模糊数学考试试题
东北大学模糊数学试题

东北大学考试试卷(A B 卷) 2007 — 2008学年 第2学期课程名称:模糊数学┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 2分 共计10分) 12345{,,,,}U u u u u u =,F 模糊集(0.5,0.1,0,1,0.8)A =,(0.1,0.4,0.9,0.7,0.2)B =,(0.8,0.2,1,0.4,0.3)C =。
则_________A B ⋃=___________A B ⋂=()____________A B C ⋃⋂=_________c A =2. 设论 域{,,,,}U a b c d e =,有{}0.70.8{,}0.50.7{,,}0.30.5{,,,}0.10.3{,,,,}00.1d c d A c d e b c d e a b c d e λλλλλλ<≤⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪≤≤⎪⎩F 集A =_________________5小题,每题12分) 设[0,10]U =为论域,对[0,1]λ∈,若F 集A 的λ截集分别为 [0,10]0[3,10]00.6[5,10]0.61[5,10]1A λλλλλλ=⎧⎪<≤⎪=⎨<<⎪⎪=⎩,求出:(1)(),[0,10]A x x ∈;(2)SuppA ;(3)KerA 2. 设F 集112340.20.40.50.1A x x x x =+++,212340.20.50.30.1A x x x x =+++,312340.20.30.40.1A x x x x =+++, 12340.60.30.1B x x x =++,21230.20.30.5B x x x =++,试用格贴近度判断12,i B B A 与哪个最接近。
3.设120.100.80.70.20.40.90.50,0.30.10.600.40.310.50.2R R ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,求12121,,cR R R R R ⋃⋂4.设12345{,,,,}U u u u u u =,在U 上存在F 关系,使10.800.10.20.810.400.900.41000.10010.50.20.900.51R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求ˆR,并由此进行聚类分析,画出聚类分析图。
2013-2014模糊数学练习题

2013-2014模糊数学练习题
1、设模糊集合123456
0.50.70.20.80.40.6A u u u u u u =+++++,计算截集A 0.3与
A 0.6. 2、设论域U = {u 1, u 2, u 3, u 4},设{}{}{}{}1234123131
,,,00.3,,0.30.5,0.50.80.81
u u u u u u u A u u u λλλλλ?≤≤?<≤??=<≤??<≤
,试计算模糊集合A . 3、设X = Y = {1, 2, 3, 4, 5},模糊集合A = “重”=
0.10.20.40.70.912345++++模糊集合 B = “轻”= 0.90.70.60.40.112345
++++。
(1)若A(很)轻,则B 重;问若A 很轻,则B 如何?
(2)若A 轻,则B 重,否则B 不重。
问若A 不很轻,则问B 如何?
4、某企业生产茶叶,茶叶的质量有3个指标确定,茶叶的级别分别为一级,二级,三级,外等。
其中,根据上述4个等级给定的单因素评判矩阵如下:
=12.026.022.040.023.025.032.020.027.013.024.036.01R 设三个指标的权重为A = (0.3, 0.42, 0.28),采用模型M(∧, ∨)对该产品进行模糊综合评价,并按最大隶属度原则判断该产品属于哪一级?
