2019-2020年七年级上11月数学月考试题
陕西省西安市碑林区西北工大附中2019-2020学年七年级(上)第一次月考数学试卷(含解析)

2019-2020学年七年级(上)第一次月考数学试卷一、选择题(每小题3分,共30分)1.围成三棱柱的面共有()A.3个B.4个C.5个D.6个2.如图是哪种几何体的表面展开形成的图形?()A.圆锥B.球C.圆柱D.棱柱3.将下列三角形绕直线l旋转一周,可以得到如图所示立体图形的是哪一个()A.B.C.D.4.如图是正方体的展开图,原正方体相对两个面上的数字和最小是()A.4 B.6 C.7 D.85.下列说法正确的是()A.正整数和正分数统称为有理数B.整数和分数统称为有理数C.整数可分为正整数和负整数D.零既不是整数,也不是分数6.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3 7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.8.A、B、C三个地方的海拔分别是124米、38米、﹣72米,那么最低点比最高点低()A.196米B.﹣196米C.110米D.﹣110米9.绝对值大于1.5而不大于5的所有负整数的和与正整数的和的差是()A.﹣28 B.28 C.﹣14 D.1410.若|a|=5,|b|=19,且|a+b|=﹣(a+b),则a﹣b的值为()A.24 B.14 C.24或14 D.以上都不对二、填空题(每小题3分,共18分)11.一种零件的长度在图纸上标出为20±0.01(单位:mm)表示这种零件的长度应是20mm,加工要求最大不超过,最小不小于.12.水平放置的长方体的底面是长和宽分别是4和6的长方形,它的左视图的面积是12,则这个长方体的体积等于.13.在数轴上,距离表示+2的点3个单位长度的点表示的数是.14.若|a|=|b|,则a与b的关系是.15.有理数a、b在数轴上的位置如图所示,则a、b,﹣a,﹣b按从小到大的顺序排列是.16.一个跳蚤在一条数轴上从原点开始,第一次向右跳1个单位长度,紧接着第二次向左跳2个单位长度,第三次向右跳3个单位长度,第四次向左跳4个单位长度…以此规律跳下去,当它跳第100次落下时,落点处距离原点个单位长度.三.解答题(共72分)17.把下列各数填入相应的集合内.,5.2,﹣2.3,0.5%正数集合:{ };整数集合:{ };分数集合:{ };负数集合:{ }.18.计算:(1)﹣21.8+4﹣(﹣7.6)+()(2)(﹣0.5)﹣(﹣2)+3.75﹣(+5)19.小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+6,4,+9,﹣7,﹣6,+10,﹣8.(1)小虫最后是否回到出发点O?(2)小虫离开出发点O最远是多少cm?(3)在爬行过程中,如果每爬行1cm奖励一粒米,则小虫一共得到多少粒米?20.画出如图由7个小立方块搭成的几何体的三视图.21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出长方体盒子的立体图形,并计算其体积;若不能,说明理由.22.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?23.我们知道相交的两直线的交点个数是1,记两平行直线的交点个数是0;这样平面内的三条平行线它们的交点个数就是0,经过同一点的三直线它们的交点个数就是1;依此类推,…(1)请你画图说明同一平面内的五条直线最多有几个交点?(2)平面内的五条直线可以有4个交点吗?如果有,请你画出符合条件的所有图形;如果没有,请说明理由;(3)在平面内画出10条直线,使交点数恰好是31.参考答案与试题解析一.选择题(共10小题)1.围成三棱柱的面共有()A.3个B.4个C.5个D.6个【分析】三棱柱由三个侧面、两个底面,因此有五个面围成的.【解答】解:三棱柱由三个侧面、两个底面围成的,故选:C.2.如图是哪种几何体的表面展开形成的图形?()A.圆锥B.球C.圆柱D.棱柱【分析】一个几何体的表面展开图中的“圆”是物体的底面,半圆(扇形)是物体的侧面,因此这个物体是圆锥体.【解答】解:展开图中的“圆”是物体的底面,半圆(扇形)是物体的侧面,因此这个物体是圆锥体.故选:A.3.将下列三角形绕直线l旋转一周,可以得到如图所示立体图形的是哪一个()A.B.C.D.【分析】将各选项的图形旋转即可得到立体图形,找到合适的即可.【解答】解:A、旋转后可得,故本选项错误;B、旋转后可得,故本选项正确;C、旋转后可得,故本选项错误;D、旋转后可得,故本选项错误.故选:B.4.如图是正方体的展开图,原正方体相对两个面上的数字和最小是()A.4 B.6 C.7 D.8【分析】根据相对的面相隔一个面得到相对的2个数,相加后比较即可.【解答】解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,所以原正方体相对两个面上的数字和最小的是6.故选:B.5.下列说法正确的是()A.正整数和正分数统称为有理数B.整数和分数统称为有理数C.整数可分为正整数和负整数D.零既不是整数,也不是分数【分析】根据有理数的分类及定义即可判定.【解答】解:A、整数和分数统称为有理数,故不符合题意;B、整数和分数统称为有理数,故符合题意;C、整数可分为正整数和负整数和0,故不符合题意;D、零是整数,不是分数,故不符合题意.故选:B.6.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3 【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选:D.7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为()A.B.C.D.【分析】根据各层小正方体的个数,综合三视图的知识,在这个几何体中,根据各层小正方体的个数可得:左视图有一层2个,另一层3个,即可得出答案.【解答】解:左视图是从左边看到的平面图形,发现从左面看一共有两列,左边一列有2个正方形,右边一列有3个正方形,故选:D.8.A、B、C三个地方的海拔分别是124米、38米、﹣72米,那么最低点比最高点低()A.196米B.﹣196米C.110米D.﹣110米【分析】根据题意得到算式,运用有理数的减法法则计算即可.【解答】解:∵124>38>﹣72,∴最低点比最高点低:124﹣(﹣72)=196m,故选:A.9.绝对值大于1.5而不大于5的所有负整数的和与正整数的和的差是()A.﹣28 B.28 C.﹣14 D.14【分析】先分别求出绝对值大于1.5而不大于5的所有负整数的和与正整数的和,再相减即可.【解答】解:绝对值大于1.5而不大于5的负整数有﹣2,﹣3,﹣4,﹣5,和为﹣2+(﹣3)+(﹣4)+(﹣5)=﹣﹣14;绝对值大于1.5而不大于5的正整数有2,3,4,5,和为2+3+4+5=14;所以绝对值大于1.5而不大于5的所有负整数的和与正整数的和的差是﹣14﹣14=﹣28,故选:A.10.若|a|=5,|b|=19,且|a+b|=﹣(a+b),则a﹣b的值为()A.24 B.14 C.24或14 D.以上都不对【分析】根据绝对值的概念可得a=±5,b=±19,然后分类讨论,就可求出符合条件“|a+b|=﹣(a+b)时的a﹣b的值.【解答】解:∵|a|=5,|b|=19,∴a=±5,b=±19.又∵|a+b|=﹣(a+b),∴a=±5,b=﹣19,当a=5,b=﹣19时,a﹣b=5+19=24,当a=﹣5,b=﹣19时,a﹣b=14.综上所述:a﹣b的值为24或14.故选:C.二.填空题(共6小题)11.一种零件的长度在图纸上标出为20±0.01(单位:mm)表示这种零件的长度应是20mm,加工要求最大不超过20.01mm,最小不小于19.99mm.【分析】20±0.01表示的是这种零件的标准长度为20mm,实际加工时,可以比20mm多0.01mm,也可以比20mm少0.01mm,进而求出答案.【解答】解:20+0.01=20.01mm,20﹣0.01=19.99mm,故答案为:20.01mm,19.99mm.12.水平放置的长方体的底面是长和宽分别是4和6的长方形,它的左视图的面积是12,则这个长方体的体积等于48 .【分析】根据左视图的形状,联系底面的长和宽,可得出长方体的高为2,再根据长方体的体积计算公式计算即可.【解答】解:它的左视图的面积为12,长为6,因此宽为2,即长方体的高为2,因此体积为:4×6×2=48.故答案为:48.13.在数轴上,距离表示+2的点3个单位长度的点表示的数是﹣1或5 .【分析】画出数轴,分点在A的左右两边两种情况讨论求解.【解答】解:如图所示:①当点在A的左边时,与点A相距3个单位长度的点表示的数是﹣1;②当点在A的右边时,与点A相距3个单位长度的点表示的数是5.综上所述,该数是﹣1或5.故答案为:﹣1或5.14.若|a|=|b|,则a与b的关系是相等或互为相反数.【分析】根据绝对值相等的两个数相等或互为相反数即可求解.【解答】解:若|a|=|b|,则a与b的关系是相等或互为相反数.故答案为:相等或互为相反数.15.有理数a、b在数轴上的位置如图所示,则a、b,﹣a,﹣b按从小到大的顺序排列是﹣a<b<﹣b<a.【分析】根据原点左边的数为负数,原点右边的数为正数,数轴左边的数大于数轴右边的数,即可得出答案.【解答】解:由图可知:a>0,b<0,﹣b>0,|a|>|b|,则﹣a<b<﹣b<a;故答案为:﹣a<b<﹣b<a.16.一个跳蚤在一条数轴上从原点开始,第一次向右跳1个单位长度,紧接着第二次向左跳2个单位长度,第三次向右跳3个单位长度,第四次向左跳4个单位长度…以此规律跳下去,当它跳第100次落下时,落点处距离原点50 个单位长度.【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可.【解答】解:0+1﹣2+3﹣4+5﹣6+…+99﹣100=﹣50,所以落点处离0的距离是50个单位.故答案为50.三.解答题(共7小题)17.把下列各数填入相应的集合内.,5.2,﹣2.3,0.5%正数集合:{ ,1,5.2,0.5% };整数集合:{ 1 };分数集合:{ ,﹣,5.2,﹣2.3,0.5% };负数集合:{ ﹣,5.2 }.【分析】根据有理数的分类,把相应的数填写到相应的集合中.【解答】解:正数集合:{,1,5.2,0.5%};整数集合:{1};分数集合:{,﹣,5.2,﹣2.3,0.5%};负数集合:{﹣,5.2}.故答案为:,1,5.2,0.5%;1;,﹣,5.2,﹣2.3,0.5%;﹣,5.2.18.计算:(1)﹣21.8+4﹣(﹣7.6)+()(2)(﹣0.5)﹣(﹣2)+3.75﹣(+5)【分析】根据有理数的加减运算法则计算即可.【解答】解:(1)原式=﹣21.8+4+7.6﹣0.6=﹣(21.8﹣4)+(7.6﹣0.6)=﹣17.8+7=﹣10.8;(2)原式=﹣0.5+2.25+3.75﹣5.5=﹣(0.5+5.5)+(2.25+3.75)=﹣6+6=0.19.小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+6,4,+9,﹣7,﹣6,+10,﹣8.(1)小虫最后是否回到出发点O?(2)小虫离开出发点O最远是多少cm?(3)在爬行过程中,如果每爬行1cm奖励一粒米,则小虫一共得到多少粒米?【分析】(1)计算这些数的和,根据和的符合、绝对值可以判断出小虫是否回到出发点,(2)计算出每一次离开出发点的距离,比较得出结论,(3)求出这些数的绝对值的和,即爬行的总路程,即可求出得米粒.【解答】解:(1)6+4+9﹣7﹣6+10﹣8=8 cm,答:小虫最后没有回到出发点O,最后在出发点右侧8cm的地方.(2)每次爬行后离开出发点的距离为:6cm,10cm,19cm,12cm,6cm,16cm,8cm,答:小虫离开出发点O最远是19cm.(3)6+4+9+7+6+10+8=50(粒)答:小虫一共得到50粒米.20.画出如图由7个小立方块搭成的几何体的三视图.【分析】从正面看到的是两行三列,其中第一行两个小正方形,第二行是三个小正方形,从左面看到的是两行两列,每行、列都是两个小正方形,从上面看到的形状与主视图的相同.【解答】解:这个几何体的三视图如图所示:21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出长方体盒子的立体图形,并计算其体积;若不能,说明理由.【分析】(1)分别计算六个面的面积和及为该铁皮的面积,(2)根据棱柱的展开与折叠可得,可以做成长方体的盒子,根据长方体的体积的计算方法计算体积即可,【解答】解:(1)(1×3+1×2+2×3)×2=22 (平方米)答:该铁皮的面积为22平方米.(2)能做成一个长方体的盒子,体积为:3×1×2=6(立方米)22.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?【分析】(1)由题意可知:星期一比上周的星期五涨了2元,星期二比星期一跌了0.5元,则星期二收盘价表示为25+2﹣0.5,然后计算;(2)星期一的股价为25+2=27;星期二为27﹣0.5=26.5;星期三为26.5+1.5=28;星期四为28﹣1.8=26.2;星期五为26.2+0.8=27;则星期三的收盘价为最高价,星期四的收盘价为最低价;(3)计算上周五以25元买进时的价钱,再计算本周五卖出时的价钱,用卖出时的价钱﹣买进时的价钱即为小王的收益.【解答】解:(1)星期二收盘价为25+2﹣0.5=26.5(元/股).(2)收盘最高价为25+2﹣0.5+1.5=28(元/股),收盘最低价为25+2﹣0.5+1.5﹣1.8=26.2(元/股).(3)小王的收益为:27×1000(1﹣5‰)﹣25×1000(1+5‰)=27000﹣135﹣25000﹣125=1740(元).∴小王的本次收益为1740元.23.我们知道相交的两直线的交点个数是1,记两平行直线的交点个数是0;这样平面内的三条平行线它们的交点个数就是0,经过同一点的三直线它们的交点个数就是1;依此类推,…(1)请你画图说明同一平面内的五条直线最多有几个交点?(2)平面内的五条直线可以有4个交点吗?如果有,请你画出符合条件的所有图形;如果没有,请说明理由;(3)在平面内画出10条直线,使交点数恰好是31.【分析】(1)一平面内的五条直线最多有10个交点.画图即可;(2)平面内的五条直线可以有4个交点,有3种不同的情形;(3)可使5条直线平行,另3条直线平行且都与这5条相交,再有2条直线平行且都与这5条相交,且3条和2条也有相交.【解答】解:(1)如下图,最多有10个交点.(2)可以有4个交点,有3种不同的情形,如下图示.(3)如下图所示.。
