数学选修1-2试题及答案

合集下载

高二数学选修第(一、二)章测试题

高二数学选修第(一、二)章测试题

高二数学选修第(1-2)单元测试题试卷满分150考试时间120分钟第Ⅰ卷(共100分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合1.对两个变量y 和x 进行回归分析,得到一组样本数据:),2211n n y ,则下列说法中不正确的是( )A .由样本数据得到的回归方程y ^=b ^x +a ^必过样本点的中心),(y x B .残差平方和越小的模型,拟合的效果越好C .用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好D .若变量y 和x 之间的相关系数r =-0.9362,则变量y 和x 之间具有线性相关关系 2.下面使用类比推理正确的是 A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b )” 3.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数” 结论显然是错误的,是因为 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 4.设)()(,sin )('010x f x f x x f ==,'21()(),,f x f x = '1()()n n f x f x +=,n ∈N ,则2007()f x = A.sin xB.-sin xC.cos xD.-cos x5右面是一个2×2列联表:则表中a 、b 处的值分别为( ) A .52、60 B .52、50 C .94、96 D .54、52 6.某产品的广告费用x 与销售额y 的统计数据如下表: 根据上表可得回归方程y ^=b ^x +a ^中的b ^约等于9,据此模型预报广告费用为6万元时,销售额为( ) A .63.5万元 B .64.5万元C .65.5万元D .66.0万元 7.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。

人教版高二数学(文科)选修1-2单元测试题(六)及答案

人教版高二数学(文科)选修1-2单元测试题(六)及答案

2010级高二数学(文科)选修1-2单元测试题(六)班级______________姓名______________一、选择题(42080''⨯=)1.[ ]已知命题P :“2,230x R x x ∀∈++≥”,则命题P 的否定为 A .2,230x R x x ∀∈++< B .2,230x R x x ∃∈++≥ C .2,230x R x x ∃∈++< D .2,230x R x x ∃∈++≤ 2.[ ]对任意实数c b a ,,,下列命题中,真命题是A .“bc ac >”是“b a >”的必要条件B .“bc ac =”是“b a =”的必要条件C .“bc ac >”是“b a >”的充分条件D .“bc ac =”是“b a =”的充分条件 3.[ ] “2a =-”是“直线02=+y ax 垂直于直线1=+y x ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.[ ]椭圆14922=+y x 的焦点坐标是A .)5,0(±B .)0,5(±C .)13,0(±D .)0,13(±5.[ ] “α为锐角”是“sin 0α>”的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件6.[ ]命题“所有能被2整除的数都是偶数”的否定..是 A .所有不能被2整除的数都是偶数 B .所有能被2整除的数都不是偶数 C .存在一个不能被2整除的数是偶数 D .存在一个能被2整除的数不是偶数 7.[ ]曲线()ln f x x x x =+在点1x =处的切线方程为A .1y x =-B .1y x =+C .21y x =-D .21y x =+8.[ ]已知函数),2[,32)(2+∞-∈+-=x mx x x f 当时是增函数,则m 的取值范围是 A .[-8,+∞) B .[8,+∞) C .(-∞,- 8] D .(-∞,8]9.[ ]下列四种说法中,错误..的个数是 ①命题“2,320x R x x ∀∈--≥均有”的否定是:“2,320x R x x ∃∈--≤使得”; ②“命题q p ∨为真”是“命题q p ∧为真”的必要不充分条件; ③“若b a bm am <<则,22”的逆命题为真; ④{}0,1A =的子集有3个. A .0个 B .1个 C .2 个D .3个10.[ ]已知椭圆2215x y m +=的离心率e =,则m 的值为A .3BCD .253或311.[ ] “关于x 的不等式220x ax a -+>的解集为R ”是“01a ≤≤”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件 12.[ ]椭圆123222=+y x 的半焦距等于A .10B .102C .22D .2 13.[ ]设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率为 A .5 B .5 C .45 D .2514.[ ]焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 A .1241222=-y xB .1241222=-x yC .1122422=-x y D .1122422=-y x 15.[ ]抛物线2ax y =的准线方程是2y =,则a 的值为 A .81 B .-81 C .8 D .-816.[ ]已知双曲线2221x y a-=的一个焦点为(2,0),则它的离心率为A B C .32 D .217.[ ]规定记号“⊗”表示一种运算,即2a b ab a b ⊗=++ (,a b 为正实数), 若31=⊗k ,则k =A .1B .2-C .2- 或1D .218.[ ]若椭圆12222=+by a x (0>>b a )的离心率21=e ,右焦点为()0,c F ,方程022=++c bx ax 的两个实数根分别是1x 和2x ,则点),(2,1x x P 到原点的距离为A .2B .27C .2D .4719.[ ]观察图形规律,在其右下角的空格内画上合适的图形为A .■B .▢C .□D .○20.[ ]在右表格中,每格填上一个数字后,使每一 行成等差数列,每一列成等比数列,则a b c ++的值是 A .1 B .2 C .3 D .4二、填空题(4520''⨯=)21.抛物线x y =2的准线方程是 . 22.已知复数z 满足(34)5i z i -=,则||z = .23.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4), ,则第80个数对是 .24.双曲线221916x y -=的焦点到渐近线的距离为 . 25.观察下列式子:474131211,3531211,23211222222<+++<++<+,… …,根据以上式子可以猜想:<++++22220111...31211____ _____.三、解答题(10550''⨯=)26.已知正数a ,b 满足a b s +=,且1s a x =+,1sb y =+.证明:1xy =.27.观察等式:sin 220°+sin 240°+sin 20°·sin 40°=34;sin 210°+sin 250°+sin 10°·sin 50°=34;sin 228°+sin 232°+sin 28°·sin 32°=34.请写出一个与以上三个等式规律相同的一般性等式.(不必证明)28.已知离心率为53的双曲线与椭圆2214015x y +=有公共焦点,求双曲线的方程.29.已知椭圆中心在原点,以坐标轴为对称轴且经过两点()()2,3,1,621--P P , 求椭圆的方程.30.若a 、b 、c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.请用反证法证明:a ,b ,c 中至少有一个大于0.2010级高二数学(文科)选修1-2单元测试题(六)参考答案一、选择题(42080''⨯=)1-----------5 CBCBA 6----------10 DCCDD 11--------15 ADDBB 16--------20 AAAAA二、填空题(4520''⨯=)21.14x =- 22.1 23.(2,12) 24.4 25.40212011三、解答题(10550''⨯=) 26.证明:∵1s a x =+ ∴s a x a -=------------------------------------------------2分 ∵1sb y =+ ∴s b y b -=--------------------------------4分∴xy =s a s b a b --⨯=a b a a b b a b +-+-⨯=1b aa b⨯=------10分 另证:∵a b s +=,且1s a x =+,1sb y =+ ∴11s s s x y +=++,又0s >∴11111x y +=++ 去分母得:11(1)(1)y x x y +++=++ ∴1xy =27.解:若060αβ+=,则223sin sin sin sin 4αβαβ++=----------10分28.解: 在椭圆2214015x y +=中,240a =,215b =-----------------2分 ∴2401525c =-=,焦点为12(5,0),(5,0)F F ------------------------4分 ∴设双曲线的方程为22221(0,0)x y a b a b-=>>------------------------5分又∵35==a c e ,且5c =------------------------------------------7分3,4a b ∴== ------------------------------------------------9分故双曲线的方程为221916x y -=--------------------------------------10分29.解:(1)若椭圆焦点在x 轴上,设椭圆方程为12222=+by a x (0)a b >>---1分椭圆过点()()2,3,1,621--P P ,∴⎪⎩⎪⎨⎧=+=+1231162222b ab a ------------------------------3分 解得:⎩⎨⎧==3922b a ---------------------------------------------------------------------------------5分∴椭圆方程为13922=+y x -----------------------------------------------------------------6分 (2)若椭圆焦点在y 轴上,设椭圆方程为22221(0)x y a b b a+=>>----------7分椭圆过点()()2,3,1,621--P P ,2222611321b a ba ⎧+=⎪⎪⎨⎪+=⎪⎩--------------------8分 解得: 2239a b ⎧=⎪⎨=⎪⎩ 这与0a b >>矛盾,故无解----------------------------9分综上所述:椭圆方程为13922=+y x -------------------------------------------10分30.证明: 假设a 、b 、c 都不大于0----------------------------------------------1分即a ≤0,b ≤0,c ≤0---------------------------------------------------------------2分 所以a +b +c ≤0---------------------------------------------------------------------3分 而a +b +c=⎝⎛⎭⎫x 2-2y +π2+⎝⎛⎭⎫y 2-2z +π3+⎝⎛⎭⎫z 2-2x +π6-----------------------------------4分 =(x 2-2x )+(y 2-2y )+(z 2-2z )+π=(x -1)2+(y -1)2+(z -1)2+π-3----------------------------------------------7分 所以a +b +c >0----------------------------------------------------------------------8分 这与a +b +c ≤0矛盾--------------------------------------------------------------9分 故a 、b 、c 中至少有一个大于0-------------------------------------------------10分。

