一次函数面积问题专题

合集下载

一次函数之面积问题(与坐标轴围成的面积)(人教版)(含答案)

一次函数之面积问题(与坐标轴围成的面积)(人教版)(含答案)

一次函数之面积问题(与坐标轴围成的面积)(人教版)一、单选题(共8道,每道12分)1.已知一次函数和的图象都经过点A(2,0),且与y轴分别交于B,C两点,则△ABC的面积是( )A.1B.2C.4D.8答案:C解题思路:试题难度:三颗星知识点:坐标线段长互转2.已知一次函数y=kx+(k-3)与一次函数y=2x+b交于点C(1,3),则两条直线的函数图象与x 轴所围成的三角形的面积是( )A.1B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积3.已知一次函数y=kx+b的图象经过点B(0,10),且与正比例函数y=2x的图象相交于点A(2,a),则这两个函数图象与y轴所围成的三角形的面积是( )A.5B.10C.20D.40答案:B解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积4.已知一次函数y=kx+b的图象经过点(3,-3),且与直线y=4x-3的交点在x轴上,则此函数的图象与坐标轴围成的三角形的面积为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积5.已知一次函数的图象经过点(-2,0),它与坐标轴围成的三角形面积等于1,则这个一次函数的函数表达式是( )A. B.C.或D.或答案:D解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积6.已知一次函数的图象过点(3,0),且与两坐标轴围成的三角形面积为3,则一次函数的表达式为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积7.若直线y=kx+b与直线y=4x平行,且直线y=kx+b与两坐标轴围成的三角形的面积为2,则直线y=kx+b与x轴的交点坐标是( ).A.(1,0)B.(1,0)或(-1,0)C.(2,0)D.(2,0)或(-2,0)答案:B解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积8.若直线y=x+k,x=1,x=4和x轴围成的直角梯形的面积等于9,则k的值为( )A. B.C.或D.或答案:C解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积。

一次函数与四边形面积问题例题

一次函数与四边形面积问题例题

一次函数与四边形面积问题例题摘要:一、一次函数与四边形面积问题简介1.一次函数的定义和性质2.四边形面积问题的常见类型二、一次函数与四边形面积问题的解题方法1.利用一次函数性质解四边形面积问题2.利用四边形面积公式解一次函数问题3.一次函数与四边形面积问题的综合解法三、一次函数与四边形面积问题的例题解析1.例题一:利用一次函数性质解四边形面积问题2.例题二:利用四边形面积公式解一次函数问题3.例题三:一次函数与四边形面积问题的综合解法四、总结与展望1.一次函数与四边形面积问题的解题技巧总结2.提高解题能力的建议和展望正文:一次函数与四边形面积问题是数学中常见的题目类型,涉及到函数、几何等多个知识点,具有一定的难度。

本文将对一次函数与四边形面积问题进行详细的解析,并提供解题方法和例题解析。

一、一次函数与四边形面积问题简介一次函数是数学中一种基本的函数类型,通常表示为y = kx + b 的形式,其中k 和b 是常数。

四边形面积问题是几何中的常见问题,涉及到四边形的面积计算。

一次函数与四边形面积问题就是将这两者结合起来,需要运用一次函数的性质和四边形面积公式进行求解。

二、一次函数与四边形面积问题的解题方法1.利用一次函数性质解四边形面积问题在解决一次函数与四边形面积问题时,可以先根据题目条件求出一次函数的解析式,然后利用一次函数的性质,如函数图像的斜率、截距等,推导出四边形的面积。

2.利用四边形面积公式解一次函数问题在解决一次函数与四边形面积问题时,也可以先根据题目条件求出四边形的面积,然后利用四边形面积公式,结合一次函数的性质,求解一次函数问题。

3.一次函数与四边形面积问题的综合解法在解决一次函数与四边形面积问题时,还可以综合运用以上两种方法,相互验证,提高解题的准确性和效率。

三、一次函数与四边形面积问题的例题解析1.例题一:利用一次函数性质解四边形面积问题已知一次函数y = 2x + 3 与四边形ABCD 的边分别相交于点A、B、C、D,其中AB = 4,BC = 5,求四边形ABCD 的面积。

一次函数与面积结合问题解题技巧

一次函数与面积结合问题解题技巧

一次函数与面积结合问题解题技巧全文共四篇示例,供读者参考第一篇示例:一次函数与面积结合问题解题技巧一次函数是初中数学中最基本的一种函数形式,通常表示为y = kx + b,其中k和b为常数,x为自变量,y为因变量。

面积问题是数学中常见的问题类型之一,需要运用数学知识来求解。

当一次函数与面积结合在一起时,往往需要运用数学知识和解题技巧来解决问题。

本文将为大家介绍一次函数与面积结合问题解题的技巧,并通过实例来解释具体的解题方法。

一、如何将一次函数与面积联系起来在解决一次函数与面积结合问题时,我们需要先找到函数表达式和面积之间的联系。

通常,我们可以通过一次函数的图像和面积来建立它们之间的关系。

若给定一次函数y = 2x + 1,要求计算函数图像在一定区间内与x 轴之间的面积,我们可以先绘制函数的图像,然后找出其与x轴之间的面积。

二、一次函数与矩形面积的关系在一次函数与面积结合问题中,经常会出现与矩形面积有关的题目。

矩形的面积等于长乘以宽,即S = l*w。

如果给定一个矩形的长度为x,宽度为y = kx + b(k和b为常数),我们可以通过一次函数的表达式计算出矩形的面积。

三、利用一次函数的特性解决面积问题如果一个图形可以通过两条一次函数的交点来确定,我们也可以通过两条函数的表达式来求出图形的面积。

四、实例解析为了帮助大家更好地理解一次函数与面积结合问题的解题方法,我们来看一个实例:例:已知一次函数y = 2x + 3和直线y = x + 1的交点A、B、C、D,求由四个点构成的四边形的面积。

解:我们可以通过求解两条直线的交点来确定四个点的坐标。

将两条直线的表达式相等,得到x = -2,将x = -2代入其中一条直线的表达式中,得到交点坐标为(-2, -1)。

接下来,根据交点的坐标,我们可以求得四边形的边长,进而计算出四边形的面积。

将四个点连接起来可以得到一个平行四边形,根据平行四边形面积公式S = 底边长*高得到面积。

一次函数面积问题专题(含答案解析)

一次函数面积问题专题(含答案解析)

一次函數面積問題1、如图,一次函数的图像与X轴交于点B (- 6 , 0),交正比例函数的图像于点A,点A的横坐标为-4,△ ABC的面积为15,求直线OA的解析式。