2019-2020学年江苏省扬州市邗江区梅岭中学七年级(上)第一次月考数学试卷解析版

2019-2020学年江苏省扬州市邗江区梅岭中学七年级(上)第一次月考数学试卷一、选择题(共8题,每题3分,共24分)1.(3分)下列各对数中,互为相反数的是()A.﹣(﹣2)和2B.+(﹣3)和﹣(+3)C.D.﹣(﹣5)和﹣|﹣5|2.(3分)一个数的绝对值等于它的相反数,那么这个数是()A.是正数B.是负数C.是非负数D.是非正数3.(3分)在有理数中,有()A.最大的数B.最小的数C.绝对值最大的数D.绝对值最小的数4.(3分)一种零件的直径尺寸在图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过()A.0.03B.0.02C.30.03D.29.975.(3分)已知A地的海拔高度为﹣53米,B地比A地高30米,则B地的海拔高度为()米.A.﹣83B.﹣23C.23D.306.(3分)下列说法中正确的个数是()①﹣a一定是负数;②只有负数的绝对值是它的相反数;③任何一个有理数都可以在数轴上找到对应的点;④最大的负整数是﹣1.A.1个B.2个C.3个D.4个7.(3分)若|2a|=﹣2a,则a一定是()A.正数B.负数C.正数或零D.负数或零8.(3分)已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…依此类推,则a2017的值为()A.﹣1009B.﹣1008C.﹣2017D.﹣2016二、填空题(共10题,每题3分,共30分)9.一个数的倒数是﹣4,那么这个数是.10.绝对值大于2而小于5的所有的正整数的和为.11.已知a是最小的正整数,b是a的相反数,c的绝对值为3,试求a+b+c的值.12.用“>”或“<”连接:.13.数轴上与表示2的点的距离为5个单位长度的点表示的数为.14.观察下列各数据按规律在横线上填上下一个适当的数:,15.如图所示是计算机某计算程序,若开始输入x=﹣2,则最后输出的结果是.16.若a≠0,b≠0,则的值为.17.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则=﹣1;④若=﹣1,则a、b互为相反数.其中正确的结论是.18.一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折2次后,可以得3条折痕,那么对折5次可以得到条折痕.三、解答题(10题共96分)19.(8分)计算题.①8+(﹣10)+(﹣2)﹣(﹣5)②20.(8分)计算题.①②﹣22+|5﹣8|+24÷(﹣3)21.(8分)把下列各数填入相应的括号内.﹣8;﹣0.275;;0;﹣(﹣10);﹣1.4040040004…;;﹣(+2);;0.5正数集合{…};无理数集合{…};整数集合{…};负分数集合{…}.22.(8分)把下列各数﹣4,﹣|﹣3|,0,,+(+2),在数轴上表示出来并用“<”把他们连接起来.23.(10分)已知m,n互为相反数,且m≠n,p,q互为倒数,数轴上表示数a的点距原点的距离恰为6个单位长度.求+2pq﹣a﹣的值.24.(10分)已知|x|=3,|y|=8,且xy<0,求x+y的值.25.(10分)粮库三天内发生粮食进出库的吨数如下:+26,﹣32,﹣15,+34,﹣38,﹣20.(其中“+”表示进库,“﹣”表示出库)(1)经过这三天,库里的粮食是增多(或是减少)了多少?(2)经过这三天,仓库管理员结算发现库里还存粮480吨,那么三天前库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这三天要付多少装卸费?26.(10分)对于有理数a、b,定义运算:a⊕b=a×b+|a|﹣b,符合有理数的运算法则和运算律.(1)计算(﹣2)⊕(﹣2)的值;(2)填空:3⊕(﹣2)(﹣2)⊕3(填“>”或“=”或“<”);(3)计算[(﹣5)⊕4]⊕(﹣2)的值;27.(12分)同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4这样的整数是.(3)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣5|是否有最小值?如果有写出最小值如果没有说明理由.28.(12分)已知在纸面上有一数轴,折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数表示的点重合(2)若﹣2表示的点与4表示的点重合,回答以下问题:①数7对应的点与数对应的点重合;②若数轴上A、B两点之间的距离为2019(点A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?(3)点C在数轴上,将它向右移动4个单位,再向左2个单位后,若新位置与原位置到原点的距离相等,则C 原来表示的数是多少?请列式计算,说明理由.2019-2020学年江苏省扬州市邗江区梅岭中学七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(共8题,每题3分,共24分)1.【解答】解:A、﹣(﹣2)+2=4,故本选项错误;B、+(﹣3)﹣(+3)=﹣6,故本选项错误;C、﹣2=﹣,故本选项错误;D、﹣(﹣5)﹣|﹣5|=0,故本选项正确.故选:D.2.【解答】解:设|a|=﹣a,|a|≥0,所以﹣a≥0,所以a≤0,即a为非正数.故选:D.3.【解答】解:A、在有理数中,没有最大的数,故本选项错误;B、在有理数中,没有最小的数,故本选项错误;C、在有理数中,没有绝对值最大的数,故本选项错误;D、在有理数中,有绝对值最小的数,是0,故本选项正确;故选:D.4.【解答】解:根据正数和负数的意义可知,图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,误差不超过0.03mm;加工要求尺寸最大不超过30.03mm.故选:C.5.【解答】解:B地的海拔高度=(﹣53)+30=﹣23米.故选B.6.【解答】解:①﹣a一定是负数,说法错误;②只有负数的绝对值是它的相反数,说法错误;③任何一个有理数都可以在数轴上找到对应的点,说法正确;④最大的负整数是﹣1,说法正确.共2个正确的说法,故选:B.7.【解答】解:∵2a的相反数是﹣2a,且|2a|=﹣2a,∴a一定是负数或零.故选:D.8.【解答】解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,…,所以n是奇数时,结果等于﹣;n是偶数时,结果等于﹣;a2017=﹣=﹣1008.故选:B.二、填空题(共10题,每题3分,共30分)9.【解答】解:∵﹣×(﹣4)=1,∴﹣与﹣4互为倒数,∴这个数是﹣.故答案为:﹣.10.【解答】解:绝对值大于2而小于5的所有的正整数为3,4,之和为3+4=7,故答案为:7.11.【解答】解:∵最小的正整数是1,∴a=1,b是a的相反数,∴b=﹣1,∵3和﹣3的绝对值为3,∴c=3或﹣3,当a=1,b=﹣1,c=3时,a+b+c=1+(﹣1)+3=3,当a=1,b=﹣1,c=﹣3时,a+b+c=1+(﹣1)+(﹣3)=﹣3.12.【解答】解:|﹣|=,|﹣|=,∵<,∴﹣>﹣.故答案为:>.13.【解答】解:在数轴上与表示2的点距离5个单位长度的点表示的数是2+5=7或2﹣5=﹣3.故答案为:﹣3或7.14.【解答】解:由题意得出规律:第n个分数的分子为n,奇数个分数为正,偶数个分数为负,分母依次相差奇数3、5、7、9、11……,则第6个数为:﹣;故答案为:﹣.15.【解答】解:把x=﹣2代入计算程序得:﹣2×3﹣(﹣2)=﹣6+2=﹣4>﹣6,把x=﹣4代入计算程序得:﹣4×3﹣(﹣2)=﹣12+2=﹣10<﹣6.故最后输出的结果是﹣10.故答案为:﹣10,.16.【解答】解:当a<0,b<0,可得:=﹣1﹣1=﹣2;当a<0,b>0时,可得:=﹣1+1=0;当a>0,b>0时,可得:=1+1=2;当a>0,b<0时,可得:=1﹣1=0,故答案为:2或﹣2或0.17.【解答】解:①互为相反数的两个数的和为0,故本小题正确;②若a+b=0,则a、b互为相反数,故本小题正确;③当b=0时,无意义,故本小题错误;④若=﹣1,则a、b互为相反数,故本小题正确.故答案为:①②④.18.【解答】解:由图可知,第1次对折,把纸分成2部分,1条折痕,第2次对折,把纸分成4部分,3条折痕,第3次对折,把纸分成8部分,7条折痕,第4次对折,把纸分成16部分,15条折痕,…,依此类推,第n次对折,把纸分成2n部分,2n﹣1条折痕.当n=5时,25﹣1=31,故答案为:31.三、解答题(10题共96分)19.【解答】解:①原式=8+(﹣10)+(﹣2)+5=(8+5)﹣(10+2)=13﹣12=1;②原式==﹣1﹣9=﹣10.20.【解答】解:①=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣18+20﹣21=﹣19;②﹣22+|5﹣8|+24÷(﹣3)=﹣4+3﹣8=﹣9.21.【解答】解:正数集合{;﹣(﹣10);;0.5…};无理数集合{﹣1.4040040004…;…};整数集合{﹣8;0;﹣(﹣10);﹣(+2)…};负分数集合{﹣0.275;…}.故答案为:;﹣(﹣10);;0.5.﹣1.4040040004…;.﹣8;0;﹣(﹣10);﹣(+2).﹣0.275;.22.【解答】解:﹣4<﹣|﹣3|<<0<+(+2).23.【解答】解:∵m,n互为相反数,且m≠n,p,q互为倒数,数轴上表示数a的点距原点的距离恰为6个单位长度,∴m+n=0,=﹣1,pq=1,a=±6,当a=6时,+2pq﹣a﹣=(﹣1)=0,当a=﹣6时,+2pq﹣a﹣=×(﹣6)﹣(﹣1)=6,由上可得,+2pq﹣a﹣的值是0或6.24.【解答】解:∵|x|=3,|y|=8,且xy<0,∴x=3,y=﹣8;x=﹣3,y=8,则x+y=﹣5或5.25.【解答】解:(1)26+(﹣32)+(﹣15)+34+(﹣38)+(﹣20)=﹣45(吨),答:库里的粮食减少了45吨;(2)480﹣(﹣45)=525(吨),答:3天前库里存粮食是525吨;(3)(26+32+15+34+38+20)×5=825(元),答:3天要付装卸费825元.26.【解答】解:(1)(﹣2)⊕(﹣2)=(﹣2)×(﹣2)+|﹣2|﹣(﹣2)=4+2+2=8;(2)∵3⊕(﹣2)=3×(﹣2)+|3|﹣(﹣2)=﹣6+3+2=﹣1,(﹣2)⊕3=(﹣2)×3+|﹣2|﹣3=﹣6+2﹣3=﹣7,﹣1>﹣7,∴3⊕(﹣2)>(﹣2)⊕3;(3)∵(﹣5)⊕4=(﹣5)×4+|﹣5|﹣4=﹣20+5﹣4=﹣19,∴[(﹣5)⊕4]⊕(﹣2)=(﹣19)⊕(﹣2)=(﹣19)×(﹣2)+|﹣19|﹣(﹣2)=38+19+2=59.故答案为:>.27.【解答】解:(1)原式=|5+2|=7.故答案为:7;(2)令x+3=0或x﹣1=0时,则x=﹣3或x=1.当x<﹣3时,﹣(x+3)﹣(x﹣1)=4,﹣x﹣3﹣x+1=4,解得x=﹣3(范围内不成立);当﹣3≤x≤1时,(x+3)﹣(x﹣1)=4,x+3﹣x+1=4,0x=0,x为任意数,则整数x=﹣3,﹣2,﹣1,0,1;当x>1时,(x+3)+(x﹣1)=4,解得x=1(范围内不成立).综上所述,符合条件的整数x有:﹣3,﹣2,﹣1,0,1.故答案为﹣3,﹣2,﹣1,0,1;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x﹣5|有最小值为2.28.【解答】解:(1)∵折叠后1表示的点与﹣1表示的点重合,∴对折的中心所表示的数为0,∵﹣2到原点0的距离为2,∴只有2到原点0的距离为2,故答案为:2.(2)∵折叠后﹣2表示的点与4表示的点重合∴折叠中心表示的数为(﹣2+4)÷2=1,①设这个数为m,则有:7﹣1=1﹣m,解得:m=﹣5,故答案为:﹣5.②设A表示的数为a,B表示的数为b,由题意得,b﹣1=1﹣a且b﹣a=2019,解得,a=﹣1008.5,b=1010.5,答:A点表示的数是﹣1008.5,B点表示的数是1010.5.(3)设点C原位置表示的数为c,则点C的新位置表示的数为c+2,根据题意得,c+2=﹣c,解得,c=﹣1,答:C原来表示的数是﹣1.。
江苏省泰州市兴化市板桥中学2019-2020年七年级(上)第一次月考数学试卷 含解析