数学选修1-2第一、二章测试题(含答案)

数学选修1-2第一、二章测试题(含答案)

数学选修1-2第一、二章测试题参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,回归直线方程:1221ni ii nii x ynx y b xnx==-=-∑∑,一、选择题(共10小题,每小题5分,共50分。

) 1、下列两个量之间的关系是相关关系的为( )A .匀速直线运动的物体时间与位移的关系B .学生的成绩和体重C .路上酒后驾驶的人数和交通事故发生的多少D .水的体积和重量2、两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( )A .模型1的相关指数2R 为0.98 B. 模型2的相关指数2R 为0.80 C. 模型3的相关指数2R 为0.50 D. 模型4的相关指数2R 为0.25 3、下列说法正确的是( )A.由归纳推理得到的结论一定正确 B.由类比推理得到的结论一定正确 C.由合情推理得到的结论一定正确D.演绎推理在前提和推理形式都正确的前提下,得到的结论一定正确。

4、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊄平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 5、下表为某班5位同学身高x (单位:cm)与体重y (单位kg)的数据,若两个量间的回归直线方程为 1.16y x a =+,则a 的值为( ) A .-121.04 B .123.2 C .21 D .-45.126、用反证法证明命题:“,,,a b c d R ∈,1a b +=,1c d +=,且1ac bd +>,则,,,a b c d 中至少有一个负数”时的假设为( )A .,,,a b c d 中至少有一个正数B .,,,a b c d 全为正数C .,,,a b c d 全都大于等于0D .,,,a b c d 中至多有一个负数7、设,)cos 21,31(),43,(sin x b x a ==→-→-且→-→-b a //,则锐角x 为( )A .6πB .4πC .3πD .π1258、在平面上,若两个正三角形的边长比为1:2.则它们的面积之比为1:4.类似地,在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为( )A .1:2 B. 1:4 C. 1:8 D. 1:6 9. 设4,0,0≤+>>b a b a 且,则有( ) A.211≥ab B.2≥ab C.111≥+b a D.411≤+b a 10、若下列方程关于x 的方程24430x ax a +-+=,()2210x a x a +-+=,2220x ax a +-=(a 为常数,上同)中,至少有一个方程为实根,则实数a 的取值范围为( ) A.312a -<<- B.1a ≥-或32a ≤- C.20a -<< D.32a ≤-或0a ≥ 二、填空题(共4小题,每小题5分,共20分)11、回归直线方程为0.57514.9y x =-,则100x =时,y 的估计值为 12、黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖________________块.13、若()()()(,),f a b f a f b a b N +=⋅∈且(1)2f =,则(2)(4)(2010)(1)(3)(2009)f f f f f f +++=14、在平面几何里,有勾股定理:“设ABC ∆的两边AB 、AC 互相垂直,则222BC AC AB =+。