2、直线y=x+3的图像与X轴、y轴分别交于A B两点,直线a经过原点与线段AB 交于。

,把厶ABO勺面积分为2:1的两部分,求直线a的函数解析式。

3、直线PA是一次函数y=x+n的图像,直线PB是一次函数y=-2x+m (m>n>0的图像,(1) 用m n表示A、B、P的坐标(2) 四边形PQoB勺面积是',AB=2求点P的坐标4、A AOB的顶点0( 0, 0) A (2, 1)、B (10, 1),直线CDL X 轴且△ AOB面积二等分,若D (m, 0),求m的值5、点B在直线y=-x+1上,且点B在第四象限,点A(2, 0)、0(0, 0),A ABo 的面积为2,求点B的坐标。

6直线y=- x+1与X轴y轴分别交点A B,以线段AB为直角边在第一象限内作等腰直角△ ABC N BAC=90 ,点P( a,])在第二象限,△ ABP勺面积与△ ABC7、如图,已知两直线y=0.5x+2.5和y=-x+1分别与X轴交于A、B两点,这两直线的交点为P(1)求点P的坐标(2)求厶PAB的面积8、已知直线y=ax+b (b>0)与y轴交于点N,与X轴交于点A且与直线y=kx交于点M (2, 3),如图它们与y轴围成的厶MoN勺面积为5,求(1)这两条直线的函数关系式(2)它们与X轴围成的三角形面积9、已知两条直线y=2x-3和y=5-x(1)求出它们的交点A的坐标(2)求出这两条直线与X轴围成的三角形的面积10、已知直线y=x+3的图像与X轴、y轴交于A B两点,直线I经过原点,与线段AB 交于点。

,把厶AoB的面积分为2:1的两部分,求直线I的解析式。

11、已知直线y=2x+3与直线y=-2x-1与y轴分别交于点A B(1)求两直线交点C的坐标(2)求厶ABe的面积(3)在直线BC上能否找到点P,使得△ APC的面积為6,求出点P的坐标,12、已知直线y=-x+2与X轴、y轴分别交于点A和点B,另一直线y=kx+b(k≠ 0)经过点C(1,0),且把△ AOB分为两部分,(1)若厶AOB被分成的两部分面积相等,求k和b的值(2)若厶AOB被分成的两部分面积为1:5,求k和b的值13、直线y=- x+3交X, y坐标轴分别为点A B,交直线y=2x-1于点P,直线-Iy=2x-1交X, y坐标轴分别为C。

一次函数面积问题专题

一次函数面积问题专题

一次函数面积问题专题
姓名:
一、基本图形识别
求图中各三角形的面积(用坐标表示)
用两种办法求S ∆MLN (用坐标表示)
用两种办法求S ∆AOB (用坐标表示)
二、 基本题型练习
1、在直角坐标系中,O 是坐标原点,点A (3,-2)在一次函数24y x =-+图象上,图象与y 轴的交点为B ,求AOB ∆面积。

x
x
x
变式:(1)在直线AB上找一点P,使得S∆AOB = S∆BOP
变式:(2)在直线AB上找一点P,使得S∆BOP =S∆AOB
变式:(3)在Y轴上找一点P,使得S∆AOP = S∆AOB
1.1如图,直线OC 、BC 的函数关系式分别是x y =1和622+-=x y ,直线BC 与x 轴交于点B ,直线BA 与直线OC 相交于点A ,求:(1)当x 取何值时1y >2y (2)当直线BA 平分△BOC 的面积时,求点A 的坐标.
4

如图,已知直线PA 是一次函数)0(>+=n n x y 的图象,直线PB 是一次函数)(2n m m x y +-=的图象。

(1)用m 、n 表示出A 、B 、P 点的坐标;(2)若点Q 是直线PA 与y 轴的交点,且四边形PQOB 的面积6
5,AB=2,试求点P 的坐标,并写出直线PA 与PB 的解析式。

在平面直角坐标系中,点A (4,0),点P (x ,y )是直线32
1+-
=x y 在第一象限的一点.(1)设△OAP 的面积为S ,用含x 的解析式表示S ,并写出自变量取值范围.(2)在直线321+-=x y 求一点Q ,使△OAQ 是以OA 为底的等腰三角形.(3)若第(2)问变为使△OAQ 是等腰三角形,这样的点。

一次函数与面积问题

一次函数与面积问题

一次函数常与三角形或四边形的面积相结合进行考查,两种类型的题目比较常见:(1)由函数图像求面积;(2)由面积求点坐标。

遇到第一种类型题目时,找准三角形的底和高是解题的关键,特别是遇到钝角三角形。

如果无法直接求解,可以利用割补法、铅锤法等方法进行转化。

遇到第二种类型题目时,要特别注意,很容易出错,不要忘记使用绝对值。

01类型一:由函数图像求图形面积例题1:如图,直线l1:y=-3x+3与x轴交于点A,直线l2经过点B(4,0),C(3,-1.5),并与直线l2交于点D.(1)求直线l2的函数解析式;(2)求△ABD的面积.分析:求l2的函数解析式,利用待定系数法,已知点B(4,0)、点C (3,-1.5),代入解析式中求出K、b得值即可得到一次函数解析式。

求△ABD的面积,三角形有一边在x轴上,求三角形的面积可直接利用三角形的面积公式,选择x轴上的线段AB为底,那么点D纵坐标的绝对值即为三角形的高,因此需要求出点B坐标。

点B是两直线的交点,联立方程组即可求得点B坐标。

本题主要是有函数图像求得三角形的面积,属于基础题。

02类型二:由面积求点坐标例题2:如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2).(1)求直线AC的表达式;(2)求△OAC的面积;(3)动点M在线段OA和射线AC上运动,是否存在点M,使△OMC 的面积是△OAC的面积的14?若存在,求出此时点M的坐标;若不存在,请说明理由.分析:(1)由点C和点A的坐标,利用待定系数法即可求得函数的解析式;(2)求△AOC的面积,由题可知该三角形可选OC作为底,点A的横坐标的绝对值即为该三角形的高,点A与点C坐标已知,可通过三角形的面积公式直接求出。

(3)当△OMC的面积是△OAC的面积的1/4时,根据面积公式即可求得M的横坐标的绝对值,然后代入解析式即可求得M的坐标.由面积求点坐标时,一定要注意绝对值的使用,注意分情况进行讨论。

专题07 一次函数中的面积问题精讲(解析版)