2019-2020学年七年级(上)第一次月考数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.与﹣3互为相反数的是()A.﹣3 B.3 C.﹣D.2.在数0,﹣3,1.1010010001…,﹣1.2中,属于无理数的是()A.0 B.﹣3C.1.1010010001…D.﹣1.23.下列计算:①(﹣3)+(﹣9)=﹣12;②0﹣(﹣5)=﹣5;③(﹣)=﹣;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个4.下列说法正确的是()A.﹣6 和﹣4 之间的数都是有理数B.数轴上表示﹣a的点一定在原点的左边C.在数轴上离开原点的距离越远的点表示的数越大D.﹣1 和 0 之间有无数个负数5.如果mn>0,且m+n<0,则下列选项正确的是()A.m<0,n<0B.m>0,n<0C.m,n异号,且负数的绝对值大D.m,n异号,且正数的绝对值大6.在一列数:a1,a2,a3,…a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2019个数是()A.1 B.3 C.7 D.9二、填空题(本大题共10小题,每小题3分,共30分)7.某人的身份证号码是320106************,此人的生日是月日.8.2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3000000000000美元,将3000000000000美元用科学记数法表示为.9.已知数轴上两点A,B表示的数分别是2和﹣7,则A,B两点间的距离是.10.若a、b互为相反数,c、d互为倒数,则(a+b)﹣cd=.11.在4,﹣1,+2,﹣5这四个数中,任意三个数之和的最小值是.12.的平方等于25,立方得﹣8的数是.13.若|x﹣2|+(y+3)2=0,则y x=.14.已知|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,则a+b+c=.15.如图所示,直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是.16.已知m⩾2,n⩾2,且m、n均为正整数,如果将m n进行如图所示的“分解”,那么在43的“分解”中,最小的数是.三、解答题(本大题共10小题,共102分)17.把下列各数分别填入相应的集合里:+(﹣2),0,﹣0.314,﹣5.0101001…(两个1间的0的个数依次多1个)﹣(﹣11),,﹣4,0.,|正有理数集合:{ },无理数集合:{ },整数集合:{ },分数集合:{ }.18.把下列各数在数轴上表示出来.并用“<”连接.1.5,0,3,﹣1,.19.计算:(1)7﹣(﹣4)+(﹣5)(2)(3)﹣7.2﹣0.8﹣5.6+11.6(4)20.计算(1);(2);(3)(4)﹣14﹣[2﹣(﹣3)2]21.计算:(1)(2)﹣1+2﹣3+4…﹣2019+202022.计算:已知|x|=5,|y|=2,(1)当xy<0时,求x+y的值;(2)求x﹣y的最大值.23.邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑行了多少千米?24.现定义新运算“⊕”,对任意有理数a、b,规定a⊕b=ab+a﹣b,例如:1⊕2=1×2+1﹣2=1,(1)求3⊕(﹣4)的值;(2)求3⊕[(﹣2)⊕1]的值;(3)若(﹣3)⊕b与b互为相反数,求b的值.25.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):城市悉尼纽约时差/时+2 ﹣12 (1)当上海是10月1日上午10时,悉尼时间是.(2)上海、纽约与悉尼的时差分别为(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数)(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.26.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4 和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A,B 两点间的最大距离是.(4)若数轴上表示数a的点位于﹣4 与2之间,则|a+4|+|a﹣2|=.参考答案与试题解析一.选择题(共6小题)1.与﹣3互为相反数的是()A.﹣3 B.3 C.﹣D.【分析】只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:﹣3的相反数是3.故选:B.2.在数0,﹣3,1.1010010001…,﹣1.2中,属于无理数的是()A.0 B.﹣3C.1.1010010001…D.﹣1.2【分析】无理数包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.【解答】解:0,﹣3是整数,属于有理数;﹣1.2是有限小数,属于有理数,∴无理数的是1.1010010001…,故选:C.3.下列计算:①(﹣3)+(﹣9)=﹣12;②0﹣(﹣5)=﹣5;③(﹣)=﹣;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】各式计算得到结果,即可作出判断.【解答】解:①(﹣3)+(﹣9)=﹣12,符合题意;②0﹣(﹣5)=0+5=5,不符合题意;③(﹣)=﹣,符合题意;④(﹣36)÷(﹣9)=4,不符合题意,故选:B.4.下列说法正确的是()A.﹣6 和﹣4 之间的数都是有理数B.数轴上表示﹣a的点一定在原点的左边C.在数轴上离开原点的距离越远的点表示的数越大D.﹣1 和 0 之间有无数个负数【分析】数轴上的点与实数一一对应,不是与有理数一一对应,因此A选项不符合题意;﹣a不一定表示负数,因此B选项不符合题意;数轴所表示的数越向右越大,越向左越小,离原点越远,在左侧时,数就越小,因此选项C不符合题意;0与﹣1之间有无数个点,表示无数个实数,就是有无数个负数,因此选项D符合题意.【解答】解:数轴上的点不是与有理数一一对应,因此A选项不符合题意;﹣a不一定表示负数,因此B选项不符合题意;数轴所表示的数越向右越大,越向左越小,离原点越远,在左侧时,数就越小,因此选项C不符合题意;0与﹣1之间有无数个点,表示无数个实数,就是有无数个负数,因此选项D符合题意.故选:D.5.如果mn>0,且m+n<0,则下列选项正确的是()A.m<0,n<0B.m>0,n<0C.m,n异号,且负数的绝对值大D.m,n异号,且正数的绝对值大【分析】根据有理数的性质,因由mn>0,且m+n<0,可得n,m同号且两者都为负数可排除求解.【解答】解:若有理数m,n满足mn>0,则m,n同号,排除B,C,D选项;且m+n<0,则m<0,n<0,故A正确.故选:A.6.在一列数:a1,a2,a3,…a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2019个数是()A.1 B.3 C.7 D.9【分析】可分别求出n=3、4、5…时的情况,观察它是否具有周期性,再把2017代入求解即可.【解答】解:依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7;周期为6;2019÷6=336…3,所以a2017=a3=1.故选:A.二.填空题(共10小题)7.某人的身份证号码是320106************,此人的生日是10 月17 日.【分析】身份证的第7﹣14位表示的出生日期,其中7﹣10位是出生的年份,11、12位是出生的月份,13、14是出生的日;据此解答.【解答】解:身份证号码是320106************,第7﹣14位是:20071017,表示2007年10月17日出生故答案为:10,17.8.2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3000000000000美元,将3000000000000美元用科学记数法表示为3×1012美元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000000000000=3×1012美元.故答案为:3×1012美元.9.已知数轴上两点A,B表示的数分别是2和﹣7,则A,B两点间的距离是9 .【分析】由数轴上两点表示的数,利用数轴上两点间的距离公式即可求出线段AB的长度.【解答】解:∵数轴上两点A、B表示的数分别是2和﹣7,∴A、B两点间的距离为2﹣(﹣7)=9.故答案为:9.10.若a、b互为相反数,c、d互为倒数,则(a+b)﹣cd=﹣1 .【分析】利用两数互为相反数,和为0;两数互为倒数,积为1,由此可解出此题.【解答】解:依题意得:a+b=0,cd=1,所以(a+b)﹣cd=0﹣1=﹣1.故答案为:﹣1.11.在4,﹣1,+2,﹣5这四个数中,任意三个数之和的最小值是﹣4 .【分析】在4,﹣1,+2,﹣5这四个数中找出较小的三个数,再计算它们的和即可.【解答】解:﹣5<﹣1<+2<4,(﹣5)+(﹣1)+(+2)=﹣4.故答案为:﹣412.±5 的平方等于25,立方得﹣8的数是﹣2 .【分析】根据乘方的性质,可得答案.【解答】解:±5的平方等于25,立方得﹣8的数是﹣2,故答案为:±5,﹣2.13.若|x﹣2|+(y+3)2=0,则y x=9 .【分析】根据非负数的性质可求出x、y的值,再将它们代入y x中求解即可.【解答】解:∵x、y满足|x﹣2|+(y+3)2=0,∴x﹣2=0,x=2;y+3=0,y=﹣3;则y x=(﹣3)2=9.故答案为:9.14.已知|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,则a+b+c= 1 .【分析】根据|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,可以得到a、b、c的值,从而可以求得所求式子的值.【解答】解:∵|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,∴a=2,b=3,c=﹣4,∴a+b+c=2+3+(﹣4)=1,故答案为:1.15.如图所示,直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是1﹣π.【分析】直接利用圆的周长公式得出圆的周长,再利用对应数字性质得出答案.【解答】解:由题意可得:圆的周长为π,∵直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,∴A点表示的数是:1﹣π.故答案为:1﹣π.16.已知m⩾2,n⩾2,且m、n均为正整数,如果将m n进行如图所示的“分解”,那么在43的“分解”中,最小的数是13 .【分析】通过观察可知:底数是几,分解成的奇数的个数为几,且奇数的个数之和为幂,则在43的“分解”中最小的数是13,则其他三个数为15,17,19,四数的和为64,恰好为43.【解答】解:在43的“分解”中最小的数是13,则其他三个数为15,17,19,四数的和为64,恰好为43.故答案为:13三.解答题(共10小题)17.把下列各数分别填入相应的集合里:+(﹣2),0,﹣0.314,﹣5.0101001…(两个1间的0的个数依次多1个)﹣(﹣11),,﹣4,0.,|正有理数集合:{ ﹣(﹣11)、、0.,、},无理数集合:{ ﹣5.0101001…(两个1间的0的个数依次多1个)},整数集合:{ +(﹣2),0,﹣(﹣11)…},},分数集合:{ ﹣0.314,,,0.,}.【分析】根据实数的分类即可求出答案.【解答】解:故答案为:正有理数集合:{﹣(﹣11)、、0.,、…},无理数集合:{﹣5.0101001(两个1间的0的个数依次多1个)……},整数集合:{+(﹣2),0,﹣(﹣11)…},分数集合:{﹣0.314,,,0.,…}18.把下列各数在数轴上表示出来.并用“<”连接.1.5,0,3,﹣1,.【分析】将各数在数轴上表示出来,根据“在数轴上从右到左,数逐步减小”用“>”连接各数即可.【解答】解:将各数在数轴上表示出来,如图所示:∵在数轴上从右到左,数逐步减小,∴.19.计算:(1)7﹣(﹣4)+(﹣5)(2)(3)﹣7.2﹣0.8﹣5.6+11.6(4)【分析】(1)根据有理数的加减法可以解答本题;(2)先去掉绝对值,然后根据有理数的加减法即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的加减法可以解答本题.【解答】解:(1)7﹣(﹣4)+(﹣5)=7+4+(﹣5)=6;(2)=6+0.2+(﹣2)﹣1.5=2.7;(3)﹣7.2﹣0.8﹣5.6+11.6=(﹣7.2)+(﹣0.8)+(﹣5.6)+11.6=﹣2;(4)=4.20.计算(1);(2);(3)(4)﹣14﹣[2﹣(﹣3)2]【分析】(1)根据有理数的乘法可以解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据有理数的乘除法可以解答本题;(4)根据有理数的加减法可以解答本题.【解答】解:(1)==2;(2)=﹣=﹣;(3)=﹣5×=﹣1;(4)﹣14﹣[2﹣(﹣3)2]=﹣1﹣(2﹣9)=﹣1﹣(﹣7)=﹣1+7=6.21.计算:(2)﹣1+2﹣3+4…﹣2019+2020【分析】(1)根据乘法的分配律解答即可;(2)先把数字分组:(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2017+2018)+(﹣2019+2020),分组后得出规律每组都为1,算出有多少个1相加即可得出结果.【解答】解:(1)===12+18﹣30﹣27=﹣27;(2)﹣1+2﹣3+4…﹣2019+2020=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2017+2018)+(﹣2019+2020)=1×1010=1010.22.计算:已知|x|=5,|y|=2,(1)当xy<0时,求x+y的值;(2)求x﹣y的最大值.【分析】(1)由题意x=±5,y=±2,由于xy<0,x=5,y=﹣2或x=﹣5,y=2,代入x+y即可求出答案.(2)由题意x=±5,y=±2,根据几种情况得出x﹣y的值,进而比较即可.【解答】解:因为|x|=5,|y|=2,所以x=±5,y=±2,(1)∵xy<0,∴x=5,y=﹣2或x=﹣5,y=2,∴x+y=±3,(2)当x=5,y=2时,x﹣y=5﹣2=3;当x=5,y=﹣2时,x﹣y=5﹣(﹣2)=7;当x=﹣5,y=2时,x﹣y=﹣5﹣2=﹣7;当x=﹣5,y=﹣2时,x﹣y=﹣5﹣(﹣2)=﹣3,所以x﹣y的最大值是7.23.邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑行了多少千米?【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据题意列出算式,即可得出答案;(3)根据题意列出算式,即可得出答案.【解答】解:(1);(2)C村离A村的距离为9﹣3=6(km);(3)邮递员一共行驶了2+3+9+4=18(千米).24.现定义新运算“⊕”,对任意有理数a、b,规定a⊕b=ab+a﹣b,例如:1⊕2=1×2+1﹣2=1,(1)求3⊕(﹣4)的值;(2)求3⊕[(﹣2)⊕1]的值;(3)若(﹣3)⊕b与b互为相反数,求b的值.【分析】(1)根据a⊕b=ab+a﹣b,可以求得所求式子的值;(2)根据a⊕b=ab+a﹣b,可以求得所求式子的值;(3)根据题意和a⊕b=ab+a﹣b,可以求得b的值.【解答】解:(1)∵a⊕b=ab+a﹣b,∴3⊕(﹣4)=3×(﹣4)+3﹣(﹣4)=(﹣12)+3+4(2)∵a⊕b=ab+a﹣b,∴3⊕[(﹣2)⊕1]=3⊕[(﹣2)×1+(﹣2)﹣1]=3⊕[(﹣2)+(﹣2)﹣1]=3⊕(﹣5)=3×(﹣5)+3﹣(﹣5)=(﹣15)+3+5=﹣7;(3)∵(﹣3)⊕b与b互为相反数,∴(﹣3)×b+(﹣3)﹣b+b=0,解得,b=﹣1.25.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):城市悉尼纽约时差/时+2 ﹣12 (1)当上海是10月1日上午10时,悉尼时间是10月1日上午12时.