高中数学选修1-2同步练习题库:流程图(简答题:一般)

高中数学选修1-2同步练习题库:流程图(简答题:一般)

流程图(简答题:一般)1、执行如图所示的程序框图.(1)若输入的,,求输出的的值;(2)若输入的,输出的,求输入的()的值.2、已知函数,对每输入的一个值,都得到相应的函数值,画出程序框图并写出程序.3、已知数列的递推公式,且,请画出求其前5项的流程图.4、已知某算法的算法框图如图所示.(1)求函数的解析式;(2)求的值.5、的取值范围为[0,10],给出如图所示的程序框图,输入一个数.(1)请写出程序框图所表示的函数表达式;(2)求输出的()的概率;(3)求输出的的概率.6、已知数列的各项均为正数,观察程序框图,当,时,.(1)求数列的通项;(2)令,求的值.7、某药厂生产某种产品的过程如下:(1)备料、前处理、提取、制粒、压片、包衣、颗粒分装包装;(2)提取环节经检验,合格,进入下一工序,否则返回前处理;(3)包衣、颗粒分装两环节分别检验合格进入下一工序,否则为废品,画出生产该产品的工序流程图.8、根据下面的要求,求┅值.(Ⅰ)请将程序框图补充完整;(Ⅱ)求出(I)中输出S的值.9、求满足的最小正整数,写出算法的程序并画出程序框图.10、执行如下程序框图:(1)如果在判断框内填入“”,请写出输出的所有数值;(2)如果在判断框内填入“”,试求出所有输出数字的和。

11、根据下面的程序,画出其对应的程序框图.12、读下列程序,写出此程序表示的函数,并求当输出的时,输入的的值.13、执行如图所示的程序框图.(1)若输入的,,求输出的的值;(2)若输入的,输出的,求输入的()的值.14、某算法的程序框图如图所示,其中输入的变量在1,2,3,…30这30个整数中等可能随机产生. (1)分别求出(按程序框图正确编程运行时)输出的值为的概率;(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行次后,统计记录了输出的值为的频数,下面是甲、乙所作频数统计表的部分数据:甲的频数统计表(部分)乙的频数统计表(部分)当时,根据表中的数据,分别写出甲、乙所编程序各自输出的值为的频率(用分数表示),并判断甲、乙中谁所编写的程序符合算法要求的可能性较大.15、(2015秋•宁德期末)阅读如图所示程序框图,根据框图的算法功能回答下列问题:(Ⅰ)当输入的x∈[﹣1,3]时,求输出y的值组成的集合;(Ⅱ)已知输入的x∈[a,b]时,输出y的最大值为8,最小值为3,求实数a,b的值.16、的取值范围为[0,10],给出如图所示程序框图,输入一个数.(1)请写出程序框图所表示的函数表达式;(2)求输出的()的概率;(3)求输出的的概率.17、(本题满分16分)对任意函数f(x),x∈D,可按如图构造一个数列发生器,记由数列发生器产生数列{x n}.(1)若定义函数,且输入,请写出数列{x n}的所有项;(2)若定义函数f(x)=xsinx(0≤x≤2π),且要产生一个无穷的常数列{x n},试求输入的初始数据x0的值及相应数列{x n}的通项公式x n;(3)若定义函数f(x)=2x+3,且输入x0=﹣1,求数列{x n}的通项公式x n.18、在某校趣味运动会的颁奖仪式上,为了活跃气氛,大会组委会决定在颁奖过程中进行抽奖活动,用分层抽样的方法从参加颁奖仪式的高一、高二、高三代表队中抽取20人前排就座,其中高二代表队有6人.(1)把在前排就座的高二代表队6人分别记为a,b,c,d,e,f,现从中随机抽取2人上台抽奖,求a和b至少有一人上台抽奖的概率;(2)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖",则该代表中奖;若电脑显示“谢谢”,则不中奖.求该代表中奖的概率.19、(本小题满分12分)如图所示程序框图中,有这样一个执行框=f()其中的函数关系式为,程序框图中的D为函数f(x)的定义域.,(1)若输入,请写出输出的所有;(2)若输出的所有xi都相等,试求输入的初始值.20、(本小题满分12分)已知数列的各项均为正数,观察流程图,当时,;当时,,(1)写出时,的表达式(用等来表示);(2)求的通项公式;(3)令,求.21、(本小题满分12分)如下图,给出了一个程序框图,其作用是输入的值,输出相应的的值,(I)请指出该程序框图所使用的逻辑结构;(Ⅱ)若视为自变量,为函数值,试写出函数的解析式;(Ⅲ)若要使输入的的值与输出的的值相等,则输入的值的集合为多少?22、(本小题满分13分)从某企业生产的某种产品中抽取20件,测量这些产品的一项质量指标值,由测量得到如图的频率分布直方图,从左到右各组的频数依次记为,,,,.(1)求图中的值;(2)下图是统计图中各组频数的一个算法流程图,求输出的结果;(3)从质量指标值分布在、的产品中随机抽取2件产品,求所抽取两件产品的质量指标值之差大于10的概率.23、对任意函数,,可按如图构造一个数列发生器,记由数列发生器产生数列{}.(1)若定义函数,且输入,请写出数列{}的所有项;(2)若定义函数(0≤x≤2π),且要产生一个无穷的常数列{},试求输入的初始数据的值及相应数列{}的通项公式;(3)若定义函数,且输入,求数列{}的通项公式.参考答案1、(1);(2).2、见解析3、见解析4、(1);(2)5、(1)(2)(3)6、(1)(2)7、见解析8、(I);(II).9、程序见解析,程序框图见解析.10、(1)(2)11、程序框图见解析.12、,.13、(1);(2).14、(1),,;(2)乙.15、(Ⅰ)输入x∈[﹣1,3],输出y的值组成的集合为[0,8];(Ⅱ)所求实数a,b的值为或16、(1);(2);(3).17、(1);(2)故当,;当;(3)18、(1);(2)19、(1)(2)或20、(1);(2);(3).21、(I)条件结构和顺序结构(Ⅱ)(Ⅲ)22、(1)0.005;(2)18;(3)23、(1),,;(2)当时,;当时,;(3).【解析】1、试题分析:(1)根据程序框图的循环结构,根据判断框的条件,即可求解;(2)根据第一次运算,第二次运算,即可得出,即可求解的值.试题解析:(1)第一次运算:,,;第二次运算:,,;第三次运算:,,;第四次运算:,,;第五次运算:,,,输出.(2)第一次运算:,,,此时不成立,则.第二次运算:,,,此时成立,则,∴,又,∴.考点:程序框图的运算.2、试题分析:利用条件结构和条件语句可实现分段函数求值的算法,进而可得程序框图并编写相应的程序。

