二进制,八进制十进制十六进制之间数据转换

合集下载

二进制,十进制,八进制,十六进制之间的转换

二进制,十进制,八进制,十六进制之间的转换

⼆进制,⼗进制,⼋进制,⼗六进制之间的转换计算机内部只有⼆进制,包括字符数据等int i = 15; //00000000 00000000 00000000 00001111 ==> 1字节= 8位1Byte = 8 bitint 有4个字节,即32位char c = 'a'; //00000000 01000001计算机内部使⽤的⼆进制位都是补码的形式(此处⽤1个字节表⽰)15:原码00001111 ==>补码 00001111整数的原码和补码相同-15:15的原码 ==>反码+1 ==> 补码原码00001111 ==> 反码11110000 +1 ==>补码 11110001如果⽤2个字节表⽰-15的反码原码00000000 00001111反码11111111 11110001如果⽤3个字节表⽰-15的反码原码00000000 00000000 00001111反码11111111 11111111 11110001以此类推可以⽤System.out.println(Integer.toBinaryString(a));打印验证int i=-1;//11111111 11111111 11111111 11111111int i = -2147483648(int中最⼩的负数)//100000000 00000000 00000000 00000000⼗进制是⼈类的习惯计算机在输出时候根据⼈类习惯输出10进制赋值的时候默认是赋值10进制计算机默认接受10进制,⾃动转换为⼆进制数据16进制是⼆进制的简写⽅便⼈类书写和记忆0xff -> 11111111转换int x = 020;//⼋进制 0开头⼋进制==>⼗进制020==>2*8+00120 ==> 1*8^2 + 2*8^1 + 001234 --> 1*8^3 + 2*8^2 + 3*8 +4x = 0x2E;//⼗六进制 0x开头⼗六进制 ==>⼗进制x=0x2E; ==> 2*16^1 + e =46x= 0x1234 ==> 1*16^3 + 2*16^2 + 3*16 + 4⼆进制 ==> ⼗进制0000 1111 ==> 1*2^3 + 1*2^2 + 1*2 + 1 =150100 1001 ==> 1*2^6 + 1*2^3+1 =⼗进制 ==>⼆进制1)除⼆取余28/2 14/2 7/2 3/2 1/2 00 0 1 1 1 0 ==>倒序1 110037/2 18/2 9/2 4/2 2/21 0 1 0 1 ==>倒序(如果需要则前⾯补0) 0001 01012)对应权重 (简化算法)int x =37;32 + 4 +10010 0101 // 128 64 32 16 8 4 2 10 0 1 0 0 1 0 1998998 - 512 = 486 - 256 = 230 -128 = 102 - 64 = 38 -32 =6-4 =2-2 =01111100110 //512 256 128 64 32 16 8 4 2 11 1 1 1 1 0 0 1 1 0⼋进制 ==> ⼆进制int x = 01234;⽤三个⼆进制位表⽰⼀个⼋进制位000 001 010 011 100⼗六进制 ==> ⼆进制int x = 0x1234; ⽤4个⼆进制表⽰⼀个16进制位0001 0010 0011 01000x12345678==>0001 0010 0011 0100 0101 0110 0111 1000⼆进制 ==> 16进制0000 0111 1111 1110 ==> 0x07FE;⼀般⽤16进制表⽰⼆进制例x = 0x7FE ;//0000 0111 1111 1110,直接赋值则以为是⼋进制(因为以0开头)。