(2)上海、纽约与悉尼的时差分别为﹣2,﹣14 (正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数)(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.【分析】(1)由统计表得出:悉尼时间比上海时间早2小时,也就是10月1日上午12时.(2)由统计表得出:上海比悉尼晚2个小时,所以时差为﹣2,纽约比悉尼晚14个小时,所以时差为﹣14;(3)先计算飞机到达机场时纽约的时间,即:(10+14)时(45+55)分,2018年9月2日1时40分,再根据时差计算结果即可.【解答】解:(1)由题意得:当上海是10月1日上午10时,悉尼时间是10月1日上午故答案为:10月1日上午12时;(2)上海与悉尼的时差是:﹣2;纽约与悉尼的时差是:﹣2﹣12=﹣14;故答案为:﹣2,﹣14;(3)由题意得:(10+14)时(45+55)分,即2018年9月2日1时40分,又知上海比纽约早12小时,所以到上海时是:9月2日13时40分;答:飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40.26.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4 和1的两点之间的距离是 3 ;表示﹣3和2两点之间的距离是5 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=﹣4或2 ;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A,B 两点间的最大距离是8 .(4)若数轴上表示数a的点位于﹣4 与2之间,则|a+4|+|a﹣2|= 6 .【分析】(1)根据题意可以求得数轴上表示4 和1的两点之间的距离和表示﹣3和2两点之间的距离;(2)根据|x+1|=3,可以求得x的值,本题得以解决;(3)根据题意可以求得a、b的值,从而可以求得A,B两点间的最大距离;(4)根据数轴上表示数a的点位于﹣4 与2之间,可以求得|a+4|+|a﹣2|的值.【解答】解:(1)数轴上表示4 和1的两点之间的距离是4﹣1=3,表示﹣3和2两点之间的距离是2﹣(﹣3)=5,故答案为:3,5;(2)∵|x+1|=3∴x+1=±3,解得,x=2或x=﹣4,故答案为:﹣4或2;(3)∵|a﹣3|=2,|b+2|=1,∴a=5或a=1,b=﹣3或b=﹣1,∴当A为5,B为﹣3时,A,B两点间的距离最大,最大距离是5﹣(﹣3)=8,故答案为:8;(4)∵数轴上表示数a的点位于﹣4 与2之间,∴﹣4<a<2,∴|a+4|+|a﹣2|=a+4+2﹣a=6,故答案为:6.。
2019-2020学年沈阳126中学七年级(上)月考数学试卷

2019-2020学年沈阳126中学七年级(上)月考数学试卷一、选择题(共10小题,每小题2分)1.(2分)﹣3的倒数是()A .3B .﹣3C .31D .-312.(2分)如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的()A .B .C .D .3.(2分)下列各图形中,可以是一个正方体的平面展开图的是()A .B .C .D .4.(2分)下列说法正确的是()A .最大的负整数是﹣1B .最小的正数是0C .绝对值等于3的数是3D .任何有理数都有倒数5.(2分)用一个平面按照如图所示的位置与正方体相截,则截面图形是()A .B .C .D .6.(2分)下列运算错误的是()A .2+(﹣7)=﹣5B .8﹣(﹣2)=8+2=10C .29-233-323-=⨯=÷D .(-15)×(-4)×(+51)×(-21)=67.(2分)有理数a ,b 在数轴上的位置如图所示,以下说法正确的是()A .a +b =0B .a ﹣b >0C .ab >0D .|b |<|a |8.(2分)有一个正方体的六个面上分别标有数字1、2、3、4、5、6,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字6的面所对面上的数字记为a ,2的面所对面上数字记为b ,那么a +b 的值为()A .6B .7C .8D .99.(2分)定义新运算:对任意有理数a 、b ,都有a ⊗b =a (b a 11-),例如3⊗4=3×(41-31)=41,那么(﹣2)⊗5的值是()A .-53B .53C .﹣57D .5710.(2分)已知数轴上两点A 、B 对应的数分别为﹣1,3,点P 为数轴上一动点,其对应的数为x .当P 到点A 、B 的距离之和为7时,则对应的数x 的值为()A .29B .-29和25C .29和-25D .29和25二、填空题(共8小题,每小题3分)11.(3分)如果水位升高3m 时,水位变化记作+3m ,那么水位下降5m 时,水位变化记作:m .12.(3分)气象资料表明,高度毎增加1千米,气温大约下降6℃,我国著名风景区黄山的天都峰高1700米,当地面温度约为18℃时,山顶气温是.13.(3分)一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这个几何体的形状如图所示,则这个几何体中小正方体的个数最少是个.14.(3分)小于2013且大于﹣2012的所有整数的和是.15.(3分)已知一个n 棱柱有36条棱,那么这个n 棱柱共有个面.16.(3分)纽约与太原的时差为﹣13h ,小明在太原乘坐早晨10:00的航班飞行约20h 到达纽约,那么小明到达纽约时间是.17.(3分)若|x |=5,|y |=2,且|x ﹣y |=y ﹣x ,则x +y =.18.(3分)下列说法正确的是(填序号).①若|a |=b ,则一定有a =±b ;②若a ,b 互为相反数,则ab=﹣1;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0;⑥若|x ﹣3|+|x +2|=5,则﹣2≤x ≤3.三、简答题19.(20分)计算(1)﹣12+6+5﹣10(2))514(65(257-÷-⨯(3))41()43()32(42-÷-+-⨯(4))56()14381174(-⨯--20.(9分)在数轴上表示下列各数,并把它们用“<”连接起来.﹣5,312-,0,211,﹣|﹣3.5|,+221.(6分)201年9月1日,长春首届航空开放日在长春大房身机场正式举行,空军八一飞行表演队的新换装歼﹣10飞机,进行了精彩的特技飞行表演,其中一架飞机起飞0.5千米后的高度变化如下表:高度变化上升4.2km 下降3.5m 上升1.4km 下降1.2km 记作+4.2km﹣3.5km+1.4km﹣1.2km(1)此时这架飞机飞离地面的高度是多少千米.(2)如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.6千米,下降2.8千米,再上升1.5千米,最后下降0.9千米.若飞机平均上升1千米需消耗6升燃油,平均下降1千米需消耗4升燃油,那么这架飞机在这4个特技表演过程中,一共消耗了多少升燃油?22.(6分)已知a 与b 是互为倒数,c 与d 是互为相反数,m 的绝对值是3,求mdc ab m 4232+++.23.(8分)如图所示,是由几个小立方块所搭几何体的俯视图,小立方块中的数字表示在该位置小立方块的个数.(1)请在网格内画出从正面和从左面看到的这个几何体的形状图;(2)如图1,是小明用9个棱长为lcm 的小立方块积木搭成的几何体的俯视图,小立方块中的数字表示在该位置小立方块的个数他请小亮用尽可能少的同样大小的立方块在旁边再搭建一个几何体使小亮所搭建的几何体恰好可以和小明所搭建的几何体拼成一个大的正方体(即拼大正方体时将其中一个几何体翻转,且假定组成每个几何体的立方块粘合在一起),则:①小亮至少还需要个小正方体;②上面①中小亮所搭几何体的表面积为cm 2.24.(7分)如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边的长为3.(1)数轴上点A 表示的数为.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为O ′A 'B ′C ’,设长方形OABC移动的距离为x,移动后的长方形O′A′B'C’与原长方形OABC重叠部分的面积记为S.①当S等于原长方形OABC面积的41时,则点A的移动距离AA′=,此时数轴上点A′表示的数为.②D为线段AA′的中点,点E在线段OO′上,且OE=31OO′,当点D,E所表示的数互为相反数时,求x的值.2019-2020学年辽宁省沈阳126中七年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题(共10小题,每小题2分)1.(2分)﹣3的倒数是()A .3B .﹣3C .31D .-31【解答】解:∵(﹣3)×(﹣31)=1,∴﹣3的倒数是﹣31.故选:D .2.(2分)如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的()A .B .C .D .【解答】解:根据面动成体结合常见立体图形的形状得出只有A 选项符合,故选:A .3.(2分)下列各图形中,可以是一个正方体的平面展开图的是()A .B .C .D .【解答】解:选项A ,C 折叠后缺少一个底面,而B 折叠后缺少一个侧面,所以可以是一个正方体的平面展开图的是D .故选:D .4.(2分)下列说法正确的是()A .最大的负整数是﹣1B .最小的正数是0C .绝对值等于3的数是3D .任何有理数都有倒数【解答】解:既是整数又是负数中最大的数是﹣1,故A 正确.0既不是正数也不是负数,故B 错误.绝对值等于3的数是3和﹣3,故C 错误.0是有理数,但是0没有倒数,故D 错误.故选:A .5.(2分)用一个平面按照如图所示的位置与正方体相截,则截面图形是()A .B .C .D .【解答】解:用一个平面按如图所示方法去截一个正方体,则截面是三角形,故选:A .6.(2分)下列运算错误的是()A .2+(﹣7)=﹣5B .8﹣(﹣2)=8+2=10C .29-233-323-=⨯=÷D .(-15)×(-4)×(+51)×(-21)=6【解答】解:∵2+(﹣7)=﹣5,∴选项A 不符合题意;∵8﹣(﹣2)=8+2=10,∴选项B 不符合题意;∵﹣3÷32=﹣3×23=﹣29,∴选项C 不符合题意;∵(﹣15)×(﹣4)×(+51)×(﹣21)=﹣6,∴选项D 符合题意.故选:D .7.(2分)有理数a ,b 在数轴上的位置如图所示,以下说法正确的是()A .a +b =0B .a ﹣b >0C .ab >0D .|b |<|a |【解答】解:由图可知:a <0<b ,|a |>|b |,∴a +b <0,|a |>|b |,ab <0,a ﹣b <0.所以只有选项D 成立.故选:D .8.(2分)有一个正方体的六个面上分别标有数字1、2、3、4、5、6,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字6的面所对面上的数字记为a ,2的面所对面上数字记为b ,那么a +b 的值为()A .6B .7C .8D .9【解答】解:从图可以看出1和6、4、3、2都相邻,所以1的对面只能是5,4和1、6、5、3相邻,那么4的对面是2,即2的对面是4,由以上两项可知6和3相对,即6的对面是3,所以a +b =3+4=7.故选:B .9.(2分)定义新运算:对任意有理数a 、b ,都有a ⊗b =a (b a 11 ),例如3⊗4=3×(41-31)=41,那么(﹣2)⊗5的值是()A .53-B .53C .﹣53D .57【解答】解:(﹣2)⊗5=﹣2×(﹣21﹣51)=1+52=57,故选:D .10.(2分)已知数轴上两点A 、B 对应的数分别为﹣1,3,点P 为数轴上一动点,其对应的数为x .当P 到点A 、B 的距离之和为7时,则对应的数x 的值为()A .29B .-29和25C .29和-25D .29和25【解答】解:由题意得:当P 到点A 、B 的距离之和为7时,有|x ﹣(﹣1)|+|x ﹣3|=7∵当点P 位于点A 、B 之间时,|x ﹣(﹣1)|+|x ﹣3|=4∴将x 从﹣1向左1.5个单位或从3向右1.5个单位,则有|x ﹣(﹣1)|+|x ﹣3|=7此时x =﹣1﹣1.5=﹣25,或x =3+1.5=29故选:C .二、填空题(共8小题,每小题3分)11.(3分)如果水位升高3m 时,水位变化记作+3m ,那么水位下降5m 时,水位变化记作:﹣5m .【解答】解:因为升高记为+,所以下降记为﹣,所以水位下降5m 时水位变化记作﹣5m .12.(3分)气象资料表明,高度毎增加1千米,气温大约下降6℃,我国著名风景区黄山的天都峰高1700米,当地面温度约为18℃时,山顶气温是7.8℃.【解答】解:根据题意知天都峰山顶气温是:18﹣6×(1700÷1000)=18﹣6×1.7=18﹣10.2=7.8(℃).13.(3分)一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这个几何体的形状如图所示,则这个几何体中小正方体的个数最少是5个.【解答】解:搭这样的几何体最少需要4+1=5个小正方体,最多需要4+2=6个小正方体14.(3分)小于2013且大于﹣2012的所有整数的和是2012.【解答】解:小于2013而大于﹣2012的所有整数有:﹣2011,﹣2010,﹣2009,...,﹣1,0,1, (2012)和为﹣2011﹣2010﹣2009﹣…﹣1+0+1+…+2012=(﹣2011+2011)+(﹣2010+2010)+…+(﹣1+1)+2012=2012.15.(3分)已知一个n棱柱有36条棱,那么这个n棱柱共有14个面.【解答】解:一个棱柱有36条棱,这是一个12棱柱,它有14个面.16.(3分)纽约与太原的时差为﹣13h,小明在太原乘坐早晨10:00的航班飞行约20h到达纽约,那么小明到达纽约时间是17:00.【解答】解:10+20﹣13=17(时),即小明到达纽约时间是17时,17.(3分)若|x|=5,|y|=2,且|x﹣y|=y﹣x,则x+y=﹣7或﹣3.【解答】解:∵|x|=5,|y|=2,且|x﹣y|=y﹣x,∴x=±5,y=±2,x﹣y<0,∴x=﹣5,y=2或x=﹣5,y=﹣2,则x+y=﹣7或﹣3,18.(3分)下列说法正确的是①④⑥(填序号).①若|a|=b,则一定有a=±b;②若a,b互为相反数,则a b=﹣1;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0;⑥若|x﹣3|+|x+2|=5,则﹣2≤x≤3.