高二数学人教A版选修1-2试题和答案

高二数学人教A版选修1-2试题和答案

模块综合测评(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知复数z1=2+i,z2=1+3i,则复数z=在复平面内所对应的点位于() 第二象限A.第一象限B.第二象限C.第三象限D.第四象限第四象限解析:复数z=i, z对应的点的坐标为位于第四象限.答案:D 2.等于() A. B.C. D.1 解析:∵i, ∴.答案:B 3.下列说法错误的是() 球的体积与它的半径具有相关关系A.球的体积与它的半径具有相关关系B.计算误差、测量误差都将影响到残差的大小计算误差、测量误差都将影响到残差的大小C.在回归分析中R2的值越接近于1,说明拟合效果越好说明拟合效果越好D.在独立性检验中,K2的观测值k越大,说明确定两个分类变量有关系的把握越大说明确定两个分类变量有关系的把握越大 解析:A中球的体积与球的半径是函数关系,不是相关关系.B,C,D都正确.答案:A 4.在△ABC中,=a,=b,且a·b>0,则△ABC是() 锐角三角形A.锐角三角形B.直角三角形直角三角形C.钝角三角形钝角三角形D.等腰直角三角形等腰直角三角形cos(ππ-∠ABC)>0, 解析:由于a·b>0,即|a||b|cos(即cos∠ABC<0.又∵0<∠ABC<π, ∴∠ABC是钝角.∴△ABC是钝角三角形.答案:C 5.设回归方程=7-3x,当变量x增加两个单位时() 个单位A.y平均增加3个单位B.y平均减少3个单位个单位C.y平均增加6个单位个单位D.y平均减少6个单位个单位解析:由回归方程可知,y与x是负相关,x每增加2个单位,y平均减少6个单位.答案:D 6.在如图所示的程序框图中,输入a=,b=,则输出c=() A. B.C.1D.0 故输出c=|tan 解析:由程序框图知,当输入a=,b=时,tan a=-,tan b=-,则tan a>tan b.故输出a|=.答案:A 7.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,第100项为() A.10B.14 C.13D.100 解析:由于1有1个,2有2个,3有3个,…,则13有13个,所以1~13的总个数为=91,故第100个数为14答案:B 8.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知:四面体S-ABC的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,四面体S-ABC 的体积为V,则r=() A.B.C.D.解析:设四面体S-ABC的内切球球心为O,那么由V S-ABC=V O-ABC+V O-SAB+V O-SAC+V O-SBC, 即V=S1r+S2r+S3r+S4r, 可得r=.答案:C 9.等于() A.2i B.-1+i C.1+i D.-1 解析:∵=i, ∴=i2014=(i2)1007=-1.答案:D 10.已知两条直线m,n,两个平面α,β.给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊂α,n⊂β⇒m∥n;③m∥n,m∥α⇒n∥α;④α∥β,m∥n,m⊥α⇒n⊥β其中正确命题的序号是() ②④A.①③B.②④C.①④D.②③②③解析:由α∥β,m⊂α,n⊂β⇒m∥n或m,n异面, ∴②错;由m∥n,m∥α⇒n∥α或n⊂α, ∴③错.故选C.答案:C 11.已知f(x+y)=f(x)+f(y)且f(1)=2,则f(1)+f(2)+…+f(n)不等于() A.f(1)+2f(1)+…+nf(1) B.fC.n(n+1) D.n(n+1)f(1) 解析:由f(x+y)=f(x)+f(y)且f(1)=2,知f(2)=f(1)+f(1)=2f(1),f(3)=f(2)+f(1)=3f(1),…,f(n)=nf(1), ∴f(1)+f(2)+…+f(n)=(1+2+…+n)f(1)=f(1)=n(n+1).答案:D 12.如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件,在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为() A.15B.16C.17D.18 解析:方法一:若AB之间不相互调动, 则A调出10件给D,B调出5件给C,C再调出1件给D,即可满足调动要求,此时共调动的件次n=10+5+1=16; 若AB之间相互调动,则B调动4件给C,调动1件给A,A调动11件给D,此时共调动的件次n=4+1+11=16.所以最少调动的件次为16,故应选B. 方法二:设A调动x件给D(0≤x≤10),则调动了(10-x)件给B,从B调动了5+10-x=(15-x)件给C,C调动出了15-x-4=(11-x)件给D,由此满足调动需求,此时调动件次n=x+(10-x)+(15-x)+(11-x)=36-2x,当且仅当x=10时,n取得最小值16,故应选B.答案:B 二、填空题(本大题共4小题,每小题4分,共16分) 13.已知复数z=(m∈R,i是虚数单位)是纯虚数,则m的值是的值是 .解析:z=, ∴=0,且≠0.