr+ esn
稳态误差的计算
N (s)
R(s) (s) G1(s)
+ G2 (s)
B(s) -
H (s)
C(s)
① 给定作用下的偏差传递函数
R(s)
- C(s)
B(s)
H (s)
G2 (s)
(s) G1 ( s )
RE (s)
(s)
R(s)
1
1 G1(s)G2 (s)H (s)
ss
lim (t)
t
lim s (s)
s0
对单位反馈系统,给定作
C0 (s)
e(s)
N (s)
用 r(t) 即为输出量的希望
值, r(t) c0 (t) ,误差 ess
等于偏差 ss,即 ss ess
R(s) (s) G1(s) + B(s) -
(a)
-
G2 (s) C(s)
对非单位反馈系统,给定
- G1 K1
N (s)
+
G2
K2 s
C(s)
(2)扰动作用下的误差传递函数为
NE (s)
(s)
N (s)
K2
s
1
K1
K2 s
K2 s K1K2
当扰动输入为单位阶跃输入时,稳态误差为
essn
lim s0
s NE
1 s
lim
s0
s
K2 s K1K2
1 s
1 K1
(3)输入作用与扰动作用共同作用下的稳态误差为
(2)稳态误差系数的概念
➢单位阶跃输入
R(s) 1 s
定义:
essss
lim s s0 1
1 G(s)H (s)
1 s
1
lim
1 G(s)H (s)
1 1 K
p
稳态位置 误差系数
s0
➢单位斜坡输入
R(s) 1 s2
定义: 稳态速度
e
ssss
lim
s0
s
1
1 G(s)H(s)
1 s2
1 lim sG(s)H(s)
出量的变化率是“速度”,但是,对于误差分析所 得到的结论同样适用于输出量为其它物理量的系统。 例如在温度控制中,上述的“位置”就表示温度, “速度”就表示温度的变化率,等等。因此,对于 “位置”、“速度”等名词应当作广义的理解。
6.3 干扰引起的稳态误差
稳态误差分类:
跟随误差:表示系统能以什么精度跟随系统输入信号的变 化,用esr表示。 扰动误差:表示系统在扰动信号作用下系统偏离平衡点的情 况,用esn表示。 同样要注意稳态偏差与稳态误差的区别, 有 只有对单位反馈系统
s0
1 Kv
误差系数
➢单位抛物线输入
R(s) 1 s3
定义: 稳态加速度
esss
lim
s0
s
1
1 G(s)H(s)
1 s3
1 lim s2G(s)H(s)
s0
1 Ka
误差系数
(3)不同类型反馈控制系统的稳态误差系数
0型系统的稳态误差
V=0
m
K(is 1)
G(s)H(s) i1 nv sv (Tis 1) i1
ess
essr
essn
1 K1
(4)如果要求稳态误差
相关文档
最新文档