组合数学讲义及答案 3章 递推关系
组合数学(引论)

组合数学中有二个常用的技巧: 1. 一一对应 2. 奇偶性
1.、一一对应
第 10 页
结束
1. 一一对应
二个事件之间如计果算存:在一一对应关系,则
可用解易解的来替代第难一解轮的:。50场比赛 (一人轮空)
应用举例 第二轮: 25场比赛 (一人轮空)
决出例冠1军. 共有要10进1行个注反一多选第第第意之场少手三四五:,比场参轮轮轮每要赛比加:::场淘。赛象1比汰63?棋3场场场赛一淘比比比必 人汰赛赛赛淘也赛汰必,((一 一一须问人 人人进要轮 轮,行空 空))
结束
3. 幻方
3. 幻方
2)麦哲里克方法 (与德拉鲁布方法类似)
将1置正中央上方,然后按向右上方的方向依次放后 继数; 到顶行后翻到底行,到达最右列后转最左列; 其余情况放正上方2格。
第 22 页
结束
3. 幻方
3. 幻方
2)麦哲里克方法 (与德拉鲁布方法类似)
将1置正中央上方,然后按向右上方的方向依次放后 继数; 到顶行后翻到底行,到达最右列后转最左列; 其余情况放正上方2格。
第4章 Burnside引理与Polya定理
4.1 群的概念 4.2 置换群 4.3 循环、奇循环与偶循环 4.4 Burnside引理 4.5 Polya定理 4.6 鸽巢原理 4.7 鸽巢原理举例 4.8 鸽巢原理的推广 4.9 Ramsey数
第4页
结束
一、一组、合组数合学数简学介简介
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
总统 副总统 财务大臣 秘书
0
1
2
2
43
2
1
一种选法 一一对应 一个四位数
第06-07讲 组合数学——递推关系

定理
r 阶线性常系数非齐次递推关系的通解an是该非齐 次递推关系的一个特解an[p],加上其相应的齐次 递推关系的通解an[c] [ p] [c ] 即
an an
an
哈尔滨工程大学课件 沈晶 制作
多项式型非齐次递推关系
一般形式 a c a ... c a p( n) n 1 n 1 r nr
哈尔滨工程大学课件 沈晶 制作
定义
如果递推关系式1的每个解an[s]都可以选择一组常 数B1’ , B2’ ,…, Br’ 使得
an B 1 m B 2 m ... Br m
' n 1 ' n 2 '
s
n r
' n n n 成立,则称 B1 m1 B'2 m2 ... B'r mr 是递推关系式1的通解,其中:B1’ , B2’ ,…, Br’是 任意常数。
D1
Dn
Dn1
D2
P
D3
哈尔滨工程大学课件 沈晶 制作
r 阶递推关系的一般形式
an c1 nan1 c2 nan 2 ... cr nan r en 其中:n r , cr 0
若e(n) = 0,称其为齐次递推关系式
若e(n)≠0,称其为非齐次递推关系式
哈尔滨工程大学课件 沈晶 制作
常系数齐次线性递推关系
一般形式:
an c1an1 c2an 2 ... cr an r 0 其中:r 0 c
特征方程:
(式1)
m r c1m r 1 c2 m r 2 ... c r 0
哈尔滨工程大学课件 沈晶 制作
哈尔滨工程大学课件 沈晶 制作
组合数学递推关系

(6.2.4)
如果方程组(6.2.4)有唯一解b'1 , b'2 ,, b'k ,这说明可以找到 这k个常数,使得
解. 考察方程组(6.2.4),它的系数行列式为这是著名的 Vandermonde行列式.因为 q1 , q2 ,, qk 互不相等,所以该行 列式不等于零,这也就是说方程组(6.2.4)有唯一解.