∴m=-1答案:-1 14.按如图所示的程序框图运算,若输入x=8,则输出k=.解析:输入x=8时,k=0, 第一次循环,x=2×8+1=17,k=1,x<115; 第二次循环,x=2×17+1=35,k=2,x<115; 第三次循环,x=2×35+1=71,k=3,x<115; 第四次循环,x=2×71+1=143,k=4,x>115, 输出x=143,k=4.答案:4 15.观察下列式子1+,1+,1+,…,则可归纳出则可归纳出 .解析:根据三个式子的规律特点进行归纳可知,1++…+(n∈N*).答案:1++…+(n∈N*) 16.已知x,y取值如下表:x0 1 4 5 6 8 y 1.3 1.8 5.6 6.1 7.4 9.3 从所得的数点图分析可知,y 与x 线性相关,且=0.95x+,则的值为的值为 . 解析:×(0+1+4+5+6+8)=4, ×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25, 又=0.95x+必过样本中心点(),即(4,5.25),于是有5.25=0.95×4+a ,解得a=1.45.答案:1.45 三、解答题(本大题共6小题,共74分) 17.(12分)调查某桑场采桑员和患桑毛虫皮炎病的情况,结果如下表:采桑采桑 不采桑不采桑 总计总计患者人数患者人数 18 12 健康人数健康人数 5 78 总计总计利用独立性检验估计“患桑毛虫皮炎病与采桑”是否有关,并求出认为两者有关系犯错误的概率是多少. (注:K 2=,其中n=a+b+c+d.P (K 2≥k ) 0.005 0.001 k7.879 10.828 ) 解:因为a=18,b=12,c=5,d=78,所以a+b=30,c+d=83,a+c=23,b+d=90,n=113, 所以K 2的观测值k==≈39.6>10.828.所以有99.9%的把握认为“患桑毛虫皮炎病与采桑”有关系,认为两者有关系会犯错误的概率是0.1%.18.(12分)已知x 2-(3-2i)x-6i =0,i 为虚数单位. (1)若x ∈R ,求x 的值; (2)若x ∈C ,求x 的值.分析:(1)利用复数相等的充要条件可直接求解;(2)中要求x 的值,就应先设出x 的代数形式再利用复数相等的充要条件求解. 解:(1)当x ∈R 时,由已知方程, 得(x 2-3x )+(2x-6)i =0, 则解得x=3.(2)当x∈C时,设x=a+b i(a,b∈R),将其代入已知方程, 整理,得(a2-b2-3a-2b)+(2ab-3b+2a-6)i=0.则解得故x=-2i或x=3.19.(12分)已知△ABC的三边长为a,b,c,且其中任意两边长均不相等.若成等差数列.(1)比较的大小,并证明你的结论; (2)求证角B不可能是钝角.(1)解:大小关系为.证明如下: 要证,只需证∵a,b,c>0,∴只需证b2<ac.∵成等差数列, ∴≥2.∴b2≤ac.又△ABC的任意两边长均不相等,即a,b,c任意两数不相等,∴b 2<ac成立故所得大小关系正确,即.(2)证明:假设角B是钝角,则cos B<0, 而cos B=>0.这与cos B<0矛盾,故假设不成立, 即角B不可能是钝角.20.(12分)已知f(x)=,且f(1)=log162,f(-2)=1.(1)求函数f(x)的表达式; (2)已知数列{x n}的项满足x n=[1-f(1)]·(1)]·[1[1-f(2)]·…·[1-f(n)],试求x1,x2,x3,x4; (3)猜想{x n}的通项.解:(1)把f(1)=log162=,f(-2)=1代入f(x)=,得整理,得解得所以f(x)=(x≠-1).(2)x1=1-f(1)=1-, x2=, x3=, x4=(3)由(2),得x1=,x2=,x3=,x4=,可变形为,…,从而可归纳出{x n}的通项x n=.21.(12分)某市公交车票价按下列规则定价:(1)5公里以内(包括5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).已知相邻两个公共汽车站之间相距约1公里,如果沿途(包括起点站和终点站)共有16个汽车站,请设计一个算法求出某人坐车x公里所用的票价,画出程序框图.解:依题意得,某人坐车x公里所用的票价y=程序框图如下: 22.(14分)设△ABC的两个内角A,B所对的边分别为a,b,复数z1=a+b i,z2=cos A+icos B,若复数z1·z2为纯虚数,试判断△ABC的形状,并说明理由.解:△ABC为等腰三角形或直角三角形.理由:∵z1=a+b i,z2=cos A+icos B, ∴z1z2=(a cos A-b cos B)+i(a cos B+b cos A).又∵z1z2为纯虚数, ∴由①及正弦定理, 得sin A cos A=sin B cos B, 即sin 2A=sin 2B.∵A,B为△ABC的内角, ∴0<2A<2π,0<2B<2π,且2A+2B<2π∴2A=2B或2A=π-2B, 即A=B或A+B=, 也就是A=B或C=.由②及正弦定理,得sin A cos B+sin B cos A≠0, 即sin(A+B)≠0∵A,B是△ABC的内角, ∴0<A+B<π.∴sin(A+B)≠0成立.综上所述,知A=B或C=.∴△ABC为等腰三角形或直角三角形.。