5、模糊推理(重点的书上例7,8)、模糊决策(重点是ppt 上模糊二元对比决策例题)、模糊综合评价(一级模糊综合评价方法)、模糊聚类分析(按等价关系聚类)、模糊模式识别PPT 上出现的所有例题。
大学模糊数学试题

⎪⎪⎭⎫⎝⎛3.05.08.01.0⎪⎪⎭⎫⎝⎛5.05.08.05.0大学模糊数学期末试题命题人:控制与计算机工程学院 测控技术与仪器 测控1003班 吴国勋 1101160319一、 选择题(共2小题,每题5分,共10分) 1、设集合A={1,2,3,4,5,6},f 是如下定义的:f:x ∈A →f(x)=6/x ∈A.则f 的定义域( ) A 、(1,2,3,6) B 、(1,2,5,6) C 、(2,3,4,6) A 、(1,3,4,6) 2、设A= 则t(A)=( )A⎪⎪⎭⎫ ⎝⎛2.05.08.05.0 B ⎪⎪⎭⎫ ⎝⎛5.08.08.05.0 C ⎪⎪⎭⎫⎝⎛5.02.08.05.0 D二、 填空题(共5小题,每空2分,共20分) 1、已知下列各集合A={y|y=2x+1,x>0},B={y|y=-3x+9} 则A ∩B=_______;A ∪B=_________. 2、(A ∩B )∪C=(A ∪C)________(B ∪C). 3、设},,,,{54321u u u u u U =,)8.0,1.0,3.0,4.0,7.0(~=A ,)6.0,5.0,1.0,9.0,2.0(~=B ,则=c A ~,~A=c B ~。
4、若模糊概念a 在论域U 上的模糊集为~A ,则判断句“u 是a ”的真值为 。
5、模糊矩阵R=nn ijr⨯)(如果满足自反性 ,对称性 ,传递性 , 就称R 是一个 。
三、 判断题(共5小题,每题2分,共10分)101918178.066.054.042.0++++++52.044.036.028.011++++1、λ)(CA 和C A )(λ是相等的。
( )2、设A,B 是模糊对称矩阵,则A ∪B,A ∩B ,A 。
B 都是模糊对称矩阵。
( )3、设A,B 是模糊自反矩阵,则A ∪B,A ∩B, A 。
B 都是模糊自反矩阵。
( )4、设a=(a1,a2,…,an ),b=(b1,b2,…,bn)。
模糊数学考试题

I开卷口闭卷
2013-2014
考试时间:画2小时口
学年第
1.5 小时
,学期〈口博士隱硕士)研究生
模糊数学
课程考试试卷
专业:^^^^^^^^^^^^^^^^学号:―^^^^姓名: ,订. ^线.
题号 得分
―
二
―
四
五
六
七
八
九
十
总分
考试要求:1.答案在试卷上作答,(口是—否)需要草纸。 !.提示:①试题均是根据一定的实际背景设计的,请同学们理解4|,;!||;②请仔细阅读每一个提问,按照耍求冋答完整:③每一项问答,均需阐 明所依据的定理、公式成原理、方法;④如无特殊说明,各种运算均:^川/:!^!^、!!算子。
1 0.8 0.6 0.1
0.8 1 0.8 0.2
0.6 0.1 1 0 0 1
0.2 0.9 0.1 1
0.8 0.2 0.85
0.2 0.85
0.9 0.1
I
蒙 大连海事大学
醒开卷口闭卷
2013-2014
考试时间:隱2小时
学 年 第 1 学 期 ( ! I博士麗硕士)研究生
口 1.5 小时
模糊数学
》
専
第二题05分)IX题组老师还对5名研究生切1, ; ^ 2 , 附 3 , 诂-在 /1- 0.85 的阈值水平下,找山配合] ^4 默焚的|巧\:
/1:
I
I常I
'作巾的配合'『"况进11'-
; ' I 、卩佔,!'解判力〖 2 祀冋'?之间的配合
!^,研究",';这个项 0 。
1 !''';!;!^^,题的结论给出.((^^"^^〖《;;^抒哪^
模糊数学考试习题

模糊数学考试习题第一篇:模糊数学考试习题一、填空(每空3分)1.经典集合是论域U到集合的映射.2.模糊集合是论域U到集合的映射.3.经典集合的关系矩阵是.4.模糊集合的模糊关系矩阵是.5.模糊的不确定性即使时间过去了(或者实际作了一次试验)仍然是6.模糊数学把数学的应用范围从精确现象扩大到领域.7.模糊矩阵运算关于交的分配律.8.模糊集的隶属函数是专家给出的.9.模糊集强调的是集合边界的定义.10.模糊聚类方法给出的分类结果不是说事物绝对的属于或绝对的不属于类.11.集合U、V的直积U⨯V的子集R称为U到V的关系.12.U⨯V的一个模糊子集R称为U到V的关系.~13.经典集合的值域是.14.模糊集合的值域是.15.经典集合YI c的排中(互补)律.16.模糊集合YI c的排中(互补)律.17.模糊集的隶属函数是存在.18.模糊聚类方法给出的分类结果.19.模糊模式识别的最大隶属原则有个.20.模糊集的λ截集将模糊集的隶属函数转化为普通集合的二、简述题(每小题15分)1.简述模糊集的一种表示方法,并进行说明.2.简述模糊聚类的编网法.3.写出三种模糊分布函数.4.简述模糊集的一种运算,并进行说明.5.简述模糊聚类的最大树法.6.简述分解定理与扩张原理。