【解答】解:①若|a|=b,则有b≥0,故a=b或有a=﹣b,故①正确;②若a ,b 互为相反数,若a =b =0,此时a ,b 互为相反数,但是对于等式ab =﹣1不成立,故②不正确;③几个有理数相乘,若负因数有偶数个,若其中有因数0,那么他们的积为0,故③不正确;④两数相加,分为两个正数相加,此时和大于每一个加数;一正一负两数相加,此时和大于负数;一个数和0相加,都等于这个数;只有两个负数相加,其和小于每一个加数,故④正确;⑤0除以0没有意义,故⑤不正确;⑥若|x ﹣3|+|x +2|=5,则﹣2≤x ≤3,正确,当x <﹣2或x >3时,|x ﹣3|+|x +2|>5,故⑥正确.综上,正确的有①④⑥.三、简答题19.(20分)计算(1)﹣12+6+5﹣10(2))514(65(257-÷-⨯(3))41()43()32(42-÷-+-⨯(4))56()14381174(-⨯--【解答】解:(1)﹣12+6+5﹣10=﹣22+11=﹣11;(2))514(65(257-÷-⨯=145()65(257-⨯-⨯=121;(3))41()43()32(42-÷-+-⨯=﹣28+3=﹣25;(4))56()14381174(-⨯--=74×(﹣56)﹣89×(﹣56)﹣143×(﹣56)=﹣32+63+12=43.20.(9分)在数轴上表示下列各数,并把它们用“<”连接起来.﹣5,312-,0,211,﹣|﹣3.5|,+2【解答】解:﹣|﹣3.5|=﹣3.5,+2=2,在数轴上表示为:用“<”把这些数连接起来为:221103125.35-+<<<-<--<.21.(6分)201年9月1日,长春首届航空开放日在长春大房身机场正式举行,空军八一飞行表演队的新换装歼﹣10飞机,进行了精彩的特技飞行表演,其中一架飞机起飞0.5千米后的高度变化如下表:高度变化上升4.2km 下降3.5m 上升1.4km 下降1.2km 记作+4.2km ﹣3.5km +1.4km ﹣1.2km(1)此时这架飞机飞离地面的高度是多少千米.(2)如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.6千米,下降2.8千米,再上升1.5千米,最后下降0.9千米.若飞机平均上升1千米需消耗6升燃油,平均下降1千米需消耗4升燃油,那么这架飞机在这4个特技表演过程中,一共消耗了多少升燃油?【解答】解:(1)0.5+4.2﹣3.5+1.4﹣1.2=1.4千米,答:此时这架飞机飞离地面的高度是1.4千米;(2)(3.6+1.5)×6+(2.8+0.9)×4=45.4(升)答:一共消耗了45.4升燃油.22.(6分)已知a 与b 是互为倒数,c 与d 是互为相反数,m 的绝对值是3,求md c ab m 4232+++.【解答】解:∵a 与b 是互为倒数,c 与d 是互为相反数,m 的绝对值是3,∴ab=1,c+d=0,m=±3.当m=3时,原式=2+2+0=4;当m=﹣3时,原式=﹣2+2+0=0.23.(8分)如图所示,是由几个小立方块所搭几何体的俯视图,小立方块中的数字表示在该位置小立方块的个数.(1)请在网格内画出从正面和从左面看到的这个几何体的形状图;(2)如图1,是小明用9个棱长为lcm的小立方块积木搭成的几何体的俯视图,小立方块中的数字表示在该位置小立方块的个数他请小亮用尽可能少的同样大小的立方块在旁边再搭建一个几何体使小亮所搭建的几何体恰好可以和小明所搭建的几何体拼成一个大的正方体(即拼大正方体时将其中一个几何体翻转,且假定组成每个几何体的立方块粘合在一起),则:①小亮至少还需要18个小正方体;②上面①中小亮所搭几何体的表面积为56cm2.【解答】解:(1)如图所示:(2)①图中给了9个立方块,最小的正方体需要27块,27﹣9=18,②表面积=(9+9+8)×2+4=56.故答案为:18;56.24.(7分)如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边的长为3.(1)数轴上点A表示的数为4.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A'B′C’,设长方形OABC移动的距离为x ,移动后的长方形O ′A ′B 'C ’与原长方形OABC 重叠部分的面积记为S .①当S 等于原长方形OABC 面积的41时,则点A 的移动距离AA ′=3,此时数轴上点A ′表示的数为1或7.②D 为线段AA ′的中点,点E 在线段OO ′上,且OE =31OO ′,当点D ,E 所表示的数互为相反数时,求x 的值.【解答】解:(1)∵长方形OABC 的面积为12,OC 边长为3,∴OA =12÷3=4,∴数轴上点A 表示的数为4,故答案为:4.(2)①∵S 等于原长方形OABC 面积的41,∴重叠部分的面积为3,即OA ′×O ′C ′=3,∵O ′C ′=3,∴OA ′=1,则点A 的移动距离AA ′=3;当向左运动时,如图1,A ′表示的数为4﹣3=1,当向右运动时,如图2,∵O ′A ′=AO =4,∴OA ′=4+3=7,∴A ′表示的数为7,故答案为:1或7.②如图1,当原长方形OABC 向左移动时,点D 表示的数为4﹣21x ,点E 表示的数为﹣31x ,由题意可得方程:4﹣21x ﹣31x =0,解得:x =524,如图2,当原长方形OABC 向右移动时,点D ,E 表示的数都是正数,不符合题意.综上x 的值为524.。
北京市人大附中2019-2020学年七年级上学期第一次月考数学试卷(word版,含答案)

北京市人大附中2019-2020学年七年级上学期第一次月考数学试卷数学一、选择题(每题4分,共32分)下面各题均有四个选項,其中只有一个是符合题意的1.(4分)在﹣5,﹣2.3,0,0.89五个数中,负数共有()A.2个B.3个C.4个D.5个2.(4分)﹣5的绝对值是()A.5 B.﹣5 C.D.±53.(4分)如图,数轴上两点A,B表示的数互为相反数()A.﹣1 B.1 C.﹣2 D.24.(4分)下列几种说法中,正确的是()A.有理数分为正有理数和负有理数B.整数和分数统称有理数C.0不是有理数D.负有理数就是负整数5.(4分)a为有理数,下列说法正确的是()A.﹣a为负数B.a一定有倒数C.|a﹣2|为正数D.|a|+2为正数6.(4分)如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C 表示的数为1()A.7 B.3 C.﹣3 D.﹣27.(4分)如果a、b异号,且a+b<0,则下列结论正确的是()A.a>0,b>0B.a<0,b<0C.a,b异号,且正数的绝对值较大D.a,b异号,且负数的绝对值较大8.(4分)已知a,b是有理数,|ab|=﹣ab(ab≠0),b下列正确的是()A.B.C.D.二、填空题(每小题4分,本大题共32分)9.(4分)﹣1的相反数是.10.(4分)比较大小:﹣3﹣2.1,﹣(﹣2)﹣|﹣2|(填>”,“<”或“=”).11.(4分)请写出一个比﹣3大的非负整数:.12.(4分)数轴上点P表示的数是﹣2,那么到P点的距离是3个单位长度的点表示的数是.13.(4分)如果a为有理数,且|a|=﹣a,那么a的取值范围是.14.(4分)已知a>0,b<0,|b|>|a|,﹣a,b,﹣b四个数的大小关系.15.(4分)已知点O为数轴的原点,点A,B在数轴上若AO=8,且点A表示的数比点B表示的数小,则点B表示的数是.16.(4分)已知x,y均为整数,且|x﹣y|+|x﹣3|=1.三、解答题(本大题共52分,17题,18题各8分,19-20题各7分,第21、22题8分)17.(8分)计算(1)(﹣6)+(﹣13).(2)(﹣)+.18.(8分)画数轴,并在数轴上表示下列数:﹣3、﹣2.7、﹣、1,再将这些数用“<”连接.19.(7分)已知|a|=3,|b|=3,a、b异号20.(7分)若|x﹣2|+|2y﹣5|=0,求x+y的值.21.(8分)出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午先向东走了15千米,又向西走了13千米,又向西走了11千米,又向东走了10千米(1)请你用正负数表示小张向东或向西运动的路程;(2)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(3)离开下午出发点最远时是多少千米?(4)若汽车的耗油量为0.06升/千米,油价为4.5元/升,这天下午共需支付多少油钱?22.(8分)已知数轴上三点A、O、B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)若点P到点A,点B,点O的距离之和最小.四.【附加】23.在某种特制的计算器中有一个按键,它代表运算.例如:上述操作即是求的值,运算结果为1.回答下面的问题:(1)小敏的输入顺序为﹣6,,﹣8,,运算结果是;(2)小杰的输入顺序为1,,,,,﹣2,,,,,,3,,运算结果是;(3)若在,,,,,,,,0,,,,,,,,这些数中,任意选取两个作为a、b的值运算,则所有的运算结果中最大的值是.北京市人大附中2019-2020学年七年级上学期第一次月考数学试卷参考答案一、选择题(每题4分,共32分)下面各题均有四个选項,其中只有一个是符合题意的1.【分析】根据小于零的数是负数,可得答案.【解答】解:在﹣5,﹣2.7,0,﹣4,负数有﹣5,﹣3.3,共有3个.故选:B.【点评】本题考查了有理数,解题的关键是明确小于零的数是负数.2.【分析】根据绝对值的含义和求法,可得﹣5的绝对值是:|﹣5|=5,据此解答即可.【解答】解:﹣5的绝对值是:|﹣5|=2.故选:A.【点评】此题主要考查了绝对值的含义和求法的应用,要熟练掌握,解答此题的关键是要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.3.【分析】利用数形结合的思想,数轴上A、B表示的数互为相反数,说明A,B到原点的距离相等,并且点A在点B的右边,可以确定这两个点的位置,即它们所表示的数.【解答】解:数轴上A、B表示的数互为相反数,所以它们到原点的距离都为2,所以点B表示的数﹣2,故选:C.【点评】练掌握数轴的有关知识和相反数的定义.数轴有原点,方向和单位长度,数轴上的点与实数一一对应;若两个数互为相反数,则它们的和为0.利用数轴可以很好的解决有关实数的问题.4.【分析】按照有理数的分类做出判断.【解答】解:A、有理数分为正有理数,故错误;B、整数和分数统称为有理数;C、0是有理数;D、负有理数就是负整数和负分数;故选:B.【点评】此题考查了有理数,掌握有理数的分类是本题的关键,注意0是整数,但它既不是正数,也不是负数.5.【分析】根据绝对值进行判断即可.【解答】解:因为a为有理数,A、当a<0时,错误;B、当a=0时,错误;C、当a=6时,不是正数;D、无论a取任何数,是正数;故选:D.【点评】此题考查正数和负数,关键是根据绝对值的非负性解答.6.【分析】首先设点A所表示的数是x,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解.【解答】解:设A点表示的数为x.列方程为:x﹣2+5=8,x=﹣2.故选:D.【点评】本题考查数轴上点的坐标变化和平移规律:左减右加.7.【分析】两数异号,两数之和小于0,说明两数都是负数或一正一负,且负数的绝对值大.综合两个条件可选出答案.【解答】解:∵a+b<0,∴a,b同为负数,且负数的绝对值大,∵a,b异号,∴a、b异号.故选:D.【点评】此题主要考查了有理数的乘法和加法,解题的关键是熟练掌握计算法则,正确判断符号.8.【分析】根据题中的两个等式,分别得到a与b异号,a为负数,b为正数,且a的绝对值大于b的绝对值,采用特值法即可得到满足题意的图形.【解答】解:∵|ab|=﹣ab(ab≠0),|a+b|=|a|﹣b,∴|a|>|b|,且a<0在原点左侧,得到满足题意的图形为选项C.故选:C.【点评】此题考查了绝对值的代数意义、几何意义,及异号两数的加法法则.其中绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0.几何意义为:|a|表示在数轴上表示a的点到原点的距离.此类题目比较简单,可根据题中已知的条件利用取特殊值的方法进行比较,以简化计算.二、填空题(每小题4分,本大题共32分)9.【分析】根据相反数的定义分别填空即可.【解答】解:﹣1的相反数是1.故答案为:1.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.10.【分析】第一个根据两个负数比大小,其绝对值大的反而小比较即可,第二个根据正数都大于一切负数比较即可.【解答】解:∵|﹣3|=3,|﹣7.1|=2.5,﹣|﹣2|=﹣2,∴﹣3<﹣2.1,﹣(﹣2)>﹣|﹣2|,故答案为:<,>.【点评】本题考查了相反数,绝对值和有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键.11.【分析】此题答案不唯一,写出一个符合的即可.【解答】解:比﹣3大的非负整数有0,6,2…,故答案为:0.【点评】本题考查了有理数的大小比较和非负整数的意义,能求出符合的数是解此题的关键,注意:非负整数是指正整数和0.12.【分析】在数轴上表示出P点,找到与点P距离3个长度单位的点所表示的数即可.此类题注意两种情况:要求的点可以在已知点﹣2的左侧或右侧.【解答】解:根据数轴可以得到在数轴上与点A距离3个长度单位的点所表示的数是:﹣5或5.故答案为:﹣5或1.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.13.【分析】根据绝对值的性质解答即可.【解答】解:当a≤0时,|a|=﹣a,故答案为:a≤0【点评】此题考查绝对值,关键是根据非正数的绝对值是它的相反数解答.14.【分析】先在数轴上标出a、b、﹣a、﹣b的位置,再比较即可.【解答】解:∵a>0,b<0,∴b<﹣a<a<﹣b,故答案为:b<﹣a<a<﹣b.【点评】本题考查了数轴,相反数和有理数的大小比较,能知道a、b、﹣a、﹣b在数轴上的位置是解此题的关键.15.【分析】根据AO=8,先得出点A表示的数,再根据AB=2,分类讨论即可得出点B表示的数.【解答】解:∵AO=8∴点A表示的数为﹣8或4∵AB=2∴当点A表示的数为﹣8,且点A表示的数比点B表示的数小时,点B表示的数为﹣4;当点A表示的数为8,且点A表示的数比点B表示的数小时,点B表示的数为10.