数制转换 二进制 八进制 十进制 十六进制之间的数制转换

数制转换 二进制 八进制 十进制 十六进制之间的数制转换

1.计算机中的数制:
3.1十进制转换为二进制:整数部分用除2取余法,小数部分用
乘2取整法;
例如:78.6875
3.2二进制转换为十进制:按权展开求和
例如:1001110.1011
1001110.1011=1*26+0*25+0*24+1*23+1*22+1*21+0*20+1*2-1+0
*2-2+1*2-3+1*2-4=64+8+4+2+0.5+0.125+0.0625=78.6875
3.3二进制转换为八进制
将二进制数从小数点开始,整数部分从右向左3位一组,小
数部分从左向右3位一组,不足三位用0补充;
3.4八进制转换为二进制
每一位八进制数分别转换为3位二进制数即可;
3.5二进制转换为十六进制
将二进制数从小数点开始,整数部分从右向左4位一组,小数部分从左向右4位一组,不足三位用0补充;
3.6十六进制转换为二进制
将每一位十六进制数分别转换为4位二进制数;
3.7书写规则:
二进制100B (100)2
八进制100O (100)8
十进制100D (100)10
十六进制100H (100)16
FrontPage 2003
1.窗口组成:
2.菜单栏,工具栏,格式栏,任务窗格,状态栏,标记栏,网页标签,视图模式(设计视图,拆分视图,代码视图,预览视图)
3.创建新网页:
4.保存网页
5.打开网页
6.关闭网页
7.网页编辑
1)文本的输入和格式化
2)图片的输入和编辑
3)表格的插入和编辑
4)超链接的插入和编辑
5)框架网页的插入和编辑
8.。

整数的十进制、二进制、八进制、十六进制表示和转换方式

整数的十进制、二进制、八进制、十六进制表示和转换方式

整数的十进制、二进制、八进制、十六进制表示和转换方式整数的不同进制表示方法是计算机科学中基本的知识之一。

在现代计算机中,二进制和十六进制是特别常用的进制,而八进制则进行很少的使用。

在本文中,我们将详细介绍整数的不同进制,以及如何在它们之间进行转换。

一、十进制表示十进制是我们常用的进制,它是使用十个数字 0 到 9 表示的。

以整数12345 为例,它在十进制下的表示方法为:12345(10)二、二进制表示在计算机中,二进制是计算机所使用的进制。

它仅使用 0 和 1 两个数字来表示。

以整数 12345 为例,它在二进制下的表示方法为:11000000111001(2)二进制转换为十进制时,将每个数位上的数乘以该数位所对应的 2 的幂次方,然后将乘积相加即可得到十进制结果。

二进制转换为十六进制时,将二进制数从右往左每 4 位分为一组,不足 4 位的高位补零,然后将每一组转换为一个十六进制数即可。

三、八进制表示八进制是由 0 到 7 这八个数字组成的一个进制。

在计算机科学中,它比较少被使用。

以整数 12345 为例,它在八进制下的表示方法为:30071(8)八进制转换为十进制时,将每个数位上的数乘以该数位所对应的 8 的幂次方,然后将乘积相加即可得到十进制结果。

八进制转换为十六进制时,将八进制数从右往左每 3 位分为一组,不足 3 位的高位补零,然后将每一组转换为一个十六进制数即可。

四、十六进制表示十六进制是由 0 到 9 这十个数字和 A 到 F 这六个字母共 16 个字符组成的进制。

在计算机科学中,它也是比较常用的进制之一。

以整数 12345 为例,它在十六进制下的表示方法为:3039(16)十六进制转换为十进制时,将每个数位上的数乘以该数位所对应的 16的幂次方,然后将乘积相加即可得到十进制结果。

十六进制转换为二进制时,将十六进制数每一位转换为 4 位的二进制数即可。

综上所述,整数的不同进制表示方法在计算机科学中是非常重要的。

二进制、八进制、十进制、十六进制之间转换(含小数部分)[整理]

二进制、八进制、十进制、十六进制之间转换(含小数部分)[整理]