高中数学 期末综合测试(含解析)北师大版选修1-2-北师大版高二选修1-2数学试题

高中数学 期末综合测试(含解析)北师大版选修1-2-北师大版高二选修1-2数学试题

单元综合测试五(期末综合测试)时间:120分钟 分值:150分一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z =1i -1的模为( )A.12B.22 C.2 D .2 【答案】B【解析】 本题考查复数的运算和复数的模. ∵z =1i -1=-12-12i ,∴|z |=(-12)2+(-12)2=22.故选B. 2.已知复数z =2-i ,则z ·z -的值为( ) A .5 B. 5 C .3 D. 3 【答案】A【解析】 ∵z =2-i ,∴z =2+i ,∴z ·z =(2+i)(2-i)=4-(-1)=5.3.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a ,b ∈R )”,其反设正确的是( ) A .a 、b 至少有一个不为0 B .a 、b 至少有一个为0 C .a 、b 全不为0 D .a 、b 中只有一个为0 【答案】A【解析】 对“全为0”的否定是“不全为0”,故选A.4.在平面直角坐标系内,方程x a +yb =1表示在x ,y 轴上的截距分别为a ,b 的直线,拓展到空间,在x ,y ,z 轴上的截距分别为a ,b ,c (abc ≠0)的方程为( )A.x a +y b +z c =1B.x ab +y bc +zac =1 C.xy ab +yz bc +zxca =1 D .ax +by +zc =1 【答案】A【解析】 由类比推理可知,方程为x a +y b +zc=1.5.阅读如下程序框图,如果输出i =4,那么空白的判断框中应填入的条件是( )A .S <8B .S <9C .S <10D .S <11 【答案】B【解析】 本题考查了程序框图的循环结构.依据循环要求有i =1,S =0;i =2,S =2×2+1=5;i =3,S =2×3+2=8;i =4,S =2×4+1=9,此时结束循环,故应为S <9.6.对a ,b ∈R +,a +b ≥2ab ,大前提 x +1x≥2x ·1x,小前提 所以x +1x≥2.结论以上推理过程中的错误为( )A .大前提B .小前提C .结论D .无错误 【答案】B【解析】 小前提错误,应满足x >0.7.执行如图所示的程序框图,若输入n 的值为3,则输出s 的值是( )A .1B .2C .3D .7 【答案】C【解析】 本题考查程序框图中的循环结构.i =1,s =1→s =1+(1-1)=1,i =2→s =1+(2-1)=2,i =3→s =2+(3-1)=4,i =4→输出s .8.甲、乙两人各进行1次射击,如果两人击中目标的概率都是0.7,则其中恰有1人击中目标的概率是( )A .0.49B .0.42C .0.7D .0.91 【答案】B【解析】 两人都击中概率P 1=0.49,都击不中的概率P 2=0.09,∴恰有一人击中的概率P =1-0.49-0.09=0.42.9.将正奇数按如图所示规律排列,则第31行从左向右的第3个数为( )1 3 5 7 17 15 13 11 9 19 21 23 25 27 29 31A .1 915B .1 917C .1 919D .1 921 【答案】B【解析】 如题图,第1行1个奇数,第2行3个奇数,第3行5个奇数,归纳可得第31行有61个奇数,且奇数行按由大到小的顺序排列,偶数行按由小到大的顺序排列.又因为前31行共有1+3+…+61=961个奇数,则第31行第1个数是第961个奇数即是1 921,则第3个数为1 917.10.已知x >0,y >0,2x +1y =1,若x +2y >m 2-2m 恒成立,则实数m 的取值X 围是( )A .m ≥4或m ≤-2B .m ≥2或m ≤-4C .-2<m <4D .-4<m <2 【答案】C【解析】 x +2y =(x +2y )(2x +1y )=4+4y x +x y ≥4+4=8,当且仅当4y x =xy ,即x =4,y =2时取等号.∴m 2-2m <8,即m 2-2m -8<0,解得-2<m <4. 二、填空题(本大题共5小题,每小题5分,共25分)11.i 是虚数单位,i +2i 2+3i 3+…+8i 8=________(用a +b i 的形式表示,a ,b ∈R ).【答案】4-4i【解析】 i +2i 2+3i 3+4i 4+5i 5+6i 6+7i 7+8i 8=i -2-3i +4+5i -6-7i +8=4-4i.12.阅读如图所示的程序框图,运行相应的程序,若输入m 的值为2,则输出的结果i =______.【答案】4【解析】 本题考查程序框图的循环结构. i =1,A =2,B =1; i =2,A =4,B =2; i =3,A =8,B =6; i =4,A =16,B =18; 此时A <B ,则输出i =4.13.已知f (x )是定义在R 上的函数,且f (x )=1+f (x -2)1-f (x -2),若f (1)=2+3,则f (2 009)=________.【答案】2+ 3【解析】 ∵f (x )=1+f (x -2)1-f (x -2),∴f (x -2)=1+f (x -4)1-f (x -4).代入得f (x )=1+1+f (x -4)1-f (x -4)1-1+f (x -4)1-f (x -4)=2-2f (x -4)=-1f (x -4).∴f (x )=f (x -8),即f (x )的周期为8. ∴f (2 009)=f (251×8+1)=f (1)=2+ 3.14.古希腊数学家把数1,3,6,10,15,21,…,叫做三角数,它有一定的规律性,则第30个三角数减去第28个三角数的值为________.