专题07 一次函数中的面积问题精讲一、平面直角坐标系中面积的几种求法面积问题是中考的一个重点知识点,考查方式灵活多样,很多题目有创新性,能很好考查学生的灵活运用知识的能力.我们除了要熟知常见图形的面积公式外,在平面直角坐标系中还要懂得以下几种面积的方法: 方法一、割补法割补方法不仅仅只有一种,要灵活使用.方法二、铅垂高、水平宽法=21=2ABC ABC S CD OAS CE OB⨯⨯⨯⨯△△ 二、典型例题选讲题1. 如图1-1所示,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0).将△ABC 沿x 轴向右平移,当点C 落在直线y =2x ﹣6上时,线段BC 扫过的面积为( )图1-1A .4B .8C .16D .12 【答案】C .【解析】如图1-2所示.图1-2设C 点移动到直线y =2x ﹣6上的点为C ’. ∵点A 、B 的坐标分别为(1,0)、(4,0), ∴AB =3.∵∠CAB =90°,BC =5,∴在Rt △ABC 中,由勾股定理得:AC =4. ∴A ′C ′=4.∵点C ′在直线y =2x -6上, ∴2x -6=4,解得 x =5.即OA ′=5, ∴CC ′=5-1=4.∴四边形BB ’C ’C 是平行四边形,面积 =4×4=16. 即线段BC 扫过的面积为16,故答案为:C .题2. 已知一次函数2y x a =+与y x b =-+的图象都经过A (2-,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为 ( ).A . 4B . 5C . 6D . 7 【答案】C .【解析】因为y =2x +a 与y =-x +b 的图象都经过A (-2,0), 所以0=2×(-2)+a , 解得:a =4, 又因为0=2+b 解得:b =-2y =2x +4、y =-x -2与y 轴分别交于B 、C 两点 ∴B (0.4),C (0,-2),三角形ABC 的面积=2×6÷2=6. 故答案为:C .题3. (河北中考)如图3-1所示,在平面直角坐标系xOy 中,A (0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E .点B ,E 关于x 轴对称,连接AB . (1)求点C ,E 的坐标及直线AB 的解析式; (2)若S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积,如此不更快捷吗?”但大家经反复验算,发现S △AOC ≠S ,请通过计算解释他的想法错在哪里.图3-1【答案】见解析【解析】解:(1)y =-38x -398,令y =0,有0=-38x -398,解得:x =-13,即C (-13,0).令x =-5,则有y =-38×(-5)-398=-3,即E (-5,-3).∵点B ,E 关于x 轴对称, ∵B (-5,3). ∵A (0,5),∵设直线AB 的解析式为y =kx +5, ∵-5k +5=3, ∵k =25,∵直线AB 的解析式为y =25x +5.(2)由(1)知E (-5,-3), ∵DE =3. ∵C (-13,0),∵CD =-5-(-13)=8, ∵S ∵CDE =12CD ·DE =12.由题意知OA =5,OD =5,BD =3, ∵S 四边形ABDO =12(BD +OA )·OD =20,∵S =S ∵CDE +S 四边形ABDO =12+20=32.(3)由(2)知S =32,在∵AOC 中,OA =5,OC =13, ∵S ∵AOC =12OA ·OC =652=32.5,∵S ≠S ∵AOC .理由:由(1)知直线AB 的解析式为y =25x +5,令y =0,则0=25x +5,∵x =-252≠-13,∵点C 不在直线AB 上,即点A ,B ,C 不在同一条直线上, ∵S ∵AOC ≠S .题4. 已知一次函数的图象过点(0,3),且与两坐标轴所围成的三角形面积为3, 则其表达式为( ) A . y =1.5x +3B . y =-1.5x +3C . y =1.5x +3或y =-1.5x +3D . y =1.5x -3或y =-1.5x -3【答案】C .【解析】解:设该一次函数与x 轴的交点坐标为(a ,0), 由题意得:1332a ⨯⨯=, 解得:a =±2, 当a =2时,设直线解析式为y =kx +3,将(2,0)代入,求得k =-1.5; 同理求得,当a =-2时,k =1.5.所以函数解析式为:y =1.5x +3或y =-1.5x +3,故答案为C .题5. 如图5-1所示,已知一次函数y =kx +b 的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .图5-1(1)求该一次函数的解析式;(2)求∵AOB 的面积. 【答案】见解析.【解析】解:(1)把A (-2,-1),B (1,3)代入y =kx +b ,得:⎩⎪⎨⎪⎧-2k +b =-1,k +b =3. 解得⎩⎨⎧k =43,b =53.∵一次函数的解析式为y =43x +53.(2)把x =0代入y =43x +53,得y =53,∵D 点坐标为(0,53).∵S ∵AOB =S ∵AOD +S ∵BOD =12×53×2+12×53×1=52.题6. 已知,一次函数y kx b =+的图像与正比例函数13y x =交于点A ,并与y 轴交于点(0,4)B -,△AOB 的面积为6,则kb = 【答案】203-或4. 【解析】解:因为一次函数y kx b =+的图像与y 轴交于点(0,4)B -, ∴b =-4,OB =4, 设A 点横坐标为a , 因为△AOB 的面积为6, 所以162a OB ⨯⨯=, 即a =3或-3,点A 的坐标为(3,1)或(-3,-1) 将A 点坐标代入4y kx =-,得: k =53或-1 所以kb = 203-或4. 故答案为:203-或4.题7. 如图7-1所示,点G ,D ,C 在直线a 上,点E ,F ,A ,B 在直线b 上,若a ∥b ,Rt △GEF 从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中△GEF 与矩形ABCD 重合部分的面积(S )随时间(t )变化的图象大致是( )图7-1A B C D【解析】根据题意可得:①F、A重合之前没有重叠面积;②F、A重叠之后,重叠部分面积逐渐增大,且增加的速度越来越快;③△EFG完全进入且F与B重合之前,重叠部分的面积是三角形的面积,不变,④F与B重合之后,重叠部分的面积逐渐减小,减小的速度越来越慢,直至最后重叠部分的面积为0.综上所述,只有B选项图形符合.故答案为:B.题8. 如图8-1所示,已知直线y=2x+3与直线y=-2x-1.(1)求两直线交点C的坐标;(2)求∵ABC的面积.(3)在直线BC上能否找到点P,使得S∵APC=6,若能,请求出点P的坐标,若不能请说明理由。

一次函数面积问题专题(含答案解析)

一次函數面積問題1、如图,一次函数的图像与*轴交于点B〔-6,0〕,交正比例函数的图像于点A,点A的横坐标为-4,△ABC的面积为15,求直线OA的解析式。

2、直线y=*+3的图像与*轴、y轴分别交于A、B两点,直线a经过原点与线段AB交于C,把△ABO的面积分为2:1的两局部,求直线a的函数解析式。

3、直线PA是一次函数y=*+n的图像,直线PB是一次函数y=-2*+m〔m>n>0〕的图像,〔1〕用m、n表示A、B、P的坐标〔2〕四边形PQOB的面积是,AB=2,求点P的坐标4、△AOB的顶点O〔0,0〕、A〔2,1〕、B〔10,1〕,直线CD⊥*轴且△AOB面积二等分,假设D〔m,0〕,求m的值5、点B在直线y=-*+1上,且点B在第四象限,点A〔2,0〕、O〔0,0〕,△ABO的面积为2,求点B的坐标。