二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。

下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。

第二步,将商84除以2,商42余数为0。

第三步,将商42除以2,商21余数为0。

第四步,将商21除以2,商10余数为1。

第五步,将商10除以2,商5余数为0。

第六步,将商5除以2,商2余数为1。

第七步,将商2除以2,商1余数为0。

第八步,将商1除以2,商0余数为1。

第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。

如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。

换句话说就是0舍1入。

读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。

例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。

二进制八进制十进制十六进制转换符号口诀

二进制八进制十进制十六进制转换符号口诀

二进制八进制十进制十六进制转换符号口诀标题:探索二进制、八进制、十进制及十六进制转换的符号口诀导语:在计算机科学和信息技术领域,进制转换是一项基础而重要的技能。

掌握不同进制之间的转换可以帮助我们更好地理解计算机系统的工作原理,以及更高效地处理数字数据。

本文将介绍二进制、八进制、十进制和十六进制转换的符号口诀,帮助读者轻松掌握这一技能。

一、二进制(Binary)1. 符号口诀:2进1摸、0、1解析:二进制是一种仅由0和1组成的进制系统。

符号口诀中的“2进1摸、0、1”意味着每个二进制位表示的是2的n次方,其中n表示该位置的权重。

从右至左的二进制位权重分别为1、2、4、8、16...,而对应的二进制值只能是0或1。

二、八进制(Octal)1. 符号口诀:8进1摸、0~7解析:八进制是一种由数字0至7组成的进制系统。

符号口诀中的“8进1摸、0~7”表示每个八进制位的权重为8的n次方,而每个位置上的值范围是0至7。

三、十进制(Decimal)1. 符号口诀:10进1摸、0~9解析:十进制是我们日常生活中最常用的进制系统,由0至9的数字组成。

符号口诀中的“10进1摸、0~9”表示每个十进制位的权重为10的n次方,而每个位置上的值范围是0至9。

四、十六进制(Hexadecimal)1. 符号口诀:16进1摸、0~9 A~F解析:十六进制是一种容易与二进制转换的进制系统,由0至9以及A至F的16个字符组成。

符号口诀中的“16进1摸、0~9 A~F”表示每个十六进制位的权重为16的n次方,而每个位置上的值范围是0至9和A至F。

二进制、八进制、十进制和十六进制间的转换:转换是理解不同进制的关键部分,下面将介绍在各进制之间进行转换的方法。

1. 二进制转八进制和十六进制:- 先将二进制数按照3(八进制)或4(十六进制)位一组进行分组。

- 将每组的二进制数转换为对应的八进制或十六进制值。

2. 八进制和十六进制转二进制:- 分别将八进制和十六进制数的每一位转换为对应的三位二进制数(八进制)或四位二进制数(十六进制)。

二进制,八进制,十进制,十六进制的相互转换

二进制,八进制,十进制,十六进制的相互转换

⼆进制,⼋进制,⼗进制,⼗六进制的相互转换常⽤进制数:⼆进制,⼋进制,⼗进制,⼗六进制进制理解计算机中硬件之间的信息传递是由电流确定,假如⼀个半导体允许通过的电流是5A,如果电流通过的为5A,则通过,计为1,如果通过的电流⼩于5A,则不通过,计为0。

由此,出现两种情况的判断,与或⾮。

电流的传递由0或1来完成,由此引申出⼆进制数的概念,以便底层硬件有共同的“语⾔”,即机器语⾔,相互沟通和交流。

我们⽣活中⼀般数值的运算是⼗进制。

就是满10进1,个⼗百千万,依次递进。

由此,可以类⽐。

⼆进制(Binary):0,1。

基数为2,逢⼆进⼀。

表⽰:(111)2或者(111)B⼋进制(Octal number system):0,1,2,3,4,5,6,7。

基数为8,逢⼋进⼀。

表⽰:(111)8或者(111)O⼗进制(Decimal system):0,1,2,3,4,5,6,7,8,9。

基数为10,逢⼗进⼀。

表⽰:(111)10或者(111)D⼗六进制(Hexadecimal):0,1,2,3,4,5,6,7,8,9,A(10),B(11),C(12),D(13),E(14),F(15)。

基数为16,逢⼗六进⼀。

表⽰:(111)16或者(111)Hn进制:(逢n进1)个位数:n0( 0个8)⼗位数:n1( 1个8)百位数:n2( 8个8)进制转换1.⼗进制转其他进制① 除⼆取余法(整数部分):把被转换的⼗进制整数反复除以2,直⾄商为0,所得的余数(从末位读起)就是这个数的⼆进制表⽰。