三、举一应用模糊数学方法解决实际问题的例子(25分)第二篇:数学考试一、聪明的你来填一填:(每空0.5分,共12分)1.在()里填上合适的单位:一块玻璃的厚度大约是3()骑自行车每小时行驶15()李明体重35()一辆汽车载重5()2、在()里填上合适的数:5厘米=()毫米2千米=()米()米=50分米4000千克=()吨6千克=()克8吨=()千克1600千克-600千克=()吨14厘米 + 26厘米 =()分米3、在○里填上“>、<或=”:70厘米○90毫米5千米○4500米990克○1千克1500千克○2吨4、把序号填在下面的括号内:5、括号里最大能填几?()×6<498×()<63()×5<446、用0、1、2组成最大的三位数是(),最小的三位数是(),他们的差是()。
模糊数学考试题

模糊数学考试题一、选择题(每题1分,共30分)1. 模糊集合最早由哪位数学家引入?A. George KlirB. Lotfi ZadehC. Zadeh LotfiD. George Boole2. 模糊逻辑的基本操作是?A. 与、或、非B. 加、减、乘、除C. 并、交、差D. 集合的包含与被包含3. 模糊集合的隶属函数的取值范围是?A. [0,1]B. [0,∞)C. (0,1)D. (0,∞)4. 以下哪个是模糊推理的方法?A. BP神经网络B. 遗传算法C. 最大似然估计D. 模糊推理算法5. 模糊数学最初的应用领域是?A. 人工智能B. 控制理论C. 图像处理D. 统计学...二、填空题(每题2分,共20分)1. 模糊数学是基于()集合理论的一种数学理论。
2. 模糊逻辑中,非真即()。
3. 模糊集合的隶属函数可用()函数来表示。
4. 模糊数学中,我们用模糊关系来描述()。
5. 模糊数学最重要的应用之一是在()理论中。
...三、问题解答题(每题15分,共60分)1. 简述模糊集合的定义和特点。
模糊集合是指在给定的范围内,每个元素都具有一定的隶属度,是介于完全属于和完全不属于之间的中间状态。
模糊集合的隶属度用隶属函数表示。
与传统集合不同,模糊集合的元素可以部分属于集合,这种模糊边界的概念反映了现实世界中存在的不确定性和模糊性。
2. 简述模糊逻辑的基本原理。
模糊逻辑是基于模糊集合理论的一种逻辑系统。
它以真值不再是二值(0或1)为基础,而是用模糊集合的隶属度来表示概率。
模糊逻辑中,逻辑运算包括模糊与、模糊或、模糊非等。
与传统逻辑相比,模糊逻辑更能应对真实世界中存在的不确定性和模糊性。
3. 简述模糊推理的基本方法。
模糊推理是根据给定的模糊规则和事实,通过运用模糊逻辑的方法进行推理推断。
模糊推理的基本方法包括模糊匹配、模糊推理和模糊控制。
其中,模糊匹配是将模糊规则中的条件与已知事实进行匹配;模糊推理是根据匹配的程度和隶属度进行推理;模糊控制是将推理的结果转化为对系统的控制动作。
模糊数学习题

(2.1) 给出下列各个集合的幂集(1) A={1} (2) B={a ,b} (3) C={a ,b ,c} (4) D={1,Ф} (2.2) 设A={a ,b},B={m ,n},C=Ф,求:(1)A ⨯B (2)A ⨯C (2.3) X={1,2,3,4,5,6,7},∈A F (X),其隶属度)(x A μ如下:1.0)1(=A μ, 3.0)2(=A μ, 8.0)3(=A μ, 1)4(=A μ, 8.0)5(=A μ,3.0)6(=A μ,0)7(=A μ(1) 分别别用查德法、向量法、序偶法表示A ; (2) 求c A ;(3) 指出A 的意义。
(2.4) 已知模糊集 “老年” O 和“年轻”Y 的隶属函数分别为⎪⎩⎪⎨⎧>-+≤≤=--时。
当时。
,当50,])550(1[5000)(12x x x x O μ ⎪⎩⎪⎨⎧≤<-+≤≤=-时。
当时。
,当20025,])525(1[2501)(12x x x x Y μ 试写出模糊集“不老”和“既不老又不年轻”的隶属函数。