6、直线y=-*+1与*轴y轴分别交点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC, BAC=90°,点P〔a,〕在第二象限,△ABP的面积与△ABC 面积相等,求a的值.7、如图,两直线y=0.5*+2.5和y=-*+1分别与*轴交于A、B两点,这两直线的交点为P〔1〕求点P的坐标〔2〕求△PAB的面积8、直线y=a*+b〔b>0〕与y轴交于点N,与*轴交于点A且与直线y=k*交于点M 〔2,3〕,如图它们与y轴围成的△MON的面积为5,求〔1〕这两条直线的函数关系式〔2〕它们与*轴围成的三角形面积9、两条直线y=2*-3和y=5-*〔1〕求出它们的交点A的坐标〔2〕求出这两条直线与*轴围成的三角形的面积10、直线y=*+3的图像与*轴、y轴交于A、B两点,直线l经过原点,与线段AB 交于点C,把△AOB的面积分为2:1的两局部,求直线l的解析式。

11、直线y=2*+3与直线y=-2*-1与y轴分别交于点A、B〔1〕求两直线交点C的坐标〔2〕求△ABC的面积〔3〕在直线BC上能否找到点P,使得△APC的面积為6,求出点P的坐标,假设不能请说明理由。

一次函数与几何综合(题型齐全)

一次函数与几何图形综合考点一、面积问题一次函数求面积的常用方法:(1)直接法(公式法)适用于规则图形,三角形中至少有一边与坐标轴重合或平行时,常用直接法求面积;(2)割补法(分割求和、补形作差)适用于不规则四边形,将四边形分割成两个三角形,分别计算两个三角形的面积再求和。

或者将四边形放在一个规则图形中(需要时做辅助线),此时四边形的面积可以看作一个规则图形面积减去补充的规则图形面积;(3)铅锤法(底相同,高运算)适用于三边均不与坐标轴平行的三角形(不规则三角形);(4)平行线面积转化适用于存在平行线的情况下,利用平行线的性质,平行线间的距离处处相等做高;题型一:直接求图形面积1、正比例函数()110y k x k =≠与一次函数()220y k x b k =+≠的图象的交点坐标为()43A ,,一次函数的图象与y 轴的交点坐标为()03B -,.(1)求正比例函数和一次函数的解析式;(2)求AOB 的面积.2、如图,一次函数5y x =-+和1y kx =-的图象与x 轴分别交于A 、C 两点,与y 轴分别交于B 、D 两点,两个函数图象的交点为点E ,且E 点的横坐标为2.(1)求k 的值;(2)不解方程组,请直接写出方程组51x y kx y +=⎧⎨-=⎩的解;(3)求两函数图象与x 轴所围成的ACE △的面积.3、如图,直线443y x =-+与y 轴交于点A ,与直线4455y x =+交于点B ,且直线4455y x =+与x 轴交于点C ,求ABC 的面积.4、如图,在平面直角坐标系中,直线132x m l y =+:与直线2l 交于点()23A -,,直线2l 与x 轴交于点()40C ,,与y 轴交于点B ,将直线l 2向下平移8个单位长度得到直线3l ,3l 与y 轴交于点D ,与1l 交于点E ,连接AD .(1)求直线2l 的解析式;(2)求△ADE V 的面积;5、如图,直线l 1:y =x +m 与y 轴交于点B ,与x 轴相交于点F .直线l 2:y =kx ﹣9与x 轴交于点A ,与y 轴交于点C ,两条直线相交于点D ,连接AB ,且OA :OC :AB =1:3:.(1)求直线l 1、l 2的解析式;(2)过点C 作l 3∥l 1交x 轴于点E ,连接BE 、DE .求△BDE 的面积.5、如图,一次函数()0y kx b k =+≠的图象与正比例函数2y x =-的图象交于点A ,与x 轴交于点C ,与y 轴交于点B ,5OB =,点A 的纵坐标为4.(1)求一次函数的解析式;(2)点D 和点B 关于x 轴对称,将直线2y x =-沿y 轴向上平移8个单位后分别交x 轴,y 轴于点,M N ,与直线()0y kx b k =+≠交于点E ,连接DE ,DC ,求ECD 的面积.题型二:已知面积求点的坐标1、如图,一次函数y kx b =+与反比例函数a y x=的图象在第一象限交于点()4,3A ,与y 轴的负半轴交于点B ,且OA OB =.(1)求一次函数y kx b =+与反比例函数a y x =的表达式;(2)已知点C 在x 轴上,且ABC 的面积是8,求此时点C 的坐标;2、如图,在平面直角坐标系中直线13:2l x m +与直线2l 交于点()2,3A -,直线2l 与x 轴交于点()4,0C ,与y 轴交于点B ,过BD 中点E 作直线3l y ⊥轴.(1)求直线2l 的解析式和m 的值;(2)点P 在直线1l 上,当6PBC S = 时,求点P 坐标;。

专题51 一次函数的平行、垂直、面积问题(解析版)