② 乘⼆取整法(⼩数部分):将⼩数部分乘以2,然后取整数部分,剩下的⼩数部分继续乘以2,然后取整数部分,剩下的⼩数部分⼜乘以2,⼀直取到⼩数部分为零为⽌。

如果永远不能为零,就同⼗进制数的四舍五⼊⼀样,按照要求保留多少位⼩数时,就根据后⾯⼀位是0还是1,取舍,如果是零,舍掉,如果是1,向⼊⼀位。

换句话说就是0舍1⼊。

读数要从前⾯的整数读到后⾯的整数。

二进制八进制十进制十六进制转换符号口诀

二进制八进制十进制十六进制转换符号口诀

二进制八进制十进制十六进制转换符号口诀在计算机科学和数学领域中,二进制、八进制、十进制和十六进制是常见的数字表示方式。

它们之间的转换是非常重要的基础知识,也是程序员和计算机科学家必备的技能之一。

为了帮助大家更好地理解和记忆这些进制间的转换规则,下面我将共享一些口诀和技巧。

1. 二进制转八进制二八相对应,三位一组往前推。

二进制数按照从右往左每三位一组进行分组,不足三位的高位补零,每组对应一个八进制数,依次写出即为八进制数。

2. 八进制转二进制八二不难变,每位对应三二进。

八进制数每一位转换为对应的三位二进制数即可。

3. 二进制转十进制二进制转十进制,权次为从右到左。

按照权值展开式计算,将二进制数每一位乘以对应的权值然后相加即可得到十进制数。

4. 十进制转二进制十二不尽,倒着写恰当。

使用除以2取余法,可以将十进制数转换成二进制数。

5. 二进制转十六进制二十不迷路,四位对应一。

将二进制数每四位一组,不足四位的高位补零,然后根据十六进制数的映射关系进行转换。

6. 十六进制转二进制十六转二,恰恰好。

十六进制数转换成二进制数在显示器上进行比较方便,可以将每一位直接对应成四位二进制数即可。

总结:以上口诀和技巧是帮助我们更好地记忆和理解二进制、八进制、十进制和十六进制间的转换规则的方法。

通过这些口诀和技巧,我们可以更加灵活地进行进制间的转换,并且在实际的编程和计算中能够更加熟练地运用这些知识。

个人观点:掌握进制转换是计算机领域中非常基础且重要的知识,它不仅能够帮助我们更好地理解计算机底层的运行原理,还能够在实际的编程和运算中起到关键的作用。

我认为我们应该重视并且深入理解这一知识点,通过反复练习和使用,逐渐掌握这些转换规则,从而为计算机科学和编程领域的深入学习打下坚实的基础。

希望以上内容对你有所帮助,如有任何问题或不清楚的地方,欢迎随时交流讨论。

进制转换口诀和技巧是帮助我们更好地理解和记忆二进制、八进制、十进制和十六进制之间转换规则的重要方法。

二进制八进制十进制十六进制之间转换详解

二进制八进制十进制十六进制之间转换详解

二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换1 十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数.下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,2分析:第一步,将168除以2,商84,余数为0.第二步,将商84除以2,商42余数为0.第三步,将商42除以2,商21余数为0.第四步,将商21除以2,商10余数为1.第五步,将商10除以2,商5余数为0.第六步,将商5除以2,商2余数为1.第七步,将商2除以2,商1余数为0.第八步,将商1除以2,商0余数为1.第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即2 小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止.如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位.换句话说就是0舍1入.读数要从前面的整数读到后面的整数,下面举例:例1:将换算为二进制得出结果:将换算为二进制2分析:第一步,将乘以2,得,则整数部分为0,小数部分为;第二步, 将小数部分乘以2,得,则整数部分为0,小数部分为;第三步, 将小数部分乘以2,得,则整数部分为1,小数部分为;第四步,读数,从第一位读起,读到最后一位,即为.例2,将转换为二进制保留到小数点第四位大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是,那么小数部分继续乘以2,得,又乘以2的,到这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入.