故答案为:﹣6或10.【点评】本题考查了数轴上的点所表示的数,分类讨论是解题的关键.16.【分析】根据x﹣y=±1,x﹣3=0,或x﹣3=±1,x﹣y=0四种情况解答即可.【解答】解:因为x,y均为整数,可得:x﹣y=±1,x﹣3=3,x﹣y=0,当x﹣y=1,x﹣7=0,y=2;当x﹣y=﹣7,x﹣3=0,y=7;当x﹣y=0,x﹣3=5,y=4;当x﹣y=0,x﹣4=﹣1,y=2,故答案为:4或8或4或2.【点评】本题考查了绝对值,分类讨论解含绝对值的方程是关键.三、解答题(本大题共52分,17题,18题各8分,19-20题各7分,第21、22题8分)17.【分析】(1)根据有理数的加法法则可以解答本题;(2)先通分,后加减即可解答.【解答】解:(1)(﹣6)+(﹣13)=﹣(6+13).=﹣19;(2)(﹣)+=﹣+=﹣+=﹣.【点评】本题考查有理数的加减法运算,解答本题的关键是明确有理数加减法的计算方法.18.【分析】先在数轴上表示出各个数,再比较即可.【解答】解:﹣3<﹣2.5<﹣<3.【点评】本题考查了数轴和有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的各个数,右边的数总比左边的数大.19.【分析】根据|a|=3,|b|=3,a、b异号,可以求得a、b的值,从而可以求得所求式子的值.【解答】解:∵|a|=3,|b|=3,a,∴a=7,b=﹣3或a=﹣3,当a=6,b=﹣3时,当a=﹣3,b=8时,由上可得,a+b的值是0.【点评】本题考查有理数的加法、绝对值,解答本题的关键是明确题意,求出a、b的值.20.【分析】根据“|x﹣2|+|2y﹣5|=0”,结合绝对值的定义,分别得到关于a和关于b的一元一次方程,解之,代入x+y,计算求值即可.【解答】解:根据题意得:x﹣2=0,解得:x=8,2y﹣5=4,解得:y=,则x+y=6+=,即x+y的值为.【点评】本题考查了代数式求值,非负数的性质:绝对值,正确掌握绝对值的定义,一元一次方程的解法,有理数的混合运算是解题的关键.21.【分析】(1)向东为正,则向西为负,再根据距离,即可用正数、负数表示,(2)计算(1)中的数的和,即可得出答案,(3)分别计算出将每一位顾客送到目的地时,距离出发点的距离,比较得出答案,(4)计算出行驶的总路程,即(1)中的各个数的绝对值的和,再根据单价、数量,进而求出总价即可.【解答】解:(1)用正负数表示小张向东或向西运动的路程(单位:千米)为:+15,﹣13,﹣11,﹣8,(2)(+15)+(﹣13)+14+(﹣11)+10+(﹣8)=2千米,答:将最后一名乘客送到目的地时,小张在下午出车点东7千米的地方,(3)将每一位顾客送到目的地,离出发点的距离为,2千米,5千米,7千米,因此最远为16千米,答:离开下午出发点最远时是16千米.(4)0.06×4.5×(15+13+14+11+10+8)=19.17元,答:这天下午共需支付19.17元的油钱.【点评】考查正数、负数、绝对值的意义,以及数轴表示数,理解正负数的意义是解决问题的前提,借助数轴表示是关键.22.【分析】(1)点P位于点A和点B中间时,点P到点A和点B的距离相等;(2)根据点A、点B的距离之和为4,将点P从点A向左移动1个单位或向右移动1个单位,则点P到点A和点B的距离之和为6,据此可解;(3)点P位于点A和点B之间时,点P到点A,点B的距离之和最小,据此可解;(4)点P位于点O时,点P到点A,点B,点O的距离之和最小,据此可解.【解答】解:(1)∵A、B对应的数分别为﹣3,1,如果点P到点A,点B的距离相等,则x=﹣5故答案为:﹣1;(2)∵点A、点B的距离之和为4∴若要使得点P到点A、点B的距离之和是3则点P位于点A左侧一个单位或点P位于点B右侧1个单位,即:x=﹣4或x=8时,点P到点A;(3)∵点P位于点A和点B之间时,点P到点A,此时x的取值范围是﹣3≤x≤1故答案为:﹣5≤x≤1.(4)若点P位于点O时,点P到点A,点O的距离之和最小最小值为线段AB的长,即4.故答案为:7.【点评】本题考查了数轴上的点所表示的数及点与点之间的距离的关系,明确题意,是解题的关键.四.【附加】23.【分析】本题要求同学们能熟练应用计算器,会用科学计算器进行计算.【解答】解:根据题意,分析运算,b中的最小值,故答案为:(1)根据题意有结果为﹣6与﹣6中的较小的数,即﹣8.(2)根据题意由运算的结果为﹣,﹣8,﹣2.(3)找这一列数中,绝对值相差最小,;按运算法则计算可得结果是.(由于本份试卷有些题目的解法不唯一,因此请老师们依据评分酌情给分.)【点评】本题要求学生根据题意中的计算法则,分析出计算的结果;考查学生的分析,处理问题的能力.。
北师大版2019-2020学年辽宁省沈阳市七年级(上)第一次月考数学试卷解析版

2019-2020学年辽宁省沈阳市七年级(上)第一次月考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.(2分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.2.(2分)2019的相反数是()A.B.﹣C.|2019|D.﹣20193.(2分)下列图形中属于棱柱的有()A.5个B.4个C.3个D.2个4.(2分)下列各数中,比﹣2小的数是()A.0B.﹣3C.﹣D.﹣15.(2分)下列哪个图形经过折叠可以得到正方体()A.B.C.D.6.(2分)下列计算正确的是()A.7+(﹣8)=﹣15B.4﹣(﹣4)=0C.0﹣3=3D.﹣1.3+(﹣1.7)=﹣37.(2分)用一个平面去截一个几何体,若截面形状是长方形(包括正方形),那么该几何体不可能是()A.圆柱B.五棱柱C.圆锥D.正方体8.(2分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看这个几何体得到的形状图是()A.B.C.D.9.(2分)对4袋标注质量为450g的食品的实际质量进行检测,检测结果(用正数记超过标准质量的克数,用负数记不足标准质量的克数)如表;袋数.第1袋第2袋第3袋第4袋检测结果/g﹣2+3﹣5+4最接近标准质量的是()A.第1袋B.第2袋C.第3袋D.第4袋10.(2分)有理数a、b在数轴上的位置如图所示,则a+b的值()A.小于a B.大于b C.大于0D.小于0二、填空题(每小题3分,共18分]11.(3分)计算:﹣3+2=.12.(3分)如果小明的爸爸收入10万元记作+10万元,那么小明的爸爸支出4万元记作万元.13.(3分)如图是一个几何体的表面展开图,这个几何体共有条棱.14.(3分)若A.B两地的海拔高度分别是﹣129.5米和﹣71.3米,则A.B两地相差米.15.(3分)一个小立方体的六个面分别标有数字1、2、3、4、5、6.从三个不同的方向看到的情形如图所示,则数字6的对面是.16.(3分)若|x|=3,|y|=5,且x+y>0,则x﹣y=.三、解答题(第17题6分,第18、19题各8分,共22分)17.(6分)计算:18.(8分)计算:19.(8分)所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:正数集合{…};分数集合{…};负整数集合{…}四、(每小题8分,共16分)20.(8分)某检修小组开车从A地出发,在一条东西方向的马路上检修线路,一天中行驶记录如下(向东行驶为正,向西行驶为负.单位:km).+9,﹣8,+6,﹣13,+7,﹣12,+3,﹣2.(1)收工时检修小组在A地什么方向?距A地多远?(2)若每千米耗油0.6升,检修小组工作一天需耗油多少升?21.(8分)画出数轴,用数轴上的点表示下列各数.并用“<”将它们连接起来.五、(本题10分)22.(10分)(1)如图1是由大小相同的小立方块搭成的几何体,请在图2的方格中画出从上面和左面看到的该几何体的形状图.(只需用2B铅笔将虚线化为实线)(2)若要用大小相同的小立方块搭一个几何体,使得它从上面和左面看到的形状图与你在图2方格中所画的形状图相同,则搭这样的一个几何体最大需要个小立方块.六、(本题10分)23.(10分)如图是一张长方形纸片,AB长为3cm,BC长为4cm.(1)若将此长方形纸片绕它的一边所在直线旋转一周,则形成的几何体是;(2)若将这个长方形纸片绕AB边所在直线旋转一周,则形成的几何体的体积是cm3(结果保留π);(3)若将这个长方形纸片绕它的一边所在直线旋转一周,求形成的几何体的表面积(结果保留π).七、(本题12分)24.(12分)下表是今年某水库一周内的水位变化情况(正号表示水位比前一天上升,负号表示水位比前一天下降),该水库的警戒水位是34m.(上周末的水位达到警戒水位).星期一二三四五六日水位变化/m+0.22+0.81﹣0.36+0.03+0.29﹣0.35﹣0.01(1)本周星期河流的水位最高,水位是m,本周星期河流的水位最低,水位是m;(2)本周三的水位位于警戒水位之(填“上”或“下”),与警戒水位的距离是m;(3)与上周末相比,本周末河流水位是上升了还是下降了?变化了多少米?八、(本题12分)25.(12分)如图,数轴的单位长度为1.点M.A.B.N是数轴上的四个点,其中点A.B表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置.并用点O表示:(2)点M表示的数是,点N表示的数是,M,N两点间的距离是.(3)将点M先向有移动4个单位长度,再向左移动2个单位长度到达点C.点C表示的数是,在数轴上距离c点3个单位长度的点表示的数是.2019-2020学年辽宁省沈阳市七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.2.【解答】解:2019的相反数是﹣2019,故选:D.3.【解答】解:根据棱柱的定义可得:符合棱柱定义的有第一、二、三、七、八个几何体都是棱柱,共5个.故选:A.4.【解答】解:|﹣3|>|﹣2|,∴﹣3<﹣2,故选:B.5.【解答】解:根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有C选项能围成正方体,故选:C.6.【解答】解:7+(﹣8)=﹣1因此A选项不符合题意,4﹣(﹣4)=8因此B选项不符合题意,0﹣3=﹣3因此C选项不符合题意,﹣1.3+(﹣1.7)=﹣1.3﹣1.7=﹣3因此D选项符合题意,故选:D.7.【解答】解;A、用垂直于地面的一个平面截圆柱截面为矩形,与要求不符;B、五棱柱的截面可以是长方形,与要求不符;C、圆锥由一个平面和一个曲面,截面最多有三条边,截面不可能是长方形,与要求相符;D、正方体的截面可以是长方形,与要求不符.故选:C.8.【解答】解:从正面看所得到的图形为:B故选:B.9.【解答】解:∵|﹣2|<|+3|<|+4|<|﹣5|,∴第1袋最接近标准质量.故选:A.10.【解答】解:观察数轴可知:﹣2<a<﹣1,0<b<1,∴﹣2<a+b<0.故选:D.二、填空题(每小题3分,共18分]11.【解答】解:﹣3+2=﹣1.故答案为:﹣1.12.【解答】解:如果小明的爸爸收入10万元记作+10万元,那么小明的爸爸支出4万元记作﹣4万元.故答案为:﹣4.13.【解答】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱,如图:所以这个几何体共有9条棱.故答案为:9.14.【解答】解:根据题意得:﹣71.3﹣(﹣129.5)=58.2(米),答:A.B两地相差58.2米;故答案为:58.2.15.【解答】解:由图可知,∵与1相邻的面的数字有2、3、4、6,∴1的对面数字是5,∵与4相邻的面的数字有1、3、5、6,∴4的对面数字是2,∴数字6的对面是3,故答案为:3.16.【解答】解:∵|x|=3,|y|=5,且x+y>0,∴x=3,y=5;x=﹣3,y=5,则x﹣y=﹣2或﹣8,故答案为:﹣2或﹣8.三、解答题(第17题6分,第18、19题各8分,共22分)17.【解答】解:原式=﹣12+﹣8﹣=﹣20+=﹣.18.【解答】解:=2.4+0.6﹣3.1+0.8=0.7.19.【解答】解:故答案为:正数有:,7,15.分数有:,,﹣1.25,负整数有:﹣3.四、(每小题8分,共16分)20.【解答】解:(1)9﹣8+6﹣13+7﹣12+3﹣2=﹣10 km,答:收工时检修小组在A地西面,距A地10km.(2)0.6×(9+8+6+13+7+12+3+2)=0.6×60=36(升)答:工作一天耗油36升.21.【解答】解:﹣(2)<﹣1<﹣1<0<|﹣3|.五、(本题10分)22.【解答】解:(1)如图所示:(2)搭这样的一个几何体最大需要5+4=9个小立方块.故答案为:9.六、(本题10分)23.【解答】解:(1)若将此长方形纸片绕它的一边所在直线旋转一周,则形成的几何体是圆柱;(2)π×42×3=48π(cm3).故形成的几何体的体积是48πcm3;(3)情况①:π×3×2×4+π×32×2=24π+18π=42π(cm2);情况②:π×4×2×3+π×42×2=24π+32π=56π(cm2).故形成的几何体的表面积是42πcm2或56πcm2.故答案为:圆柱;48π.七、(本题12分)24.【解答】解:通过计算本周每一天的水位为:周一、34.22米,周二、35.03米,周三、34.67米,周四、34.7米,五周、34.99米,周六、34.64米,周日、34.63米,(1)故答案为:二,35.03,一,34.22(2)34.67米>34米,34.67﹣34=0.67米,故答案为:上,0.67,(3)∵34.63米>34米,34.63﹣34=0.63米,答:本周末河流水位是上升了,变化了0.63米.八、(本题12分)25.【解答】解:(1)距离A点和B点的距离相等的点是点O.如图所示,点O即为所求.(2)点M表示的数是﹣4,点N表示的数是5,所以M,N两点间的距离是5﹣(﹣4)=9.故答案为9.(3)如图,将点M先向右移动4个单位长度是0,再向左移动2个单位长度到达点﹣2,得点C表示的数是﹣2.距离点C3个单位长度的点表示的数是﹣5或1.故答案为﹣2,﹣5或1.。
江苏省连云港市灌云县九年制实验学校2019-2020学年七年级上学期第一次月考数学试题

A.﹣|﹣3|=3B.+(﹣3)=3C.﹣(﹣3)=3D.﹣( ﹣3)=﹣3
4.下列各式中,正确的是( )
A.﹣4﹣2=﹣2B.10+(﹣8)=﹣2C.5﹣(﹣5)=0D.﹣5﹣3﹣(﹣3)=﹣5
5.下列说法中,正确的是( )
A.任何有理数的绝对值都是正数
B.如果两个数不相等,那么这两个数的绝对值也不相等
12.比较大小:﹣0.3__________ .