求解递推关系的常用方法 (1)迭代归纳法; (2)特征根法; (3)生成函数法;
例6.1.1(爬楼梯问题)一个小孩要爬上n阶 楼梯,每次可上一阶或两阶,问上n阶有多 少种上法? 解:
显然登上1阶台阶有1种方法,登上2台阶有2种方法, f(1)=1,f(2)=2 ,称为递推关系的初始条件。 设有f(n) 种方法,要登上这n阶台阶,最后迈上一个台 阶或两个台阶完成. (1)若最后是迈上一个台阶完成的,则前面登上了n1阶台阶,有f(n-1) 种方法; (2)若最后是迈上两个台阶完成的,则前面登上了n2阶台阶,有f(n-2) 种方法,根据加法原理有递推关系: f(n)=f(n-1)+f(n-2) .
n n 1 n 1 n
例6.2.2
f (n) 2 f (n 1) 3 f (n 2) f (0) 1, f (1) 1 先求通解,特征方程是: x 2x 3 0
•
关于微分方程求解的已知结论:
1. 对于4次以及4次以下的方程,目前已有代数解法.(在复数 域内求解) 2. 阿贝尔定理: 5次以及更高次的代数方程没有一般的代数解法.
例6.2.1 求Fibonacci数的递推关系
n2 f (n) f (n 1) f (n 2) f (0) 1, f (1) 1 解:特征方程为x 2 x 1 0, 1 5 1 5 两个特征根分别是:x1 , x2 , 2 2 1 5 n 1 5 n 因此通解f (n) c1 ( ) c2 ( ) 2 2
组合数学课后习题答案

第一章答案1.(a) 45 ( {1,6},{2,7},{3,8},…,{45,50} )(b) 45⨯5+(4+3+2+1) = 235( 1→2~6, 2→3~7, 3→4~8, …,45→46~50, 46→47~50, 47→48~50, 49→50 ) 2.(a) 5!8!(b) 7! P(8,5) (c) 2 P(5,3) 8! 3. (a) n!P(n+1, m) (b) n!(m+1)!(c) 2!((m+n-2)+1)! 4. 2 P(24,5) 20!5. 2⨯5⨯P(8,2)+3⨯4⨯P(8,2)6. (n+1)!-17. 用数学归纳法易证。
8. 41⨯319. 设 n=p 1n 1p 2n 2…p kn k , 则n 2的除数个数为 ( 2p 1+1) (2p 2+1) …(2p k+1).10.1)用数学归纳法可证n 能表示成题中表达式的形式;2)如果某n 可以表示成题中表达式的形式,则等式两端除以2取余数,可以确定a 1;再对等式两端的商除以3取余数,又可得a 2;对等式两端的商除以4取余数,又可得a 3;…;这说明表达式是唯一的。
11.易用C(m,n)=m!/(n!(m-n)!)验证等式成立。
组合意义:右:从n 个不同元素中任取r+1个出来,再从这r+1个中取一个的全体组合的个数;左:上述组合中,先从n 个不同元素中任取1个出来,每一个相同的组合要生复 C(n-1,r) 次。
12.考虑,)1(,)1(101-=-=+=+=∑∑n nk k k n nnk kknx n x kC x x C 求导数后有令x=1, 即知.210-==∑n nk kn n kC13. 设此n 个不同的数由小到大排列后为a 1, a 2, …, a n 。
当第二组最大数为a k 时,第二组共有2k-1种不同的可能,第一组有2n-k -1种不同的可能。
故符合要求的不同分组共有12)2()12(21111+-=-----=∑n k n k n k n 种。
组合数学基础-答案及讲稿

组合数学基础答案及讲稿(陶平生)基本内容与方法:组合计数;组合构造;组合结构;映射与对应;分类与染色;归纳与递推;容斥原理;极端原理;调整法;补集法;数形结合法,等等.1、设M 为n 元集,若M 有k 个不同的子集12,,,k A A A ,满足:对于每个{},1,2,,i j k ∈ ,i j A A ≠∅ ,求正整数k 的最大值.解:正整数k 的最大值为12n -.