这个也是计算机在转换中会产生误差,但是由于保留位数很多,精度很高,所以可以忽略不计.那么,我们可以得出结果将转换为二进制约等于上面介绍的方法是十进制转换为为二进制的方法,需要大家注意的是:1 十进制转换为二进制,需要分成整数和小数两个部分分别转换2 当转换整数时,用的除2取余法,而转换小数时候,用的是乘2取整法3 注意他们的读数方向因此,我们从上面的方法,我们可以得出十进制数转换为二进制为.001,或者十进制数转换为二进制数约等于.0111.3 二进制转换为十进制不分整数和小数部分方法:按权相加法,即将二进制每位上的数乘以权,然后相加之和即是十进制数.例将二进制数转换为十进制数.得出结果:2=10大家在做二进制转换成十进制需要注意的是1 要知道二进制每位的权值2 要能求出每位的值二、二进制与八进制之间的转换首先,我们需要了解一个数学关系,即2^3=8,2^4=16,而八进制和十六进制是用这关系衍生而来的,即用三位二进制表示一位八进制,用四位二进制表示一位十六进制数.接着,记住4个数字8、4、2、12^3=8、2^2=4、2^1=2、2^0=1.现在我们来练习二进制与八进制之间的转换.1 二进制转换为八进制方法:取三合一法,即从二进制的小数点为分界点,向左向右每三位取成一位,接着将这三位二进制按权相加,得到的数就是一位八位二进制数,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的八进制数.如果向左向右取三位后,取到最高最低位时候,如果无法凑足三位,可以在小数点最左边最右边,即整数的最高位最低位添0,凑足三位.例①将二进制数转换为八进制得到结果:将转换为八进制为②将二进制数转换为八进制得到结果:将转换为八进制为2 将八进制转换为二进制方法:取一分三法,即将一位八进制数分解成三位二进制数,用三位二进制按权相加去凑这位八进制数,小数点位置照旧.例:①将八进制数转换为二进制因此,将八进制数转换为二进制数为,即大家从上面这道题可以看出,计算八进制转换为二进制首先,将八进制按照从左到右,每位展开为三位,小数点位置不变然后,按每位展开为22,21,20即4、2、1三位去做凑数,即a×22+ b×21 +c ×20=该位上的数a=1或者a=0,b=1或者b=0,c=1或者c=0,将abc排列就是该位的二进制数接着,将每位上转换成二进制数按顺序排列最后,就得到了八进制转换成二进制的数字.以上的方法就是二进制与八进制的互换,大家在做题的时候需要注意的是1 他们之间的互换是以一位与三位转换,这个有别于二进制与十进制转换2 大家在做添0和去0的时候要注意,是在小数点最左边或者小数点的最右边即整数的最高位和小数的最低位才能添0或者去0,否则将产生错误三、二进制与十六进制的转换方法:与二进制与八进制转换相似,只不过是一位十六与四位二进制的转换,下面具体讲解1 二进制转换为十六进制方法:取四合一法,即从二进制的小数点为分界点,向左向右每四位取成一位,接着将这四位二进制按权相加,得到的数就是一位十六位二进制数,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的十六进制数.如果向左向右取四位后,取到最高最低位时候,如果无法凑足四位,可以在小数点最左边最右边,即整数的最高位最低位添0,凑足四位.①例:将二进制.1011转换为十六进制得到结果:将二进制.1011转换为十六进制为②例:将转换为十六进制因此得到结果:将二进制转换为十六进制为2将十六进制转换为二进制方法:取一分四法,即将一位十六进制数分解成四位二进制数,用四位二进制按权相加去凑这位十六进制数,小数点位置照旧.①将十六进制转换为二进制数因此得到结果:将十六进制转换为二进制为即四、八进制与十六进制的转换方法:一般不能互相直接转换,一般是将八进制或十六进制转换为二进制,然后再将二进制转换为十六进制或八进制,小数点位置不变.那么相应的转换请参照上面二进制与八进制的转换和二进制与十六进制的转五、八进制与十进制的转换1八进制转换为十进制方法:按权相加法,即将八进制每位上的数乘以位权,然后相加之和即是十进制数.例:①将八进制数转换为十进制2十进制转换为八进制十进制转换成八进制有两种方法:1间接法:先将十进制转换成二进制,然后将二进制又转换成八进制2直接法:前面我们讲过,八进制是由二进制衍生而来的,因此我们可以采用与十进制转换为二进制相类似的方法,还是整数部分的转换和小数部分的转换,下面来具体讲解一下:①整数部分方法:除8取余法,即每次将整数部分除以8,余数为该位权上的数,而商继续除以8,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数起,一直到最前面的一个余数.