13.从﹣3,﹣2,0,5中取出 两个数,所得的最大乘积是__________.
14.测某乒乓球厂生产的五个乒乓球的质量误差(g)如下表.检验时,通常把比标准质量大的克数记为正,比标准质量小的克数记为负.请你选出最接近标准质量的球,是__________号.
(1)正数集合:{…};
(2)负数集合:{…};
(3)有理数集合:{…};
(4)无理数集合:{…}.
【解答】解:(1)正数集合:{π,0.12,|﹣6|};
(2)负数集合:{﹣5,﹣2.626 626 662…,﹣ };
(3)有理数集合:{﹣5,0,﹣ ,0.12,|﹣6|};
(4)无理数集合:{﹣2.626 626 662…,π};
故答案为:π,0.12,|﹣6|;﹣5,﹣2.626 626 662…,﹣ ;﹣5,0,﹣ ,0.12,|﹣6|;﹣2.626 626 662…,π.
20.在数轴上把下列各数表示出来,并用“<”连接各数.2,﹣|﹣ 1|,1 ,0,﹣(﹣3.5)
如图所示:
用“ <”连结为:﹣|﹣1|<0<1 <2<﹣(﹣3.5).
(2)负数集合:{…};
(3)有理数集合:{…};
(4)无理数集合:{…}.
2019-2020学年江苏省常州市天宁区丽华中学七年级(上)第一次月考数学试卷 解析版

2019-2020学年江苏省常州市天宁区丽华中学七年级(上)月考数学试卷一、选择题(每小题3分,共24分)1.(3分)小明的身份证号码是320483************,则小明的生日是()A.4月2日B.2月12日C.12月6日D.4月21日2.(3分)某商店出售三种品牌的面粉,袋上分别标有质量为(2.5±0.1)kg,(2.5±0.2)kg,(2.5±0.3)kg的字样,任意取出两袋,它们的质量最多相差()A.0.8 kg B.0.4 kg C.0.5 kg D.0.6 kg3.(3分)下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数、负分数C.正有理数和负有理数统称有理数D.无限小数叫作无理数4.(3分)数轴上一点从﹣1向正方向移动3个单位长度,再向负方向移动5个单位长度,此时这点表示的数为()A.8B.﹣2C.2D.﹣35.(3分)下列各组数中,互为相反数的是()A.﹣|﹣2|和﹣(+2)B.|﹣(﹣2)|和﹣[﹣(﹣2)]C.|﹣2|和﹣(﹣2)D.|﹣2|和26.(3分)已知a=|5|,b=|8|,且满足a+b<0,则a﹣b的值为()A.13或3B.11或3C.3D.﹣37.(3分)如果一个数的倒数等于它本身,那么这个数为()A.1和﹣1B.1和0C.﹣1和0D.±1和08.(3分)有若干个数,第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n 个数记为a n,若a1=﹣,从第二个数起,每个数都等于1与它前面那个数的差的倒数,则a2019值为()A.﹣B.C.3D.二、填空题(每小题2分,共20分)9.(2分)太平洋最深处的马里纳海沟低于海平面11034m,它的海拔高度可表示为.10.(2分)×(﹣)=﹣1.11.(2分)若|x|=|﹣5|,则x=.12.(2分)大于﹣7小于6.5的正整数有个.13.(2分)比较大小:﹣﹣.14.(2分)若数轴上的两点A、B分别表示﹣2和﹣9,则AB=.15.(2分)某公交车原有20人,经过3个站台时上下车情况如下(上车为正,下车为负):(+3,﹣5)、(+2,﹣5)、(6,﹣3),则车上还有人.16.(2分)在数轴上,若点A和点B表示的数互为相反数,点A在点B的左侧,且它们之间的距离是4个单位长度,那么点A和点B分别表示的数为.17.(2分)三个数﹣12,﹣2,7的和减去它们的绝对值的和,结果为.18.(2分)规定符号⊕的意义为a⊕b=ab﹣a﹣b﹣1,那么﹣2⊕5=.二、解答题(共56分)19.(16分)计算:(1)23﹣17﹣(﹣7)+(﹣16);(2)﹣5.29+3.1﹣(﹣2)+(﹣0.1)﹣9.71;(3)(﹣0.25)×(﹣)×4×(﹣18);(4)(1﹣﹣)×(﹣48).20.(8分)把下列各数填在相应的集合中:﹣5,,0.62,﹣|﹣4|,﹣1.1,﹣(﹣7.3),0.,0.1010010001 0(1)非正整数:{…}(2)分数:{…}(3)正有理数:{…}(4)无理数:{…}21.(6分)将﹣|﹣3|,2,﹣(﹣4),0这些数在数轴上表示出来,并用“<”将它们连接起来.22.(4分)学习了有理数之后,老师给同学们出了一道题:计算:17×(﹣9)下面是小方给出的答案,请判断是否正确,若错误给出正确解答过程.解:原式=﹣17×9=﹣17=﹣25.23.(8分)如图所示,小明有5张卡片,每张卡片上写着不同的数字,请你按要求抽出卡片,完成各问题:(1)从中取出2张卡片,使这2张卡片上数字相减最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(3)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).24.(6分)某水泥仓库6天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+20、﹣25、﹣13、+28、﹣29、﹣16.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费?25.(8分)阅读下列材料:我们知道|x|的几何意义是数轴上数x的对应点与原点之间的距离,即|x|=|x﹣0|,也可以说|x|表示数轴上数x与数0对应点之间的距离.这个结论可以推广为|x1﹣x2|表示数轴上数x1与数x2对应点之间的距离.例1:已知|x|=2,求x的值.解:在数轴上与原点距离为2的点表示的数为﹣2和2,∴x的值为﹣2或2.例2:已知|x﹣1|=2,求x的值.解:在数轴上与1对应的点的距离为2的点表示的数为3和﹣1,∴x的值为3或﹣1.仿照材料中的解法,求下列各式中x的值.(1)|x|=3.(2)|x﹣(﹣2)|=4.2019-2020学年江苏省常州市天宁区丽华中学七年级(上)月考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)小明的身份证号码是320483************,则小明的生日是()A.4月2日B.2月12日C.12月6日D.4月21日【分析】身份证的第7~14位表示的出生日期,其中7﹣10位是出生的年份,11、12位是出生的月份,13、14是出生的日;据此解答.【解答】解:小明的身份证号码是320483************,那么小明的生日是2月12日.故选:B.2.(3分)某商店出售三种品牌的面粉,袋上分别标有质量为(2.5±0.1)kg,(2.5±0.2)kg,(2.5±0.3)kg的字样,任意取出两袋,它们的质量最多相差()A.0.8 kg B.0.4 kg C.0.5 kg D.0.6 kg【分析】先根据已知条件算出质量最重的和最轻的面粉,再把所得的结果相减即可.【解答】解:∵质量最重的面粉为2.5+0.3=2.8kg,质量最轻的面粉为:2.5﹣0.3=2.2kg,∴它们的质量最多相差:2.8﹣2.2=0.6kg.故选:D.3.(3分)下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数、负分数C.正有理数和负有理数统称有理数D.无限小数叫作无理数【分析】根据实数分类以及有关概念解答即可.【解答】解:A、整数就是正整数,0和负整数,说法错误;B、分数包括正分数、负分数,说法正确;C、正有理数、0和负有理数统称有理数,说法错误;D、无限不循环小数是无理数,说法错误;4.(3分)数轴上一点从﹣1向正方向移动3个单位长度,再向负方向移动5个单位长度,此时这点表示的数为()A.8B.﹣2C.2D.﹣3【分析】根据有理数的意义,列式计算即可.【解答】解:﹣1+3﹣5=﹣3,故选:D.5.(3分)下列各组数中,互为相反数的是()A.﹣|﹣2|和﹣(+2)B.|﹣(﹣2)|和﹣[﹣(﹣2)]C.|﹣2|和﹣(﹣2)D.|﹣2|和2【分析】利用相反数的定义和绝对值的意义对各选项进行判断.【解答】解:A、﹣|﹣2|=﹣2,﹣(+2)=﹣2,则﹣|﹣2|=﹣(+2);B、|﹣(﹣2)|=2,﹣[﹣(﹣2)]=﹣2,则|﹣(﹣2)|与﹣[﹣(﹣2)]互为相反数;C、|﹣2|=2,﹣(﹣2)=2,则|﹣2|=﹣(﹣2);D、|﹣2|=2.故选:B.6.(3分)已知a=|5|,b=|8|,且满足a+b<0,则a﹣b的值为()A.13或3B.11或3C.3D.﹣3【分析】根据绝对值的意义及a+b<0,可得a,b的值,再根据有理数的减法法则,可得答案.【解答】解:由|a|=5,|b|=8,且满足a+b<0,得a=5,或a=﹣5,b=﹣8.当a=﹣5,b=﹣8时,a﹣b=﹣5﹣(﹣8)=﹣5+8=3,当a=5,b=﹣8时,a﹣b=5﹣(﹣8)=5+8=13,则a﹣b的值为3或13,故选:A.7.(3分)如果一个数的倒数等于它本身,那么这个数为()A.1和﹣1B.1和0C.﹣1和0D.±1和0【分析】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:如果一个数的倒数等于它本身,那么这个数一定是±1.8.(3分)有若干个数,第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n 个数记为a n,若a1=﹣,从第二个数起,每个数都等于1与它前面那个数的差的倒数,则a2019值为()A.﹣B.C.3D.【分析】先分别求出a1=﹣,a2=,a3=3,a4=﹣,a5=,根据以上算式得出规律,即可得出答案.【解答】解:a1=﹣,a2==,a3==3,a4==﹣,a5=,…,∵2019÷3=673,∴a2019=a3=3,故选:C.二、填空题(每小题2分,共20分)9.(2分)太平洋最深处的马里纳海沟低于海平面11034m,它的海拔高度可表示为﹣11034m.【分析】根据正数与负数的意义可直接求解.【解答】解:太平洋最深处的马里纳海沟低于海平面11034m,它的海拔高度可表示为﹣11034m,故答案为﹣11034m.10.(2分)×(﹣)=﹣1.【分析】利用倒数积为1可得答案.【解答】解:×(﹣)=﹣1,故答案为:.11.(2分)若|x|=|﹣5|,则x=±5.【分析】依据绝对值的意义,得出x=±5.注意结果有两个.【解答】解:因为|x|=|﹣5|=5,所以x=±5.故答案为:±5.12.(2分)大于﹣7小于6.5的正整数有6个.【分析】根据正整数的定义即可求解.【解答】解:大于﹣7小于6.5的正整数有1,2,3,4,5,6,一共6个.故答案为:6.13.(2分)比较大小:﹣<﹣.【分析】应先算出两个负数的绝对值,比较两个绝对值,进而比较两个负数的大小即可.【解答】解:∵|﹣|=,|﹣|=,>,∴﹣<﹣.14.(2分)若数轴上的两点A、B分别表示﹣2和﹣9,则AB=7.【分析】根据数轴表示数的意义和数轴上两点之间距离的计算方法,列式计算即可.【解答】解:|﹣2﹣(﹣9)|=7,故答案为:7.15.(2分)某公交车原有20人,经过3个站台时上下车情况如下(上车为正,下车为负):(+3,﹣5)、(+2,﹣5)、(6,﹣3),则车上还有18人.【分析】根据题意可求出三个站点共上车人数和下车人数,容易得车上剩余的人数.【解答】解:经过三个站点上车人数共有3+2+6=11;下车人数共有5+5+3=13.下车人数比上车人数多13﹣11=2.所以剩余人数为20﹣2=18.故答案是:18.16.(2分)在数轴上,若点A和点B表示的数互为相反数,点A在点B的左侧,且它们之间的距离是4个单位长度,那么点A和点B分别表示的数为﹣2和2.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:4÷2=2,则点A和点B分别表示的数为﹣2和2.故答案为:﹣2和2.17.(2分)三个数﹣12,﹣2,7的和减去它们的绝对值的和,结果为﹣28.【分析】根据绝对值的性质进行选择即可.【解答】解:﹣12﹣2+7=﹣7,|﹣12|+|﹣2|+|7|=21,﹣7﹣21=﹣28,故答案为:﹣28.18.(2分)规定符号⊕的意义为a⊕b=ab﹣a﹣b﹣1,那么﹣2⊕5=6.【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=﹣2×5+2﹣5﹣1=10+2﹣5﹣1=6.故答案为:6.二、解答题(共56分)19.(16分)计算:(1)23﹣17﹣(﹣7)+(﹣16);(2)﹣5.29+3.1﹣(﹣2)+(﹣0.1)﹣9.71;(3)(﹣0.25)×(﹣)×4×(﹣18);(4)(1﹣﹣)×(﹣48).【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用减法法则变形,结合后相加即可求出值;(3)原式从左到右依次计算即可求出值;(4)原式利用乘法分配律计算即可求出值.【解答】解:(1)原式=23﹣17+7﹣16=6+7﹣16=13﹣16=﹣3;(2)原式=﹣5.29﹣9.71+3.1﹣0.1+2=﹣15+3+2=﹣15+5=﹣10;(3)原式=﹣××4×18=﹣14;(4)原式=×(﹣48)﹣×(﹣48)﹣×(﹣48)=﹣50+36+6=﹣50+42=﹣8.20.(8分)把下列各数填在相应的集合中:﹣5,,0.62,﹣|﹣4|,﹣1.1,﹣(﹣7.3),0.,0.1010010001 0(1)非正整数:{﹣5,﹣|﹣4|,0,…}(2)分数:{,062,﹣1.1,﹣(﹣7.3),,…}(3)正有理数:{,0.62,﹣(﹣7.3),,…}(4)无理数:{0.1010010001…,,…}【分析】根据实数分类解答即可.【解答】解:(1)非正整数有﹣5,﹣|﹣4|,0;(2)分数有,062,﹣1.1,﹣(﹣7.3),;(3)正有理数有,0.62,﹣(﹣7.3),;(4)无理数有0.1010010001…,;故答案为:(1)﹣5,﹣|﹣4|,0;(2),062,﹣1.1,﹣(﹣7.3),;(3),0.62,﹣(﹣7.3),;(4)0.1010010001…,.21.