()01、先证明,存在M的12n -个子集,两两之交不空;设{}12,,,n M a a a = ,而1122,,,n A A A - 为集合{}121,,,n a a a - 的全部12n -个子集,令{}1,1,2,,2n i i n B A a i -== ,则M 的12n -个子集1122,,,n B B B - ,两两之交不空;()02、再证,对于M的任何121n -+个子集,其中必有两个子集不相交.设1122,,,n B B B - 是M 的12n -个不同子集,其中每个皆含n a ;用i B 表示子集i B 在M 中的补集,1(\),1,2,,2n i i B M B i -== ,则对于任意i j ≠,,i j i j B B B B ≠≠,并且j i B B ≠, (因前者含n a 而后者不含),故1122,,,n B B B - ,1122,,,n B B B - 为M 的全部2n个不同子集,现将上述集合搭配成为12n -对:()()()11122122,,,,,,n n B B B B B B -- ;任取M 的121n -+个子集,必有两个子集属于同一对,则这两个子集不相交.2、将前九个正整数1,2,,9 分成三组,每组三个数,使得每组中的三数之和皆为质数;求出所有不同分法的种数.证:()01、由于在1,2,,9 中,三个不同的数之和介于6和24之间,其中的质数有7,11,13,17,19,23这六个数,今将这六数按被3除的余数情况分为两类:{}7,13,19A =,其中每个数被3除余1;{}11,17,23B =,其中每个数被3除余2;假若所分成的,,A B C 三组数对应的和,,a b c p p p 为互异质数,则因12945a b c p p p ++=+++= 被3整除,故三个和数,,a b c p p p 必为同一类数,因为A 类三数和713193945++=<,B 类三数和1117235145++=>,矛盾! 故三个和数中必有两个相等.()02、据()01知,将45表成7,11,13,17,19,23中的三数和(其中有两数相等),只有四种情况:()119197++;()2171711++;()3131319++;()4111123++.由于在1,2,,9 中有5个奇数,故分成的三组中必有一组,三数全为奇数,另两组各有一个奇数.对于情形()1,和为7的组只有{}1,2,4,剩下六数3,5,6,7,8,9,分为和为19的两组,且其中一组全为奇数,只有唯一的分法:{}3,7,9与{}5,6,8;对于情形()2,若三奇数的组为{}1,7,9,则另两组为 {}{}4,5,8,2,3,6;或{}{}3,6,8,2,4,5;若三奇数的组为{}3,5,9,则另两组为 {}{}2,8,7,1,4,6,或{}{}4,6,7,1,2,8; 若三奇数的组为{}1,3,7,则另两组为 {}{}2,6,9,4,5,8;共得分法5种;对于情形()3,若三奇数的组为{}3,7,9,则另两组为 {}{}1,4,8,2,5,6; 若三奇数的组为{}1,3,9,则另两组为 {}{}2,4,7,5,6,8或{}{}2,5,6,4,7,8; 若三奇数的组为{}1,5,7,则另两组为 {}{}3,4,6,2,8,9或{}{}2,3,8,4,6,9; 共得分法5种;对于情形()4,和为23的组只有{}6,8,9,则另两组为 {}{}1,3,7,2,4,5; 据以上,共计得到155112+++=种分法.3、设正整数a 的各位数字全由1和2组成,由其中任意() 2k k ≥个连续数位上的数字所组成的k 位数,称为数a 的一个“k 段”;若数a 的任两个“k 段”都不相同.证明:对于具有这种性质的最大正整数a ,其开初的一个“1k -段”和最后的一个“1k -段”必定相同.证:设12n a x x x = 是一个具有这种性质的最大正整数,由a 的最大性,在其后面无论添加1或2,所得到的1n +位数1121n a x x x = 以及2122n a x x x = 中,都有两个相同的“k 段”. 设在1a 中有 1121i i i k n k n x x x x x ++--+= ;在2a 中有1122j j j k n k n x x x x x ++--+= . 