(2.5) 设∈C B A ,,F (X),如下表:求;)(;)(;;ccB A B A B A B A ⋂⋃⋂⋃C B A C B A C B A cc cc⋃⋂⋃⋃⋂⋃)(;)(;)( (2.6) 设X=[0,1],x x A =)(μ,x x c A -=1)(μ;试证(F (X),c,,⋂⋃)不满足互补律。
(2.7) 已知∈B A ,F (X),试证)()(C B A C B A ⋃⋃=⋃⋃ (2.8) 设},,,,{54321x x x x x X =,543213.08.017.02.0x x x x x A ++++=543216.011.017.0x x x x x B ++++=,求B A B A ⋃⋂; (2.9) 任取Fuzzy 集],[X F A ∈ 若存在X x ∈0, 使)1,0()(0∈=a x A μ,证明:对任意][X F B ∈,X B A B A =Φ= ,至少有一个不成立。
模糊数学(扩张原理)

扩张原理1
设f: UV,由f可以诱导出一个映射:
f:F(U)F(V), A|f(A) 隶属函数
f
(
A)(v)
f
(u)v
A(u)
f 1(v)
0
f 1(v)
吉林大学计算机科学与技术学院
15
扩张原理1
设f: UV,由f可以诱导出另一个映射:
f-1:F(V)F(U), B|f-1 (B) 隶属函数f-1(B)(u)=B(v), v=f(u)
模糊数学 10
1
题4-1
2
题4-4
3
题4-5
4
题4-11
设T是从U到V的模糊变换,A是U 上的普通子集,证明
T (A)(v) T (u,v),v V uA
5
题4-11 证明
设T是从U到V的模糊变换,A是U 上的普通子集,证明
T (A)(v) T (u,v),v V uA
T (A)(v) (A(u) T (u, v)) ( (A(u) T (u, v))) ( (A(u) T (u, v)))
uU
uA
uA
对于u A, A(u) 0,故 (A(u) T (u, v)) 0 uA
对于u A, A(u) 1,故 (A(u) T (u, v)) T (u,v)
uA
uA
6
第五章 扩张原理
7
映射
设有映射f:UV,由它可以诱导出 一个新映射,仍记做f,
f: P(U)P(V), 即A|B=f(A),其中 f(A) ={v|存在u∈A, 使得f(u)=v,v∈V} 这个映射把一个普通集合映射为另
f=(0A∨)(91)==1∨f(u)=9A(u)=A(-3) ∨A(3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档.华北电力大学模糊数学考试试题科目名称:模糊数学 开课学期:2011—2012学年第二学期 ■闭卷班级: 学号: 姓名:一、填空1、传统数学的基础是 。
2、模糊模式识别主要是指用 表示标准模式,进而进行识别的理论和方法。
3、 处理现实对象的数学模型可分为三大类: , , 。
4、设论域{}54321,,,,u u u u u U =,F 集53215.017.02.0u u u u A +++=,F 集54217.01.03.05.0u u u u B +++=,则=B A ,=B A , =CA 。
5、设论域[]1,0=U , ,)(u u A =则=)(CA A , =)(C A A 。
6、设U 为无限论域,F 集⎰-=U xxe A 2,则截集eA 1= ,=1A 。
7、设论域{}54321,,,,u u u u u U =,F 集5432115.07.01.03.0u u u u u A ++++=,F 集54319.04.08.03.0u u u u B +++=,则=B A ,=ΘB A ,格贴近度=),(B A N 。
8、设21,R R 都是实数域上的F 关系,2)(1),(y x e y x R --=,)(2),(y x e y x R --=,则=)1,3()(21C R R ,=)1,3)((21CCR R 。
9、设论域{}321,,u u u U =,{}4321,,,v v v v V =,)(V U F R ⨯∈,且⎪⎪⎪⎭⎫ ⎝⎛=6.005.04.02.03.0101.007.02.0R ,3217.03.01.0u u u B ++=则=3v R ,=)(B T R 。
10、设变量z y x ,,满足⎩⎨⎧-≤≥111a z a x 且或⎪⎩⎪⎨⎧≥-≤≥≥11111az a z a y a x 或且且时,为使1),,(a z y x f ≥,此时函数),,(z y x f 的表达式为 。
二、证明证明:R 是传递的F 关系的充要条件是2R R ⊇。