②小数部分方法:乘8取整法,即将小数部分乘以8,然后取整数部分,剩下的小数部分继续乘以8,然后取整数部分,剩下的小数部分又乘以8,一直取到小数部分为零为止.如果永远不能为零,就同十进制数的四舍五入一样,暂取个名字叫3舍4入.例:将十进制数转换为八进制数解:先将这个数字分为整数部分796和小数部分整数部分小数部分因此,得到结果十进制转换八进制为上面的方法大家可以验证一下,你可以先将十进制转换,然后在转换为八进制,这样看得到的结果是否一样六、十六进制与十进制的转换十六进制与八进制有很多相似之处,大家可以参照上面八进制与十进制的转换自己试试这两个进制之间的转换.通过上面对各种进制之间的转换,我们可以将前面的转换图重新完善一下:本文介绍了二进制、十进制、八进制、十六进制四种进制之间相互的转换,大家在转换的时候要注意转换的方法,以及步骤,特别是十进制转换为期于三种进制之间,要分为整数部分和小数部分,最后就是小数点的位置.但是要保证考试中不出现错误还是需要大家经常练习,这样才能熟能生巧.二进制,八进制,十进制,十六进制转换99 :二进制是1100011 八进制是143 十六进制是63113: 110001 161 71127: 1 447 127192: 300 C0324: 0 504 144算法:十进制与二进制转换之相互算法十进制转二进制:用2辗转相除至结果为1将余数和最后的1从下向上倒序写就是结果例如302302/2 = 151 余0151/2 = 75 余175/2 = 37 余137/2 = 18 余118/2 = 9 余09/2 = 4 余14/2 = 2 余02/2 = 1 余0故二进制为0二进制转十进制从最后一位开始算,依次列为第0、1、2...位第n位的数0或1乘以2的n次方得到的结果相加就是答案例如:01101011.转十进制:第0位:1乘2的0次方=11乘2的1次方=20乘2的2次方=01乘2的3次方=80乘2的4次方=01乘2的5次方=321乘2的6次方=640乘2的7次方=0然后:1+2+0+8+0+32+64+0=107.二进制01101011=十进制107.一、二进制数转换成十进制数由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和.这种做法称为"按权相加"法.二、十进制数转换为二进制数十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并.1. 十进制整数转换为二进制整数十进制整数转换为二进制整数采用"除2取余,逆序排列"法.具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来.2.十进制小数转换为二进制小数十进制小数转换成二进制小数采用"乘2取整,顺序排列"法.具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止.然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位.回答者:HackerKinsn - 试用期一级 2-24 13:311.二进制与十进制的转换1二进制转十进制<BR>方法:"按权展开求和"例:2 =1×23+0×22+1×21+1×20+0×2-1+1×2-210 =8+0+2+1+0+10=102十进制转二进制·十进制整数转二进制数:"除以2取余,逆序输出" 例: 8910=101100122 892 44 (1)2 22 02 11 02 5 (1)2 2 (1)2 1 00 (1)·十进制小数转二进制数:"乘以2取整,顺序输出"例:0.62510= 0.10120.625X 21.25X 20.5X 21.02.八进制与二进制的转换例:将八进制的转换成二进制数:37 . 4 1 6011 111 .100 001 110即:8 =11111.2例:将二进制的转换成八进制:0 1 0 1 1 0 . 0 0 1 1 0 02 6 . 1 4即:2 =83.十六进制与二进制的转换<BR>例:将十六进制数转换成二进制:5 D F . 90101 1101 1111.1001即:16 =.10012例:将二进制数转换成十六进制:0110 0001 . 11106 1 . E即:2 =16。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二进制,八进制十进制十六进制之间数据转换
十进制转二进制(整数及小数部分):
1、把该十进制数,用二因式分解,取余。