显然i j ≠,(因为11i k j k x x +-+-≠),且11i n k ≤≤-+,11j n k ≤≤-+,如果1i =或1j =,则直接去掉相应“k 段”中的末位数,可知结论成立;如果2i ≥且2j ≥,因 12212i i i k n k n j j j k x x x x x x x x ++--+++-== ,考虑各自的前一位数字111, , i j n k x x x ---+,它们只取1和2两个值,其中必有两数相同,于是数a 中有两个相同的“k 段”,矛盾. 因此,i j 中必有一个为1,故结论得证.4、将数集},...,,{21n a a a A =中所有元素的算术平均值记为)(A P ,(na a a A P n+++=...)(21). 若B 是A 的非空子集,且)()(A P B P =,则称B 是A的一个“均衡子集”.试求数集}9,8,7,6,5,4,3,2,1{=M 的所有“均衡子集”的个数. 解:由于()5P M=,令{}{}54,3,2,1,0,1,2,3,4M x x M '=-∈=----,则()0P M '=, 依照此平移关系,M 和M '的均衡子集可一一对应.用()f k 表示M '的k 元均衡子集的个数,显然有(9)(1)1f f ==(M '的9元均衡子集只有M ',一元均衡子集只有{}0).M '的二元均衡子集共四个,为{,},1,2,3,4i B i i i =-=, 因此(2)4f =. M '的三元均衡子集有两种情况:(1)含有元素0的为{0}{,0,},1,2,3,4i B i i i =-= , 共四个;(2)不含元素0的,由于等式312,413=+=+可表示为3120,3120-++=--=以及4130,4130-++=--=,得到4个均衡子集{3,1,2},{3,1,2},{4,1,3},{4,1,3}------,因此(3)448f =+=.M '的四元均衡子集有三种情况:(1)每两个二元均衡子集之并:,14i j B B i j ≤<≤ , 共6个集; (2)不含元素0的三元均衡子集与{}0的并集,共4个集;(3)以上两种情况之外者,由于等式1423+=+可表为14230--++=以及14230+--=得2个均衡子集{1,4,2,3}--与{1,4,2,3}--,因此()464212f =++=. 又注意到,除M '本身外,若B '是M '的均衡子集,当且仅当其补集''M C B 也是M '的均衡子集,二者一一对应. 因此(9)(),1,2,3,4f k f k k -==.从而M '的均衡子集个数为9411()(9)2()12(14812)51k k f k f f k ===+=++++=∑∑.即M 的均衡子集有51个.5、某校有2010名新生,每人至少认识其中n 人,试求n 的最小值,使得其中必存在彼此认识的16个人.解:记这2010个人的集合为{}122010,,,M v v v = ,i v 所认识的人的集合记为, 1,2,2010i A i = ,则i A n ≥,且 1,2,2010i i v A i ∉= ,若12,v v 是M 中相识的两人,则有121222010A A A A A B n =+-≥- , 当220101n -≥,则有312v A A ∈ ,且123,,v v v 两两相识,而()123123123322010A A A A A A A A A n =+-≥-⋅ .当3220101n -⋅≥,则有4123v A A A ∈ ,且1234,,,v v v v 两两相识,而()123412341234432010A A A A A A A A A A A A n =+-≥-⋅ ,如此继续,得1215,,,v v v 两两相识,而151414151511115142010i i i i i i A A A A A n ===⎛⎫=+-≥-⋅ ⎪⎝⎭. 当151420101n -⋅≥,则有15161, i i v A =∈ 且1216,,,v v v 两两相识,而由151420101n -⋅≥,得142010115n ⋅+≥,n 为整数,则1877n ≥.再说明1877n =是最小的;若1876n =,我们可构造一种情形,使得M 中不存在相互认识的16个人.