三、叙述题1、比较模糊集合与普通集合的异同。
2、叙述动态聚类分析的解题步骤。
四、解答题 1、)(),(07.03.08.06.05.04.02.0)()()()()(}{},{13215432121321,3,2,1,5,4,3,2,1B fA f y y yB x x x x x A y x f x f y x f x f x f YX f y y y Y x x x x x X -++=++++======→==求 :54题号 一 二 三 四 总分得分精品文档.2、设[]10,0=U ,对[]1,0∈λ,若F 集A 的λ截集分别为[][][][]1153530010,510,510,310,0=<<≤<=⎪⎪⎩⎪⎪⎨⎧=λλλλλλA求出:(1)隶属函数)(x A ;(2)SuppA ;(3)KerA 。
3、在运动员心力选材中,以“内-克”表的9个指标为论域,即{}t n v s s r r m m U ,,,,,,,,212121=,已知某类优秀运动员 tn v s s r r m m E 99.097.099.093.094.096.095.084.083.0212121++++++++=以及两名选手t n v s s r r m m A 86.094.065.095.084.0178.096.086.02121211++++++++=tn v s s r r m m A 99.077.088.092.093.09.089.099.099.02121212++++++++=,试按贴近度∑∑==∨∧=nk k knk k kx B xA xB x A B A 11))()(())()((),(σ,对两名运动员做一心理选材。
4、设误差的离散论域为【-30,-20,-10,0,10,20,30】,且已知误差为零(ZE )和误差为正小(PS )的隶属函数为()()30203.010103.010*********0200104.001104.0200300ZE ++++-+-+-=++++-+-+-=e e PS μμ求:(1)误差为零和误差为正小的隶属函数()()e e PS μμ ZE ;(2)误差为零和误差为正小的隶属函数()()e e PS μμ ZE 。
5、已知模糊矩阵P 、Q 、R 、S 为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0.50.60.20.1S 0.70.70.30.2R 0.40.10.70.5Q 0.70.20.90.6P求:(1)()R Q P ;(2)()S Q P ; (3)()()S Q S P 。
6、化简(1)43211432132142x x x x x x x x x x x x x x f +++=(2)332113221132132x x x x x x x x x x x x x x x f +++=精品文档.华北电力大学模糊数学考试试题答案一、填空1、传统数学的基础是集合论2、模糊模式识别主要是指用模糊集合表示标准模式,进而进行识别的理论和方法。
3、 处理现实对象的数学模型可分为三大类: 确定性数学模型,随机性数学模型,模糊性数学模型。
4、设论域{}54321,,,,u u u u u U =,F 集53215.017.02.0u u u u A +++=,F 集54217.01.03.05.0u u u u B +++=,则543217.01.017.05.0u u u u u B A ++++=5215.03.02.0u u u B A ++= 54215.013.08.0u u u u A C +++=5、设论域[]1,0=U , ,)(u u A =则⎩⎨⎧<≤<<-=15.05.001)(u u u u A A C ⎩⎨⎧<≤-<<=15.015.00)(u u u uA A C6、设U 为无限论域,F 集⎰-=U xx e A 2,则截集[]1,11-=eA ,{}01=A7、设论域{}54321,,,,u u u u u U =,F 集5432115.07.01.03.0u u u u u A ++++=,F 集54319.04.08.03.0u u u u B +++=,则9.0=B A ,1.0=ΘB A ,格贴近度9.0),(=B A N 。