模型介绍方法点拨☑知识点1两直线平行如图,直线b∥a,那么k b =k a ,若已知k a 及C 的坐标即可求出直线b 的解析式.☑知识点2两直线垂直如图,直线c⊥a,那么k c *k a =-1,若已知k a 及C 或B 的坐标即可求出直线c 的解析式.(针对这一性质,初中不要求掌握,一般用全等、相似的方法求解)例题精讲考点一:一次函数平行问题【例1】.一次函数y=kx+b与y=3x+1平行,且经过点(﹣3,4),则这个函数的表达式为y=3x+13.解:∵一次函数y=kx+b与y=3x+1平行,∴k=3,把(﹣3,4)代入y=3x+b得﹣9+b=4,解得b=13,∴所求一次函数解析式为y=3x+13.故答案为y=3x+13.变式训练【变1-1】.一条直线平行于直线y=2x﹣1,且与两坐标轴围成的三角形面积是4,则直线的解析式是()A.y=2x+4B.y=2x﹣4C.y=2x±4D.y=x+2解:∵所求直线与直线y=2x﹣1平行∴可设所求直线的解析式为y=2x+b令x=0可得直线在y轴的截距为b令y=0可得直线在x轴的截距为由题意可知:b××=4∴b=±4,故选:C.【变1-2】.一个一次函数图象与直线y=x+平行,与x轴、y轴的交点分别为A、B,并且过点(﹣1,﹣20),则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有4个.解:因为一次函数的图象与直线y=x+平行,所以所求直线的斜率为,又因为所求直线过点(﹣1,﹣20),所以所求直线为5x﹣4y﹣75=0,所以此直线与x轴、y轴的交点分别为A(15,0)、B(0,﹣),设在直线AB上并且横、纵坐标都是整数的点的横坐标是x=﹣1+4N,纵坐标是y=﹣20+5N,(N是整数).因为在线段AB上这样的点应满足0≤x=﹣1+4N≤15,且﹣<y=﹣20+5N≤0,解得:≤N≤4,所以N=1,2,3,4,故答案为:4.考点二:一次函数垂直问题【例2】.已知直线y=kx+b经过点A(3,8),并与直线y=2x﹣3垂直,则k=﹣;b=.解:∵已知直线y=kx+b与直线y=2x﹣3垂直,则k=﹣,∴y=x+b,将A(3,8)代入,8=+b,解得b=,故答案为﹣,.变式训练【变2-1】.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B,直线CD与y轴交于点C(0,﹣8),与直线AB交于点D,若△AOB∽△CDB,则点D的坐标为(,).解:∵△AOB∽△CDB,∴∠CDB=∠AOB=90°,设直线CD的解析式为:y=2x+b,∵点C的坐标为(0,﹣8),∴b=﹣8,,解得,,则点D的坐标为:(,),故答案为:(,).【变2-2】.直线y=kx+b与抛物线y=x2交于A(x1,y1),B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为(0,4).[提示:直线l1:y=k1x+b1与直线l2:y=k2x+b2互相垂直,则k1•k2=﹣1]解:∵直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,∴kx+b=x2,化简,得x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴×=====﹣1,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).考点三:一次函数的面积问题【例3】.已知一次函数y=mx+2的图象与两坐标轴围成的三角形的面积为1,则常数m=±2.解:令x=0,则y=2,令y=0,则x=﹣,∵一次函数y=mx+2的图象与两坐标轴围成的三角形的面积为1,∴×2×|﹣|=1,解得m=±2.故答案为:±2.变式训练【变3-1】.已知直线y=(n为正整数)与坐标轴围成的三角形的面积为S n.则S1+S2+S3+…+S2020的值为()A.B.C.D.解:令x=0,则y=,令y=0,则=0,解得x=,所以,S n=••=(﹣),所以,S1+S2+S3+…+S2020=(+﹣+﹣+…+﹣)=(﹣)=.故选:B.【变3-2】.如图,正比例函数y=﹣3x的图象与一次函数y=kx+b的图象交于点P(m,3),一次函数图象经过点B(1,1),与y轴的交点为D,与x轴的交点为C.(1)求一次函数表达式;(2)求△COP的面积.解:(1)∵正比例函数y=﹣3x的图象过点P(m,3),∴3=﹣3m,解得:m=﹣1,∴P(﹣1,3),∵一次函数y=kx+b的图象过点P(﹣1,3),B(1,1),∴,解得:,∴一次函数表达式为y=﹣x+2;(2)由(1)知,一次函数表达式为y=﹣x+2,令y=0,﹣x+2=0,解得:x=2,∴C(2,0),∴OC=2,∴=3.1.两直线y1=k1x+b1与y2=k2x+b2相交于y轴,则()A.k1≠k2,b1≠b2B.k1≠k2,b1=b2C.k1=k2,b1≠b2D.k1=k2,b1=b2解:两直线y1=k1x+b1与y2=k2x+b2相交于y轴,则两直线与y轴的交点是同一点,在直线y1=k1x+b1中,令x=0,解得y=b1,与y轴的交点是(0,b1),同理直线y2=k2x+b2与y轴的交点是(0,b2),则b1=b2,若k1=k2,则两直线重合,因而k1≠k2.故选:B.2.若直线x+3y+1=0与ax+y+1=0互相垂直,则实数a的值为()A.﹣3B.﹣C.D.3解:直线x+3y+1=0的斜率为:﹣,直线ax+y+1的斜率为:﹣a,∵两直线垂直,∴﹣×(﹣a)=﹣1,∴a=﹣3,故选:A.3.已知一次函数y=x+2与y=﹣2+x,下面说法正确的是()A.两直线交于点(1,0)B.两直线之间的距离为4个单位C.两直线与x轴的夹角都是30°D.两条已知直线与直线y=x都平行解:根据一次函数的性质,一次函数y=x+2与y=﹣2+x,分别与y轴相交于(0,2)和(0,﹣2)两点,因为x的系数,都为1,因此直线的方向是一样的,都与直线y=x平行.故选:D.4.如图,直线l1过原点,直线l2解析式为y=﹣x+2,且直线l1和l2互相垂直,那么直线l1解析式为()A.y=x B.y=x C.y=x D.y=x解:∵一次函数经过原点,∴设所求的一次函数为y=kx,∵一次函数的图象与直线y=﹣x+2垂直,∴k=,则直线l1解析式为y=x,故选:D.5.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形的面积为()A.B.或C.或D.或解:∵点B(1,n)到原点的距离是,∴n2+1=10,即n=±3.则B(1,±3),代入一次函数解析式得y=4x﹣1或y=﹣2x﹣1.(1)y=4x﹣1与两坐标轴围成的三角形的面积为:××1=;(2)y=﹣2x﹣1与两坐标轴围成的三角形的面积为:××1=.故选:C.6.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,﹣2),则kb=﹣8.解:∵一次函数y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2,∴y=2x+b,把点A(1,﹣2)代入y=2x+b得2+b=﹣2,解得b=﹣4,∴kb=2×(﹣4)=﹣8.故答案为﹣8.7.若平行于直线y=﹣2x的某直线y=kx+b与两坐标轴所围成的三角形面积为5,则b=.解:直线y=kx+b与直线y=﹣2x平行,因而k=﹣2,直线y=﹣2x+b与x轴的交点坐标是,与y轴的交点坐标是(0,b),∴||•|b|=5,即=5,解得:b=±2.8.