为此,将2010个人均分为1215,,,B B B 等15组,每组134个人,令同组的人互不相识,而异组的任两人皆相识,则M 中任一人v 所认识的人的个数皆为()141341876d v =⨯=,从M 中任取16个人,必有两个人属于这15组中的同一个组,于是这两人互不相识,因此M 中不存在相互认识的16个人.从而n 的最小值为1877.6、有()2nn ≥名运动员,其编号分别是1,2,,n ,在一次活动中,他们以任意方式站成了一排. 如果每次允许将其中一些人两两对换位置,但在同一轮操作过程中,任一人至多只能参与一次这种对换.证明:至多只需两轮这样的操作,可使队列变成1,2,,n 的顺序排列. 证明:对n 归纳,2≤n 时显然. 设n k ≤时结论成立;今证1n k =+时情形,设121,,...,k a a a +是1k +名运动员1,2,,1k + 的任一排法, (i ) 如果其中存在一组运动员()12,, (1)i i i a a a m k ≤≤,他们的编号恰好就是其位置序号组k i i i ,...,,21的一个排列,则由归纳假设,这组运动员可经至多两轮操作,分别到位于自然位置(使i 号运动员到位于i 位),而剩下的1k m +-个运动员,显然也是其所处位置号的排列,他们也可经过至多两轮对换到位于自然位置,这样,队列121,,...,k a a a +可经两轮对换化为1,2,,1k +(ii ) 若(i )中的情形不出现,为叙述方便,设1号位置上所站的运动员编号为1b , (11≠b ),1b 号位置上的运动员编号为2b ,({}12,1b b ∉),2b 号位置上的运动员编号为3b ,({}213,,1b b b ∉),...,j b 号位置上的运动员编号为1+j b ,({}j j b b b ,...,,111∉+),...,k b 号位置上的运动员编号为1。
组合数学第三章答案

3.1题(宗传玉)某甲参加一种会议,会上有6位朋友,某甲和其中每人在会上各相遇12次,每二人各相遇6次,每三人各相遇3次,每五人各相遇2次,每六人各相遇一次,1人也没有遇见的有5次,问某甲共参加了几次会议解:设A i为甲与第i个朋友相遇的会议集,i=1,…,6.则故甲参加的会议数为:28+5=33.3.2题(宗传玉)求从1到500的整数中被3和5整除但不被7整除的数的个数.解:设A3:被3整除的数的集合A5:被5整除的数的集合A7:被7整除的数的集合所以3.3.题(宗传玉)n个代表参加会议,试证其中至少有2人各自的朋友数相等。
解:每个人的朋友数只能取0,1,…,n-1.但若有人的朋友数为0,即此人和其他人都不认识,则其他人的最大取数不超过n-2.故这n个人的朋友数的实际取数只有n-1种可能.,所以至少有2人的朋友数相等.3.4题(宗传玉)试给出下列等式的组合意义.解:(a) 从n 个元素中取k 个元素的组合,总含有指定的m 个元素的组合数为)()(kn m n mk m n --=--。
设这m 个元素为a 1,a 2,…,a m ,Ai 为不含a i 的组合(子集),i=1,…,m.()∑∑∑==∈⊄==⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=-+⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫⎝⎛-=ml l m l l m i i lj i lk l n k m A k n k n m n k l n l j 01),(),...,(1m1i i i i i 1)1(A A A A 111213.5题(宗传玉)设有三个7位的二进制数:a1a2a3a4a5a6a7,b1b2b3b4b5b6b7,c1c2c3c4c5c6c7.试证存在整数i 和j,1≤i≤j≤7,使得下列之一必定成立:a i=a j=b i=b j,a i=a j=c i=c j,b i=b j=c i=c j.证:显然,每列中必有两数字相同,共有种模式,有0或1两种选择.故共有·2种选择.·2=6.现有7列,.即必有2列在相同的两行选择相同的数字,即有一矩形,四角的数字相等.3.6题(宗传玉)在边长为1的正方形内任取5个点试证其中至少有两点,其间距离小于证:把1×1正方形分成四个(1/2)×(1/2)的正方形.如上图.则这5点中必有两点落在同一个小正方形内.而小正方形内的任两点的距离都小于.3.7题(王星)在边长为1的等边三角形内任取5个点试证其中至少有两点,期间距离小于1/2.证:把边长为1的三角形分成四个边长为1/2的三角形,如上图:则这5点中必有两点落在同一个小三角形中.小三角形中任意两点间的距离都小于1/2.3.8题(王星)任取11个整数,求证其中至少有两个数它们的差是10的倍数。