【答案】59【解析】 设数1,3,6,10,15,21,…各项为a 1,a 2,a 3,…, 则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,即数列{a n +1-a n }构成首项为2,公差为1的等差数列. 利用累加法得a 28=a 1+(2+3+…+28), a 30=a 1+(2+3+…+28+29+30), ∴a 30-a 28=29+30=59.15.在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比AE EB =ACBC ,把这个结论类比到空间:在三棱锥A —BCD 中,如图,面DEC 平分二面角A —CD —B 且与AB 相交于E ,则得到的类比的结论是________.【答案】AE EB =S △ACDS △BCD三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分)16.实数m 为何值时,复数z =m 2(1m +5+i)+(8m +15)i +m -6m +5.(1)为实数; (2)为虚数; (3)为纯虚数; (4)对应点在第二象限?【解析】 z =m 2+m -6m +5+(m 2+8m +15)i ,(1)z 为实数⇔m 2+8m +15=0且m +5≠0, 解得m =-3.(2)z 为虚数⇔m 2+8m +15≠0且m +5≠0, 解得m ≠-3且m ≠-5. (3)z 为纯虚数⇔⎩⎪⎨⎪⎧m 2+m -6m +5=0m 2+8m +15≠0,解得m =2.(4)z 对应的点在第二象限⇔⎩⎪⎨⎪⎧m 2+m -6m +5<0m 2+8m +15>0,解得m <-5或-3<m <2.17.设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论.【解析】 f (0)+f (1)=130+3+131+3=11+3+13+3=3-12+3-36=33,同理可得f (-1)+f (2)=33, f (-2)+f (3)=33, 并注意到在这三个特殊式子中,自变量之和均等于1.归纳猜想得:当x1+x2=1时,均有f(x1)+f(x2)=3 3.18.已知f(x)=-x3-x+1(x∈R).(1)求证:y=f(x)是定义域上的减函数;(2)求证满足f(x)=0的实数根x至多只有一个.【证明】(1)∵f′(x)=-3x2-1=-(3x2+1)<0(x∈R),∴y=f(x)是定义域上的减函数.(2)假设f(x)=0的实数根x至少有两个,不妨设x1≠x2,且x1,x2∈R,f(x1)=f(x2)=0.∵y=f(x)在R上单调递减,∴当x1<x2时,f(x1)>f(x2),当x1>x2时,f(x1)<f(x2),这与f(x1)=f(x2)=0矛盾,故假设不成立,所以f(x)=0至多只有一个实数根.19.如图是某工厂加工笔记本电脑屏幕的流程图:根据此流程图可回答下列问题:(1)一件屏幕成品可能经过几次加工和检验程序?(2)哪些环节可能导致废品的产生,二次加工产品的来源是什么?(3)该流程图的终点是什么?【解析】 (1)一件屏幕成品经过一次加工、二次加工两道加工程序和检验、最后检验两道检验程序;也可能经过一次加工、返修加工、二次加工三道加工程序和检验、返修检验、最后检验三道检验程序.(2)返修加工和二次加工可能导致屏幕废品的产生,二次加工产品的来源是一次加工的合格品和返修加工的合格品.(3)流程图的终点是“屏幕成品”和“屏幕废品”.20.已知数学、英语的成绩分别有1,2,3,4,5五个档次,某班共有60人,在每个档次的人数如下表:(1)求m =4,n =3(2)求在m ≥3的条件下,n =3的概率;(3)若m =2与n =4是相互独立的,求a ,b 的值. 【解析】 本题为条件概率和相互独立事件的概率. (1)m =4,n =3时,共7人,故概率为P =760.(2)m ≥3时,总人数为35.当m ≥3,n =3时,总人数为8,故概率为P =835.(3)若m =2与n =4是相互独立的, 则P (m =2)·P (n =4)=P (m =2,n =4). ∴1+b +6+0+a 60×3+0+1+b +060=b 60.故总人数为60,知a +b =13. ∴13×(4+b )=b .∴a =11,b =2.21.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2P (χ2≥k )0.100 0.050 0.010 0.001 k2.7063.8416.63510.828(注:此公式也可以写成χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ))【解析】 (1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名. 所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A 1,A 2,A 3;25周岁以下组工人有40×0.05=2(人),记为B 1,B 2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结构共有7种,它们是:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60×0.25=15(人),“25周岁以下组”中的生产能手40×0.375=15(人),据此可得2×2列联表如下:所以得χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=100×(15×25-15×45)2 60×40×30×70=2514≈1.79.因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.。