以235为例,转为二进制
235除以2得117,余1
117除以2得58,余1
58除以2得29,余0
29除以2得14,余1
14除以2得7,余0
7除以2得3,余1
3除以2得1,余1
从得到的1开始写起,余数倒排,加在它后面,就可得11101011。

2、把十进制中的小数部份,转为二进制。

把该小数不断乘2,取整,直至没有小数为止,注意不是所有小数都能转为二进制!
以0.75为例,
0.75剩以2得1.50,取整数1
0.50剩以2得1,取整数1,顺序取数就可得0.11。

1、二进制数、八进制数、十六进制数转十进制数
有一个公式:二进制数、八进制数、十六进制数的各位数字分别乖以各自的基数的(N-1)次方,其和相加之和便是相应的十进制数。

个位,N=1;十位,N=2...举例:110B=1*2的2次方+1*2的1次方+0*2的0次方=0+4+2+0=6D
110Q=1*8的2次方+1*8的1次方+0*8的0次方=64+8+0=72D
110H=1*16的2次方+1*16的1次方+0*16的0次方=256+16+0=272D 2、十进制数转二进制数、八进制数、十六进制数
方法是相同的,即整数部分用除基取余的算法,小数部分用乘基取整的方法,然后将整数与小数部分拼接成一个数作为转换的最后结果。

例:见四级指导16页。

3、二进制数转换成其它数据类型
3-1二进制转八进制:
从小数点位置开始,整数部分向左,小数部分向右,每三位二进制为一组用一位八进制的数字来表示,不足三位的用0补足,
就是一个相应八进制数的表示。

010110.001100B=26.14Q
八进制转二进制反之则可。

3-2二进制转十进制:
见1
3-3二进制转十六进制:
从小数点位置开始,整数部分向左,小数部分向右,每四位二进制为一组用一位十六进制的数字来表示,
不足四位的用0补足,就是一个相应十六进制数的表示。

00100110.00010100B=26.14H
十进制转各进制
要将十进制转为各进制的方式,只需除以各进制的权值,取得其余数,第一次的余数当个位数,第二次余数当十位数,其余依此类推,直到被除数小于权值,最后的被除数当最高位数。

一、十进制转二进制
如:55转为二进制
2|55
27――1个位
13――1第二位
6――1第三位
3――0第四位
1――1第五位
最后被除数1为第七位,即得110111
二、十进制转八进制
如:5621转为八进制
8|5621
702 ―― 5 第一位(个位)
87 ―― 6 第二位
10 ―― 7 第三位
1 ――
2 第四位
最后得八进制数:127658
三、十进制数十六进制
如:76521转为十六进制
16|76521
4726 ――5第一位(个位)
295 ――6第二位
18 ――6第三位
1 ――
2 第四位
最后得1276516
二进制与十六进制的关系
2进制 0000 0001 0010 0011 0100 0101 0110 0111
16进制 0 1 2 3 4 5 6 7
2进制 1000 1001 1010 1011 1100 1101 1110 1111
16进制 8 9 a(10) b(11) c(12) d(13) e(14) f(15)
可以用四位数的二进制数来代表一个16进制,如3A16 转为二进制为:
3为0011,A 为1010,合并起来为00111010。

可以将最左边的0去掉得1110102
右要将二进制转为16进制,只需将二进制的位数由右向左每四位一个单位分隔,将各单位对照出16进制的值即可。

二进制与八进制间的关系
二进制 000 001 010 011 100 101 110 111
八进制 0 1 2 3 4 5 6 7
二进制与八进制的关系类似于二进制与十六进制的关系,以八进制的各数为0到7,以三位二进制数来表示。

如要将51028 转为二进制,5为101,1为001,0为000,2为010,将这些数的二进制合并后为1010010000102,即是二进制的值。

若要将二进制转为八进制,将二进制的位数由右向左每三位一个单位分隔,将事单位对照出八进制的值即可。

相关文档
最新文档