如图,直线y=﹣x+2与x,y轴交于A、B两点,以AB为边在第一象限作矩形ABCD,矩形的对称中心为点M,若双曲线y=(x>0)恰好过点C、M,则k=.解:∵y=﹣x+2,∴x=0时,y=2;y=0时,﹣x+2=0,解得x=4,∴A(4,0),B(0,2).∵四边形ABCD是矩形,∴∠ABC=90°.设直线BC的解析式为y=2x+b,将B(0,2)代入得,b=2,∴直线BC的解析式为y=2x+2,设C(a,2a+2),∵矩形ABCD的对称中心为点M,∴M为AC的中点,∴M(,a+1).∵双曲线y=(x>0)过点C、M,∴a(2a+2)=(a+1),解得a1=,a2=﹣1(不合题意舍去),∴k=a(2a+2)=(2×+2)=.故答案为.9.在平面直角坐标系xOy中,已知直线AB与x轴交于点A(2,0),与y轴交于点B(0,1).(1)求直线AB的解析式;=2,求点C的坐标.(2)若x轴上有一点C,且S△ABC解:(1)设直线AB的解析式为y=kx+b(k≠0),将点A(2,0),B(0,1)代入,可得,解得,∴直线AB的解析式为y=﹣x+1;(2)∵x轴上有一点C,设点C(x,0),∴AC=|2﹣x|,=2,∵S△ABC∴×|2﹣x|×1=2,∴x=﹣2或x=6,∴C(﹣2,0)或C(6,0).10.如图,直线l1:y=x﹣3与x轴交于点A,与y轴交于点B,直线l2:y=kx+b与x轴交于点C(0.5,0),与y轴交于点D(0,2),直线l1,l2交于点E.(1)求直线l2的函数表达式.(2)试说明CD=CE.(3)若P为直线l1上一点,当∠POB=∠BDE时,求点P的坐标.解:(1)将C(0.5,0).D(0,2)代入y=kx+b得,,解得,∴直线l2的函数解析式为y=﹣4x+2;(2)当﹣4x+2=x﹣3时,∴x=1,∴E(1,﹣2),过点E作EF⊥x轴于F,∴EF=OD=2,∵∠ODC=∠CEF,∠DCO=∠ECF,∴△DOC≌△EFC(AAS),∴CD=CE;(3)∵∠POB=∠BDE,∴点P在l1上有两个位置,当点P在点B上方时,如图,∴OP∥DE,∴直线OP的函数解析式为y=﹣4x,∴﹣4x=x﹣3,∴x=,当x=时,y=﹣,∴P(,﹣),当点P在点B的下方时,设点P关于y轴的对称点为Q,连接OQ交l1为点P',∴Q(﹣),则直线OQ的函数解析式为y4,∴直线OQ与l1的交点为P'(﹣1,﹣4),综上所述:P(,﹣)或(﹣1,﹣4).11.如图,在平面直角坐标系中,将一块等腰直角三角板△ABC放在第三象限,斜靠在两坐标轴上,点C坐标为(0,﹣4),直角顶点B坐标为(﹣1,0),一次函数y=kx+b的图象经过点A、C交x轴于点D.(1)求点A的坐标;(2)求直线AC与坐标轴围成的三角形的面积.解:(1)作AE⊥x轴,垂足为E.∵∠AEB=90°,∴∠ABE+∠CBO=90°.在Rt△AEB中,∵∠ABE+∠EAB=90°,∴∠CBO=∠EAB,在△AEB和△BOC中,,∴△AEB≌△BOC(AAS).∴AE=BO=1,BE=OC=4,∴OE=OB+BE=1+4=5,∴A(﹣5,﹣1).(2)把A(﹣5,﹣1),C(0,﹣4)代入y=kx+b,得,解得,函数解析式为:y=﹣x﹣4,当y=0时,x=﹣,D(﹣,0).S△COD=××4=.12.如图,直线l1:y=x+3分别与直线l2:y=kx+b(k≠0)、直线l3:y=k1x+b1(k1≠0)交于A、B两点,直线l1交y轴于点E,直线l2与x轴和y轴分别交于C、D两点,已知点A的纵坐标为,B的横坐标为1,l2∥l3,OD=1,连BD.(1)求直线l3的解析式;(2)求△ABD的面积.解:(1)在y=x+3中,令y=,则x=﹣,∴A(﹣,),∵OD=1,∴D(0,﹣1),把点A,D的坐标代入l2:y=kx+b,可得,解得,∴l2:y=﹣x﹣1,在y=x+3中,令x=1,则y=4,∴B(1,4),∵l2∥l3,∴k1=﹣,把B(1,4)代入y=﹣x+b1可得,4=﹣+b1,∴b1=,∴直线l3的解析式为y=﹣x+;(2)在y=x+3中,令x=0,则y=3,∴E(0,3),∴DE=3+1=4,=DE(|x A|+|x B|)=(+1)=5.∴S△ABD13.如图,一次函数y=x﹣2的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B,且点B的纵坐标为1.(1)求反比例函数y=(x>0)的表达式;(2)过点A作x轴的垂线交反比例函数y=(x>0)的图象于点C,平移直线y=x ﹣2得到过点C的直线l,l的函数表达式为y=mx+n,结合函数的图象,求>mx+n对应x的取值范围.解:(1)∵点B在一次函数y=x﹣2的图象上,且B的纵坐标为1,∴1=,∴x=6,∴B(6,1),∵反比例函数y=(x>0)的图象过点B,∴,∴k=6,∴反比例函数的表达式为(x>0);(2)∵一次函数y=x﹣2的图象与x轴交于点A,∴令y=0得,,∴x=4,∴A(4,0),∵CA⊥x轴,∴点C的横坐标为4,结合函数图象可知,要求>mx+n,即反比例函数y=的图象在一次函数y=mx+n的图象的上方,∴0<x<4.14.已知抛物线y=ax2﹣a(a>0).(1)求抛物线与x轴的交点坐标;(2)设C为抛物线上的一定点,抛物线和x轴交点为E、F,直线l:y=kx+2k+3与抛物线交于点A、B(点B与点C不重合),与y轴交于点P,直线BD垂直于直线y=﹣a,垂足为D,且△CEF为等腰直角三角形.①求点C的坐标和抛物线的解析式;②证明:对于每一个给定的实数k,都有DP∥AC.解:(1)在y=ax2﹣a中,令y=0,得ax2﹣a=0,∵a>0,∴x2﹣1=0,解得:x=﹣1或x=1,∴抛物线与x轴的交点坐标为(﹣1,0)和(1,0);(2)①∵y=ax2﹣a,∴E(﹣1,0),F(1,0),∵△CEF为等腰直角三角形,∴CE=CF,∠ECF=90°,∠CEF=∠CFE=45°,∵∠EOC=∠FOC=90°,OE=OF=1,∴OC=OE=1,∴C(0,﹣1),将C(0,﹣1)代入y=ax2﹣a中,则﹣a=﹣1,∴a=1,∴抛物线的解析式为y=x2﹣1;②由题意得:,解得:或,∴A(﹣2,3),B(k+2,k2+4k+3),且k+2≠0,∵直线BD垂直于直线y=﹣1,垂足为D,∴D(k+2,﹣1),在y=kx+2k+3中,令x=0,得y=2k+3,∴P(0,2k+3),设直线AC解析式为y=mx+n,则,解得:,∴直线AC解析式为y=﹣2x﹣1,设直线DP的解析式为y=m′x+n′,则,解得:,∴直线DP的解析式为y=﹣2x+2k+3,∴AC∥DP.15.定义:已知直线l:y=kx+b(k≠0),则k叫直线l的斜率.性质:直线l1:y=k1x+b1.l2:y=k2x+b2(两直线斜率存在且均不为0),若直线l1⊥l2,则k1k2=﹣1(1)应用:若直线y=2x+1与y=kx﹣1互相垂直,求斜率k的值;(2)探究:一直线过点A(2,3),且与直线y=﹣x+3互相垂直,求该直线的解析式.解:(1)∵直线y=2x+1与y=kx﹣1互相垂直,∴2•k=﹣1,∴k=﹣;(2)设该直线的解析式为y=kx+b,∵直线y=kx+b与直线y=﹣x+3互相垂直,∴﹣k=﹣1,解得k=3,把A(2,3)代入y=3x+b得6+b=3,解得b=﹣3,∴该直线的解析式为y=3x﹣3.16.在平面几何中,我们学过两条直线垂直的定义,下面就两个一次函数的图象所确定的两条直线,给出它们垂直的定义:设一次函数y=k1x+b(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k≠0)的图象为直线l2,若k1•k2=﹣1,我们就称直线l1与直线l2互相垂直,如直线y=3x﹣1与直线y=﹣x+1,因为3×(﹣)=﹣1,所以相互垂直.