组合数学课件第三章第二节棋盘多项式和有限制条件的排列

甲乙 丙丁
29
3.4 棋盘多项式和有限条件的排列
1 2 3 4
甲乙 丙丁 R(C)
=(1+x)(1+x)(1+3x+ x2) =1+5x+8x2+5x3+x4
30
3.4 棋盘多项式和有限条件的排列
例3.5 一婚姻介绍所,登记有5名男性A,B,C ,D,E和4名女性1,2,3,4,经了解:1不能与 B,C,D,E,2不能与A,D,E,3不能与A,B,C,4不能与 A,B,C,D求可能婚配的方案数。
r1( ) =2
r2(
) =1
*** 14
3.4 棋盘多项式和有限条件的排列
2、棋盘多项式的定义
定义:设C为一棋盘,称: R(C) rk (C)xk
为棋盘C的棋盘多项式。
k 0
求棋盘 的多项式
r1( ) =2
r2( ) =0
R( ) =1+2x
*** 15
3.4 棋盘多项式和有限条件的排列 3、棋盘多项式的化简
n个不同元素取r个的排列可以看做是n 个相同的棋子在r×n的棋盘上的一种布局 ,
例如:1,2,3,4,5中取3个的排列
435
512
9
3.4 棋盘多项式和有限条件的排列
x x
x x
x
数,令规rk则(c)是表当示一k只只棋棋子子布布到到棋棋盘盘C的的某不一同格的时方,案则 这个格子所在的行和列上的其他格子不再允许布 上别的棋子。
(2)、容斥原理: 既可解决限制元素出现次数的问题,也能解 决元素出现位置的问题 典型特征是:问题能够化为集合问题:
A1 A2 ... An
A1 A2 ... An
李凡长版组合数学课后习题答案习题3

f(2)=1,f(3)=1,f(4)=2.
6. 求 n 位 0,1 序列中“ 010”只出现一次且在第 n 位出现的序列数 f(n). 解:最后三位是“ 010”的序列共有 2n-3 个。包括以下情况:
f(n) 包含了在最后三位第一次出现 010 的个数,同时排除了从
n-4 到 n-2 位第一次出现 010 的可能;
13. 在一个平面上画一个圆 , 然后一条一条地画 n 条与圆相交的直线 . 当 r 是 大于 1 的奇数时 , 第 r 条直线只与前 r -1 条直线之一在圆内相交 . 当 r 是偶数时 , 第 r 条直线与前 r -1 条直线都在圆内相交 . 如果无 3 条直线在 圆内共点 , 这 n 条直线把圆分割成多少个不重叠的部分?
2) 证明 f r (n, k)
n rk r , n r k( r 1)
k
解:可将本题转换为构造相应的 0-1 串的问题。将这样的 n 位 0-1 串与 1 到 n 的正整数对位,与 1 相应的整数选取,与 0 相应的不取。一个 0-1 串 对应一个选取方案。这也对应将相同的球放入不同的盒子的方案数。
解:设 f(n) 表示 n 个椭圆将平面分割成的部分的个数, 则有: 一个椭圆将平
面分成内、外两个部分,两个椭圆将平面分成 4 个部分。第二个椭圆的周界
被第一个椭圆分成两部分,这恰恰是新增加的域的边界。依此类推,第三个
椭圆曲线被前面两个椭圆分割成 4 部分,将平面分割成 4+4=8 个部分。若
n- 1 个椭圆将平面分割成 f(n-1) 个部分, 第 n 个椭圆和前 n-1 个椭圆两两
f (n) (n 2) f (n 1) ( n 1)
(6)
;
f (0) 1
解: f(n)=(n+2)f(n-1)=(n+2)(n+1)f(n-2)=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n k k k r ,求{an}所满足的递推关 k 0
n n n n - 1 n - 2 2 r r +…+ 2 r 2 n 为偶数: a n = n 0 1 2 2
an 3an1 2an2 2a1 1