8、设21,R R 都是实数域上的F 关系,2)(1),(y x e y x R --=,)(2),(y x e y x R --=,则2211)1,3()(--=e R R C ,2211)1,3)((--=e R R CC9、设论域{}321,,u u u U =,{}4321,,,v v v v V =,)(V U F R ⨯∈,且⎪⎪⎪⎭⎫⎝⎛=6.005.04.02.03.0101.007.02.0R ,3217.03.01.0u u u B ++=则⎪⎪⎪⎭⎫ ⎝⎛=03.003vR ,()6.03.05.04.0)(=B T R 。
10、设变量z y x ,,满足⎩⎨⎧-≤≥111a z a x 且或⎪⎩⎪⎨⎧≥-≤≥≥11111az a z a y a x 或且且时,为使1),,(a z y x f ≥,此时函数),,(z y x f 的表达式为)(),,(z z xy z x z y x f ++=。
二、证明证明:R 是传递的F 关系的充要条件是2R R ⊇。
. 证 :必要性:U w u ∈∀,,对任意给定Uv ∈0,取),(),(00w v R v u R ∧=λ 显然有λ≥),(0v u R ,λ≥),(0w v R由传递性定义得λ≥),(w u R , 从而 ),(),(),(00w v R v u R w u R ∧≥,由v 的任意性,有)),(),((),(w v R v u R w u R ∧∨≥,故2R R R R =⊇ 充分性:由2R R R R =⊇ ,得)),(),((),(w v R v u R w u R ∧∨≥从而),(),(),(w v R v u R w u R ∧≥所以当λ≥),(v u R ,λ≥),(w v R 时,有λ≥),(w u R , 按传递性定义知R 是传递的F 关系。
三、叙述题1、答:相同点:都表示一个集合;不同点:普通集合具有特定的对象。
而模糊集合没有特定的对象,允许在符合与不符合中间存在中间过渡状态。
2、叙述动态聚类分析的解题步骤。
四、解答题 1、5432113217.07.03.03.03.0)(08.05.0)(x x x x x B f y y y A f ++++=++=- 解:2、⎪⎩⎪⎨⎧∈∈∈=]10,5[1)5,3[5)3,0[0)(x x xx x A []10,3=SuppA []10,5=KerA精品文档.3、886.0))()(())()((),(111=∨∧=∑∑==nk k knk k kx B xA xB x A E A σ913.0))()(())()((),(112=∨∧=∑∑==n k k kn k k kx B xA xB x A E A σ 由于),(),(21E A E A σσ<,按择近原则,因此2A 更优秀,应选2A 做心理选材。
4、答:(1)()()e e PS μμ ZE =300^0203.0^0101^4.003.0^1100^4.0200^0300^0++++-+-+-=30200104.003.010*******++++-+-+- (2)()()e e PS μμ ZE =3000203.001014.003.011004.020003000∨+∨+∨+∨+-∨+-∨+-∨=30203.010101104.0200300++++-+-+- 5、 答:(1)Q P =⎥⎦⎤⎢⎣⎡∨∨∨∨)0.7^0.4( )0.2^0.7)(0.7^0.1( )0.2^0.5()0.9^0.4( )0.6^0.7)(0.9^0.1( )0.6^0.5(=⎥⎦⎤⎢⎣⎡1.02.06.07.0 所以()R Q P =⎥⎦⎤⎢⎣⎡∨∨∨∨)0.1^0.7( )0.2^0.3)(0.1^0.7( )0.2^0.2()0.6^0.1( )0.7^0.3)(0.6^0.7( )0.7^0.2(=⎥⎦⎤⎢⎣⎡2.02.03.06.0 (2)Q P =⎥⎦⎤⎢⎣⎡7..02.09.06.0 所以()S Q P =⎥⎦⎤⎢⎣⎡∨∨∨∨)0.7^0.5( )0.2^0.2)(0.7^0.6( )0.2^0.1()0.9^0.5( )0.6^0.2)(0.9^0.6( )0.6^0.1(=⎥⎦⎤⎢⎣⎡5.06.05.06.0 (3)S P =⎥⎦⎤⎢⎣⎡5.06.05.06.0 ()S Q =⎥⎦⎤⎢⎣⎡4.04.05.06.0 所以()()S Q S P =⎥⎦⎤⎢⎣⎡5.04.05.06.0 6、43211432132142x x x x x x x x x x x x x x f +++=211432132142x x x x x x x x x x x x +++=332113221132132x x x x x x x x x x x x x x x f +++=221132132x x x x x x x x x ++=。