根据以上定义内容,解答下面的问题:(1)求过点P(1,2)且与已知直线y=0.5x﹣2垂直的直线l的函数表达式,并在如图所示的坐标系中画出直线l的图象.(2)求(1)问中的两条直线与y轴所围的三角形的面积;(3)已知点A(0,2),点B,C分别是(1)问中直线l和x轴上的动点,求出△ABC 周长的最小值.解:(1)设直线l的函数表达式为y=kx+b,∵直线l与直线y=0.5x﹣2垂直,∴k=﹣2,∵直线l过点P(1,2),∴﹣2×1+b=2,∴b=4.∴直线l的函数表达式为y=﹣2x+4;直线l的图象如图;(2)解方程组得,,∵直线y=0.5x﹣2与y轴的交点为(0,﹣2),直线l的函数表达式为y=﹣2x+4与y轴的交点为(0,4),∴两条直线与y轴所围的三角形的面积=×6×=;(3)∵点A(0,2)关于x轴的对称点为E(0,﹣2),关于直线l的对称点D(,),连接DE交直线l于B,交x轴于C,则此时,△ABC周长的值最小,△ABC周长的最小值=DE==.17.如图,在平面直角坐标系中,反比例函数的图象经过点A(﹣4,3),将点A向右平移2个单位长度,再向上平移a个单位长度得到点B,点B恰好落在该函数的图象上,过A,B两点的直线与y轴交于点C.(1)求k的值及点C的坐标;(2)在y轴上有一点D(0,4),连接AD,BD,求△ABD的面积.解:(1)设反比例函数表达式为,把A(﹣4,3)代入得,3=,解得k=﹣4×3=﹣12.∴反比例函数的表达式为.∵将点A向右平移2个单位长度,再向上平移a个单位长度得到点B,∴点B的坐标为(﹣2,y).当x=﹣2时,.∴点B的坐标为(﹣2,6).设直线AB的函数表达式为y=kx+b.由题意,得,解得.∴.∵当x=0时,y=9,∴点C的坐标为(0,9).(2)由(1)知CD=OC﹣OD=9﹣4=5.∴|x A|﹣=.18.如图在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的函数关系式;(2)求△OAB的面积;(3)是否存在点M,使△OMC的面积与△OAB的面积相等?若存在求出此时点M的坐标;若不存在,说明理由.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)∵y=﹣x+6,当y=0时,x=6,∴B(0,6),∴OB=6,∴△OAB的面积=×6×2=6;(3)存在点M,使△OMC的面积与△OAB的面积相等,理由如下:如图所示:设OA的解析式是y=mx,则42,解得:m=.则直线OA的解析式是:y=x,∵点C(0,6),∴OC=6,∴OB=OC=6,∵△OMC的面积与△OAB的面积相等,∴M到y轴的距离=点A的纵坐标2,∴点M的横坐标为2或﹣2;当M的横坐标为2时,在y=x中,当x=2时,y=1,则M的坐标是(2,1);在y=﹣x+6中,当x=2则y=4,则M的坐标是(2,4).则M的坐标为(2,1)或(2,4).当M的横坐标为﹣2时,在y=﹣x+6中,当x=﹣2时,y=8,则M的坐标是(﹣2,8).综上所述:点M的坐标为(2,1)或(2,4)或(﹣2,8).19.如图1,平面直角坐标系中,直线y=x﹣2与x轴、y轴分别交于点A,B,直线y=﹣x+b经过点A,并与y轴交于点C.(1)求A,B两点的坐标及b的值;(2)如图2,动点P从原点O出发,以每秒1个单位长度的速度沿x轴正方向运动.过点P作x轴的垂线,分别交直线AC,AB于点D,E.设点P运动的时间为t.点D的坐标为(t,﹣t+4).点E的坐标为(t,t﹣2);(均用含t的式子表示)(3)在(2)的条件下,当点P在线段OA上时,探究是否存在某一时刻,使DE=OB?若存在,求出此时△ADE的面积;若不存在说明理由.解:(1)令y=0,则x=4,∴点A的坐标为(4,0),令x=0,则y=﹣2,∴点B的坐标为(0,﹣2),将A(4,0)代入y=﹣x+b,得0=﹣4+b,解得b=4;(2)由(1)知,直线AC的表达式为y=﹣x+4,∵点P(t,0),∵PD⊥x轴,∴D(t,﹣t+4),E(t,t﹣2),故答案为(t,﹣t+4),(t,t﹣2);(3)存在t,使DE=OB,理由如下:∵点P在线段OA上,∴0≤t≤4,由(2)知D(t,﹣t+4),E(t,t﹣2),∴DE=﹣t+4﹣(t﹣2)=﹣t+6,∵B(0,﹣2),∴OB=2,∵DE=OB,∴﹣t+6=2,解得:t=,∴AP=4﹣t=4﹣=,=DE•AP=×2×=.∴S△ADE20.如图,已知一次函数y1=kx+b的图象与函数y2=(x>0)的图象交于A(6,﹣),B(,n)两点,与y轴交于点C.将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.(1)求y1与y2的解析式;(2)观察图象,直接写出y1<y2时x的取值范围;(3)连接AD,CD,若△ACD的面积为6,则t的值为2.解:(1)将点A(6,﹣)代入y2=中,∴y2=,∵B(,n)在y2=中,可得n=﹣6,∴B(,﹣6),将点A、B代入y1=kx+b,∴,解得,∴y1=x﹣;(2)∵一次函数与反比例函数交点为A(6,﹣),B(,﹣6),∴<x<6时,y1<y2;(3)在y1=x﹣中,令x=0,则y=﹣,∴C(0,﹣),∵直线AB沿y轴向上平移t个单位长度,∴直线DE的解析式为y=x﹣+t,∴F点坐标为(0,﹣+t),过点F作GF⊥AB于点G,连接AF,直线AB与x轴交点为(,0),与y轴交点C(0,﹣),∴∠OCA=45°,∴FG=CG,∵FC=t,∴FG=t,∵A(6,﹣),C(0,﹣),∵AB∥DF,=S△ACF,∴S△ACD∴×6×t=6,∴t=2,故答案为:2.21.如图,抛物线y=ax2+bx与直线l交于点A(1,5)、B(6,0),点C是l上方的抛物线上的一动点,过C作CD⊥x轴于点D,交直线l于点E.连接AC、BC.(1)求抛物线的解析式;(2)设点C的横坐标为n,△的面积为S,求出S的最大值;(3)在抛物线上是否存在点P,使得△PAB是直角三角形,且始终满足AB边为直角边?若存在,求出所有符合条件的P的坐标;若不存在,简要说明理由.解:(1)∵抛物线y=ax2+bx与直线l交于点A(1,5)、B(6,0),∴,解得,∴抛物线的解析式为y=﹣x2+6x;(2)易求直线l的解析式为y=﹣x+6.由题意,知C(n,﹣n2+6n),E(n,﹣n+6),∴EC=(﹣n2+6n)﹣(﹣n+6),即EC=﹣n2+7n﹣6.过A作AF⊥CD于F,则AF=n﹣1,DB=6﹣n,+S△BCE∴S=S△ACE=×EC×(n﹣1)+×EC×(6﹣n)=×EC×5=(﹣n2+7n﹣6),即S=﹣n2+n﹣15,配方得S=﹣(n﹣)2+.∵﹣<0,=;∴S有最大值,当n=时,S最大值(3)在抛物线上存在点P,能够使得△PAB是直角三角形,且始终满足AB边为直角边.分两种情况:①当∠PBA=90°时,∵∠ABO=45°,∴过点B且垂直于AB y=x﹣6,解方程组,得,,∵B(6,0),∴P1(﹣1,﹣7);②当∠PAB=90°时,∵过点A且垂直于AB的直线解析式为y=x+4,解方程组,得,,∵A(1,5),∴P2(4,8).综上所述,符合条件的P点坐标为P1(﹣1,﹣7),P2(4,8).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函數面積問題
1、如图,一次函数的图像与x轴交于点B(-6,0),交正比例函数的图像于点A,点A的横坐标为-4,△ABC的面积为15,求直线OA的解析式。