(二) 分 类 (1) 按常量部分: ① 齐 次 递 推 关 系 : 指 常 量 = 0 , 如
Fn Fn1 Fn 2 ;
② 非齐次递推关系,即常量≠0,如 hn 2hn 1 1 。 (2) 按 a i 的运算关系:
结论:对于常系数线性递推关系的定解问题,其解必是唯
一的。 求解方法:首推特征根法。 思想:来源于解常系数线性微分方程,因为两者在结构上 很类似,所以其解的结构和求解的方法也类似。
8/75
《组合数学》
第三章 递推关系
§ 3.2.1
解的性质
1 2 【性质1】 设数列 bn 和 bn
2 2 2 2 2 an an 1 an2 a0 n 0 an 3an1 2an2 2a1 1 0
定义 3.1.1' (显式) 对数列 a i i 0,把 an 与其之前 若干项联系起来的等式对所有 n≥k 均成立(k 为某个给定的 自然数) ,称该等式为 a i 的递推关系,记为 a n F a n1 , a n 2 ,, a n k (3.1.1)' 例
分两种情况:当 n 为偶数时,令 n=2m,则
n 1 n 2 = =m-1 2 2 m 2m k k an= k r k 0 m 1 2m 2m k k m m = + 0 k r + m r k 1 2m m 1 2m k 1 k = 0 + r k k 1 m 1 2m k 1 k m m + k 1 r + m r k 1
1/75
《组合数学》
第三章 递推关系
① 线性关系, F 是关于 ai 的线性函数, 如 (1) 中的 Fn 与 hn 均是如此; ② 非 线 性 关 系 , F 是 ai 的 非 线 性 函 数 , 如 hn h1 hn1 h2 hn 2 hn1h1 。 (3) 按 ai 的系数: ① 常系数递推关系,如(1)中的 Fn 与 hn ; ② 变系数递推关系,如 pn np n1 , p n1 之前的系数 是随着 n 而变的。 (4) 按数列的多少: ① 一元递推关系,其中的方程只涉及一个数列,如 (3.1.1)和(3.1.1)'均为一元的; ② 多元递推关系,方程中涉及多个数列,如
x y y , 例3.1.5 用后退的 Euler 公式求常微分方程 y y 0 1
6/75
《组合数学》
第三章 递推关系
的数值解。 (解)函数 y=y(x)在点 xn 处的真值记为 y(xn),近似值记 为 yn,求数值解即利用数值方法求 y(x)在处 xn 的近似值 yn(n =1,2,……) 。 思想:以直代曲。 向前的 Euler 方法: y n1 y n hf x n , y n ,其中 h = x n1 x n 称为步长。
a n 7a n1 bn1 , b 7b n 1 a n 1 , n a1 7, b1 1
例 n=2 0 出现偶数次的数 00,11,12,13,14,15,…,77, 共 50 个 0 出现奇数次的数 01,10,02,20,03,30,…,70, 共 14 个
a n 7a n1 bn1 bn 7bn1 a n1
(5)显式与隐式:
x yn 1 yn h yn 1 2 n 1 yn 1
(三) 定 解 问 题 定义3.1.2 (定解问题)称含有初始条件的递推关系为定 解问题,其一般形式为
1 1 1 1 bn c1bn 1 c 2 bn 2 c k bn k 0,
① ②
令 r1×①+r2×②得:
1 2 r1 c i bn i r2 c i bn i c i r1bn i r2 bn i 0 1 2
a n1 a n Abn1 bn1 bn Ba n1
常量 A、B——度量每支军队的武器系数
a n a n1 Abn1 bn bn1 Ba n1
——含有两个未知量的一阶线性递归关系组。
n 2
(3.1.4)
例3.1.3 设 a n 系。 (解)
《组合数学》
第三章 递推关系
第三章
递推关系
§3.1 基本概念
(一) 递 推 关 系 定义3.1.1 (隐式)对数列 a i i 0和任意自然数 n,一
个关系到 an 和某些个 a i i n 的方程式, 称为递推关系, 记 作 F a0 , a1 , , a n 0 (3.1.1) 例
§3.2 常系数线性递推关系