(6分)将﹣|﹣3|,2,﹣(﹣4),0这些数在数轴上表示出来,并用“<”将它们连接起来.【分析】直接在数轴上把相关数据表示出来,根据数轴上右边的数总比左边的大,用“<”将它们连接起来即可.【解答】解:﹣|﹣3|<0<2<﹣(﹣4).22.(4分)学习了有理数之后,老师给同学们出了一道题:计算:17×(﹣9)下面是小方给出的答案,请判断是否正确,若错误给出正确解答过程.解:原式=﹣17×9=﹣17=﹣25.【分析】利用乘法分配律进行计算即可.【解答】解:小方给出的答案错误;17×(﹣9)=﹣[(17+)×9]=﹣(17×9+×9)=﹣161.23.(8分)如图所示,小明有5张卡片,每张卡片上写着不同的数字,请你按要求抽出卡片,完成各问题:(1)从中取出2张卡片,使这2张卡片上数字相减最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(3)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).【分析】(1)观察这五个数,要找相减最大的就要找符号不同且绝对值最大的数,所以选4和﹣5;(2)观察这五个数,要找乘积最大的就要找符号相同且绝对值最大的数,所以选﹣3和﹣5;(3)2张卡片上数字相除的商最小就要找符号不同,且分母越大越好,分子越小越好,所以就要选3和﹣5,且﹣5为分母;(4)从中取出4张卡片,用学过的运算方法,使结果为24,这就不唯一,用加减乘除只要答数是24即可,比如﹣3、﹣5、0、3四个数,{0﹣[(﹣3)+(﹣5)]}×3=24.【解答】解:(1)抽取4,﹣5,最大的差是4﹣(﹣5)=9.(2)抽取﹣3,﹣5,最大的乘积是(﹣3)×(﹣5)=15.(3)抽取﹣5,+3,最小的商是﹣.(4)(答案不唯一)如抽取﹣3,﹣5,0,+3,运算式子为{0﹣[(﹣3)+(﹣5)]}×(+3)=24.24.(6分)某水泥仓库6天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+20、﹣25、﹣13、+28、﹣29、﹣16.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费?【分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【解答】解:(1)+20+(﹣25)+(﹣13)+(+28)+(﹣29)+(﹣16)=20﹣25﹣13+28﹣29﹣16=﹣35,答:仓库里的水泥减少了,减少了35吨;(2)200﹣(﹣35)=235(吨)答:6天前,仓库里存有水泥235吨;(3)(|+20|+|﹣25|+|﹣13|+|+28|+|﹣29|+|﹣16|)×5=131×5=655(元)答:这6天要付655元的装卸费.25.(8分)阅读下列材料:我们知道|x|的几何意义是数轴上数x的对应点与原点之间的距离,即|x|=|x﹣0|,也可以说|x|表示数轴上数x与数0对应点之间的距离.这个结论可以推广为|x1﹣x2|表示数轴上数x1与数x2对应点之间的距离.例1:已知|x|=2,求x的值.解:在数轴上与原点距离为2的点表示的数为﹣2和2,∴x的值为﹣2或2.例2:已知|x﹣1|=2,求x的值.解:在数轴上与1对应的点的距离为2的点表示的数为3和﹣1,∴x的值为3或﹣1.仿照材料中的解法,求下列各式中x的值.(1)|x|=3.(2)|x﹣(﹣2)|=4.【分析】(1)|x|可表示数轴上表示x的点到原点的距离,据此求解可得;(2)|x﹣(﹣2)|可表示数轴上与﹣2对应的点的距离,据此求解可得.【解答】解:(1)在数轴上与原点距离为3的点表示的数为﹣3和3,∴x的值为﹣3或3.(2)在数轴上与﹣2对应的点的距离为4的点表示的数为2和﹣6,∴x的值为2或﹣6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年七年级上11月数学月考试题亲爱的同学,这份试卷将记录你的自信、沉着、智慧和收获. 我们一直投给你信任的目光。
请认真审题,看清要求,仔细答题. 预祝你取得好成绩!一、精心选一选,相信你一定能选对(每题只有一个正确答案,把正确答案的代号填入答题卷相应的位置,每题4分,共40分) 1、-2009的相反数是( )C.2009D.-2009 2、未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为( )A .0.85×104亿元B .85×102亿元C .8.5×104亿元D .8.5×103亿元 3、方程3x-1=x+3的解是( )A. x=-1B. x=1C.x=2D.x=3 4、如果a 的绝对值是1,那么a2009等于( ) A .1 B .2009 C .-2009或2009 D .1或-1 5、下面计算正确的是( )A 、2233x x -=B 、235325a a a +=C 、33x x +=D 、10.2504ab ab -+=6、在0,()()221,3,3,3------,234- ,2a 中,正数的个数为( )A .1个 B.2个 C.3个 D.4个 7、根据下图给出的信息, 可得到的正确的方程是( )A .2286()()(5)22x x ππ⨯=⨯⨯+B .2286()()(5)22x x ππ⨯=⨯⨯-C.2286(5)x x ππ⨯=⨯⨯+ D .22865x ππ⨯=⨯⨯8、若关于x 的方程2152x ax x -+=-的解为1x =-,则a 的值为( )A .– 6B .– 8C .– 4D .109、重百商场有两个进价不同的计算器都买120元,其中一个赢利20%,另一个亏本20%,在这次买卖中,重百商场( )(A )不赔不赚 (B )赚了10元 (C )赔了10元 (D )赚了50元 10、古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+31二、耐心填一填,相信你一定能行(把正确答案填入答题卷相应位置,每题4分,共24分)11、-5的倒数是_________. 12、计算: 1-2 = ___________.13、若()21m -与2n +互为相反数,则-m n -=___________.14、长方形的长是(2m+3n),宽比长少(m-n),则这个长方形的周长是_____________ 15、一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数小9,则原来的两位数为___________。
16、我校从十一月份起取消了上早自习,王刚坚持在早上7:45前到学校。
有一天王刚早上7:00起床,迅速洗漱,7:20准时从家出发,以每小时4千米的速度匀速走向学校,到校门口一看表时针和分针刚好重合。
问他家到学校有________千米. 三、细心解一解,展示你能力(共86分)4=1+3 9=3+6 16=6+10…20091.A 20091.-B 小乌鸦,你飞到装有相同水量的小量筒,就可以喝到水了!x ㎝5㎝6㎝8㎝老乌鸦,我喝不到大量筒中的水!x ㎝17. 计算题(每小题5分,共20分): (1) (+12)+(-7)-(+15) (2)(3) (4)b a b a +--)2(318.解方程:(每小题5分,共10分) (1) ()122344x x -=+ (2) 2121163x x +--=19、(6分)先化简,再求值: ()()()2212155422x x x x -++---,其中112x =-.20、(6分)某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪修建如图所示的十字路,已知十字路宽x 米,回答下列问题: (1)修建十字路的面积是多少平方米? (2)草坪(阴影部分)的面积是多少? (3)如果十字路宽2米,那么草坪(阴影部分) 的面积是多少?21、(6分)汶川大地震发生后,各地人民纷纷捐款捐物支援灾区.某校向灾区人民捐款10400元,其中七年级捐款数比八年级捐款数2倍少500元,九年级捐款数是八年级捐款数的多900元。
问:三个年级各捐款多少元?22、(6分)期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章.已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟.为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗 ?23、(8分)聪聪到希望书店帮同学们买书,售货员主动告诉他,如果用20元钱办“希望书店会员卡”,将享受八折优惠。
(1)请问在这次买书中,聪聪在什么情况下,办会员卡与不办会员卡一样? (2)当聪聪买标价为200元的书时,怎么做合算,能省多少钱?24、(8分)某厂加工一种农副产品,每千克成本为20元,销售单价为30元.该厂为鼓励客户购买这种农副产品,决定当一次购买千克数超过50千克时,每多购买一千克,全部农副产品的销售单价均降低0.02元,但不能低于25元.(利润 = 售价-成本)(1)当一次购买多少千克时,销售单价恰为25元? (2)当客户一次购买400千克时,该厂获得的利润是多少? (3)当客户一次购买200千克时,该厂获得的利润是多少?25、(8分)甲、乙两地的路程为180千米,一列快车从乙站开出,每小时行72千米;一一列慢车从甲站开出. 已知快车速度是慢车速度的1.5倍。
(1)若两列火车同时开出,相向而行,经过多少小时两车相遇? (2)两人同时相向而行,经过多少小时两人相距60千米?26、(8分)为了拉动内需,重庆市启动“家电下乡”活动。
某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台。
(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台? (2)若Ⅰ型冰箱每台价格是2200元,Ⅱ型冰箱每台价格是2000元,根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴了多少元?(终于做完了啊,好!老师向你表示祝贺!但可不要骄傲哦,请仔细认真检查,特别是计算,千万不要因为自己的粗心大意造成失误而后悔哟!因为没有最好,只有更好嘛,是不是?)32692)23(322-÷+⨯---)48()1214361(-⨯-+-30 20 x渝北区实验中学2009—2010学年度七年级(上)第二次数学答题卷一、精心选一选,相信你一定能选对(每小题4分,共40分)题号 123456789 10 选项二、耐心填一填,相信你一定能行(每小题4分,共24分) 11._________________12._________________ 13._________________14._________________15._________________ 16._________________三、细心解一解,展示你能力(共86分) 17. 计算题(每小题5分,共20分):(1) (+12)+(-7)-(+15) (2)(3) (4)b a b a +--)2(318.解方程:(每小题5分,共10分)(1) ()122344x x -=+ (2) 2121163x x +--=19、(6分)先化简,再求值: ()()()2212155422x x x x -++---,其中112x =-.20、(6分)某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪修建如图所示的十字路,已知十字路宽x 米,回答下列问题: (1)修建十字路的面积是多少平方米? (2)草坪(阴影部分)的面积是多少? (3)如果十字路宽2米,那么草坪(阴影部分) 的面积是多少?21、(6分)汶川大地震发生后,各地人民纷纷捐款捐物支援灾区.某校向灾区人民捐款10400元,其中七年级捐款数比八年级捐款数2倍少500元,九年级捐款数是八年级捐款数的多900元。
问:三个年级各捐款多少元?学校________________ 班级________________ 考号_______________ 姓名________________/////////////////////////不能在密封线内答题///////////////////////// ――――――――――――――――密――――――――――――封―――――――――――线―――――――――――――――――)48()1214361(-⨯-+-32692)23(322-÷-⨯---30 20 x22、(6分)期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章.已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟.为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗 ?23、(8分)聪聪到希望书店帮同学们买书,售货员主动告诉他,如果用20元钱办“希望书店会员卡”,将享受八折优惠。
(1)请问在这次买书中,聪聪在什么情况下,办会员卡与不办会员卡一样?(2)当聪聪买标价为200元的书时,怎么做合算,能省多少钱?24、(8分)某厂加工一种农副产品,每千克成本为20元,销售单价为30元.该厂为鼓励客户购买这种农副产品,决定当一次购买千克数超过50千克时,每多购买一千克,全部农副产品的销售单价均降低0.02元,但不能低于25元.(利润 = 售价-成本)(1)当一次购买多少千克时,销售单价恰为25元?(2)当客户一次购买400千克时,该厂获得的利润是多少?(3)当客户一次购买200千克时,该厂获得的利润是多少?25、(8分)甲、乙两地的路程为180千米,一列快车从乙站开出,每小时行72千米;一一列慢车从甲站开出.已知快车速度是慢车速度的1.5倍。
(1)若两列火车同时开出,相向而行,经过多少小时两车相遇?(2)两人同时相向而行,经过多少小时两人相距60千米?26、(8分)为了拉动内需,重庆市启动“家电下乡”活动。
某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台。