2、直线y=x+3的图像与x轴、y轴分别交于A、B两点,直线a经过原点与线段AB交于C,把△ABO的面积分为2:1的两部分,求直线a的函数解析式。

3、直线PA是一次函数y=x+n的图像,直线PB是一次函数y=-2x+m(m>n>0)的
图像,
(1)用m、n表示A、B、P的坐标
(2)四边形PQOB的面积是,AB=2,求点P的坐标
4、△AOB的顶点O(0,0)、A(2,1)、B(10,1),直线CD⊥x轴且△AOB
面积二等分,若D(m,0),求m的值
5、点B在直线y=-x+1上,且点B在第四象限,点A(2,0)、O(0,0),△ABO 的面积为2,求点B的坐标。

6、直线y=-x+1与x轴y轴分别交点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC, BAC=90°,点P(a,)在第二象限,△ABP的面积与△A BC 面积相等,求a的值.
7、如图,已知两直线y=0.5x+2.5和y=-x+1分别与x轴交于A、B两点,这两直线的交点为P
(1)求点P的坐标
(2)求△PAB的面积
8、已知直线y=ax+b(b>0)与y轴交于点N,与x轴交于点A且与直线y=kx交于点M(2,3),如图它们与y轴围成的△MON的面积为5,求
(1)这两条直线的函数关系式
(2)它们与x轴围成的三角形面积
9、已知两条直线y=2x-3和y=5-x
(1)求出它们的交点A的坐标
(2)求出这两条直线与x轴围成的三角形的面积
10、已知直线y=x+3的图像与x轴、y轴交于A、B两点,直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分,求直线l的解析式。

11、已知直线y=2x+3与直线y=-2x-1与y轴分别交于点A、B
(1)求两直线交点C的坐标
(2)求△ABC的面积
(3)在直线BC上能否找到点P,使得△APC的面积為6,求出点P的坐标,若不能请说明理由。

12、已知直线y=-x+2与x轴、y轴分别交于点A和点B,另一直线y=kx+b
(k≠0)经过点C(1,0),且把△AOB分为两部分,
(1)若△AOB被分成的两部分面积相等,求k和b的值
(2)若△AOB被分成的两部分面积为1:5,求k和b的值
13、直线y=-x+3交x,y坐标轴分别为点A、B,交直线y=2x-1于点P,直线y=2x-1交x,y坐标轴分别为C、D,求△PAC和△PBD的面积各是多少?
14、直线1l的解析式为y=-3x+3,且1l与x轴交于点D,直线2l经过点A(4,
0),B(3,-1.5),直线1l,2l交于点C
(1)求点D的坐标
(2)求直线2l的解析式
(3)求△ADC的面积
(4)在直线2l上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,直接写出P的坐标
15、已知直线L l:y=k1x+b1经过点(-1,6)和(1,2),它和x轴、y轴分别交
于点B和点A,直线L l:y=k2x+b2经过点(2,-4)和(0,-3),它和x轴、y轴的交点分别是D和C
(1)求直线L l,L2的解析式
(2)求四边形ABCD的面积
(3)设直线L1,L2交于点P,求△PBC的面积
答案:1、A(-4,5)OA:y=-x
2、C(-2,1)a:y=-x或C(-1,2)a:y=-2x
3、(1)A(-n,0)B(m,0)P(,)
(2)m=2,n=1,P(,)
4、m=10-2
5、B(3,-2)
6、a=4-
7、P(-1,2),S PAB=6
8、(1)y=-x+5 y=1.5x (2)7.5
9、(1)A(, ),(2)
10、l:y=--x 或l:y=-2x
11、(1)点C(-1,1)(2)S=2 (3)点P(2,-5)或(-4,7)。

相关文档
最新文档