常系数的线性递推关系:
a n c1 a n1 c 2 a n 2 c k a n k 0,
或
c k
0
(3.2.1)
an c1an 1 c2 an 2 ck an k f n , ( ck 0 )
(3.2.2) 分别称为 k 阶齐次递推关系和 k 阶非齐次递推关系。 其中 f(n) 称为自由项。 显 然 , 式 ( 3.2.1 ) 至 少 有 一 个 平 凡 解 a n 0n 0,1,2, ,而人们更关心的是它的非零解。
a n 2a n1 1 , a 1 1
3/75
(3.1.3)
《组合数学》
第三章 递推关系
求解
a n = 2n 1
例3.1.2 (Lancaster 战斗方程)两军打仗,每支军队在每 天战斗结束时都清点人数,用 a0 和 b0 分别表示在战斗打响前 第一支和第二支军队的人数,用 an 和 bn 分别表示第一支和第 二支军队在第 n 天战斗结束时的人数,那么,an-1-an 就表示 第一支军队在第 n 天战斗中损失的人数,同样,bn-1-bn 表示 第二支军队在第 n 天战斗中损失的人数。 假设:一支军队所减少的人数与另一支军队在每天战斗开 始前的人数成比例,则
后两项求和:
m 1 m 1 2m j 2 j r r r + m 1 r j j 0
m2 m 1
=r
2m 2 j j 0
j j r = r
n 2 2
(xn+1,yn+1) (xn+1,y(xn+1)) (xn,y(xn))ຫໍສະໝຸດ 7/75《组合数学》
第三章 递推关系
已知原方程为 y f x , y y 2 可得函数 y 的数值解为
x ,代入 Euler 公式 y
x n 1 y y h y 2 n 1 n n 1 y n 1 y 1 0
2 2 n
r b r b 也是(3.2.1)之解。其中 r1、r2 为任意常
1 1 n
是(3.2.1)的解,则
数。
1 2 (证) bn 、 bn 满足方程(3.2.1) ,即
2 2 2 2 bn c1bn 1 c 2 bn 2 c k bn k 0,
(xn+1,y(xn+1)) (xn+1,yn+1) (xn,y(xn))
向后的 Euler 方法:后退的 Euler 公式是指对常微分方程 y f x, y ,当已知函数 y 在 xn 处的值时,可通过解代数 方程 y n1 y n hf x n1 , y n1 求得函数 y 在 x n 1 处的 数值解 y n 1 ,其中 h= x n 1 - x n 是自变量 x 的步长(n= 0,1,2,…) 。
2/75
《组合数学》
第三章 递推关系
(四) 例 例3.1.1 (Hanoi 塔问题) 这是组合学中著名的问题。 n个 圆盘按从小到大的顺序一次套在柱 A 上,如图 3.1.1 所示。规 定每次只能从一根柱子上搬动一个圆盘到另一根柱子上, 且要 求在搬动过程中不允许大盘放在小盘上,而且只有 A、B、C 三根柱子可供使用。用 an 表示将 n 个盘从柱 A 移到柱 C 上所 需搬动圆盘的最少次数,试建立数列{ a n }的递推关系。
前两项求和:
2m m 1 2m k 1 k m 1 2m k 1 k r 0 r = k k k 1 k 0
n 1 2
k 0
n1 k k r a n 1 k
j 0
n 2 j
j j r = ra n 2
a n = a n 1 + ra n 2
5/75
《组合数学》
第三章 递推关系
当 n 为奇数时也成立。 求初值:a0=a1=1。则
a2 = a1 + ra0 =1+r, a3 = a2 +r a1 =1+2r, a4 = a3 +r a2 =(1+2r)+r (1+r)=1+3r+ r 2
A 图 3.1.1
B Hanoi 塔问题
C
(解)特例:a1=1,a2=3,对于任何 n≥3。 一般情形: : 第一步,将套在柱 A 的上部的 n-1 个盘按要求移到柱 B 上,共搬动了 a n1 次;
第二步,将柱 A 上的最大一个盘移到柱 C 上,只要搬动一 次; 第三步,再从柱 B 将 n-1 个盘按要求移到柱 C 上,也要 用 a n1 次。 由加法法则:
a5 = a4 +r a3 =(1+3r+ r 2 )+r (1+2r)=1+4r+