人教版高中数学选修1-2 练习:模块综合测试2

人教版高中数学选修1-2 练习:模块综合测试2

选修1-2模块综合测试(二)(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分)1.[2013·江西高考]已知集合M={1,2,z i},i为虚数单位,N={3,4},M∩N={4},则复数z=()A. -2iB. 2iC. -4iD. 4i解析:由M∩N={4}知4∈M,所以z i=4,z=-4i,选C.答案:C2.凡自然数是整数,4是自然数,所以4是整数,以上三段论推理()A. 正确B. 推理形式不正确C. 两个“自然数”概念不一样D. 两个“整数”概念不一致解析:此三段论中的大前提,小前提以及推理形式都是正确的,因此,此三段论推理是正确的,故选A.答案:A3.设两个变量x和y之间具有线性相关关系,它们的相关系数是r,y关于x的回归直线的斜率是b,纵轴上的截距是a,那么必有()A. b与r的符号相同B. a与r的符号相同C. b与r的符号相反D. a与r的符号相反解析:正相关时,b>0,r>0;负相关时,b<0,r<0,选A.答案:A4.勾股定理:在直角边长为a、b,斜边长为c的直角三角形中,有a2+b2=c2.类比勾股定理可得,在长、宽、高分别为p、q、r,体对角线长为d的长方体中,有()A. p+q+r=dB. p2+q2+r2=d2C. p3+q3+r3=d3D. p2+q2+r2+pq+pr+qr=d2解析:类比即可.答案:B5.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于()A. f(x)B. -f(x)C. g(x)D. -g(x)解析:由题知偶函数的导数为奇函数,选D.答案:D6.设z=log2(m2-3m-3)+ilog2(m-3)(m∈R),若z对应的点在直线x-2y+1=0上,则m的值是()A.±15 B.15C.-15D.15解析:log2(m2-3m-3)-2log2(m-3)+1=0,log2m2-3m-3m-2=-1,m2-3m-3m-2=12,m=±15,而m>3,m=15.答案:B7.[2014·贵州六校联考]如图,x1,x2,x3为某次考试三个评阅人对同一道题的独立评分,p为该题的最终得分,得x1=6,x2=9,p=9.5时,x3等于()A. 10B. 9C. 8D. 7解析:x1=6,x2=9,|x1-x2|=3,|x3-6|<|x3-9|不成立,取x1=x3⇒x3+9=9.5×2⇒x3=10.答案:A8.[2013·安徽高考]设i是虚数单位,z是复数z的共轭复数.若z·z i+2=2z,则z=()A. 1+iB. 1-iC. -1+iD. -1-i解析:设z =a +b i(a ,b ∈R ),则z ·z i +2=(a +b i)·(a -b i)·i +2=2+(a 2+b 2)i ,故2=2a ,a 2+b 2=2b ,解得a =1,b =1.即z =1+i.答案:A9.[2014·昆明调研]执行如图的程序框图,如果输入的N =10,那么输出的S =( )A. 109B. 169C. 95D. 2011解析:在程序执行过程中p ,S ,k 的值依次为p =0,S =0,k =1;p =1,S =1,k =2;p =3,S =43,k =3;p =6,S =32,k =4;p =10,S =85,k =5;…;p =36,S =169,k =9;p=45,S =95,k =10.又N =10,k =N ,故程序结束,输出的S =95.答案:C10.定义复数的一种运算z 1]|z 1|+|z 2|,2)(等式右边为普通运算),若复数z =a +b i ,且正实数a ,b 满足a +b =3,则z *z 的最小值为( )A.92B.322 C.32D.94 解析:z *z =|z |+|z |2=2a 2+b 22=a 2+b 2=a +b2-2ab ,又∵ab ≤⎝⎛⎭⎫a +b 22=94,∴-ab ≥-94,z *z ≥9-2×94=92=322. 答案:B11.按照下列三种化合物的结构式及分子式的规律,写出后一种化合物的分子式是( )A .C 4H 9B .C 4H 10 C .C 4H 11D .C 6H 12解析:后一种化合物应有4个C 和10个H ,所以分子式是C 4H 10. 答案:B12.对于定义在数集R 上的函数f (x ),如果存在实数x 0,使f (x 0)=x 0,则x 0叫函数f (x )的一个不动点.已知f (x )=x 2+2ax +1不存在不动点,那么a 的取值范围是( )A. (-12,32)B. (-32,-12)C. (12,32) D. (-32,12)解析:因为f (x )=x 2+2ax +1不存在不动点,所以f (x )=x 无实根.由x 2+2ax +1=x 得x 2+(2a -1)x +1=0,此方程若无实根,则Δ=(2a -1)2-4<0,解得-12<a <32.答案:A二、填空题(本大题共4小题,每小题5分,共20分)13.已知线性回归直线方程是y ^=a ^+b ^x ,如果当x =3时,y 的估计值是17,x =8时,y 的估计值是22,那么回归直线方程为________.解析:首先把两组值代入回归直线方程得⎩⎪⎨⎪⎧3b ^ +a ^=17,8b ^ +a ^ =22⇒⎩⎪⎨⎪⎧b ^=1,a ^ =14.所以回归直线方程是y ^=x +14.答案:y ^=x +1414.如图所示是按照一定规律画出的一列“树型”图,设第n 个图有a n 个“树枝”,则a n +1与a n (n ≥2)之间的关系是________.解析:观察图1~5得:a 1=1,a 2=3,a 3=7,a 4=15,a 5=31,由规律可得a n +1=2a n+1(n ≥2).答案:a n +1=2a n +1(n ≥2)15.读下面的流程图,当输入的值为-5时,输出的结果是________.解析:①A =-5<0,②A =-5+2=-3<0,③A =-3+2=-1<0,④A =-1+2=1>0,⑤A =2×1=2.答案:216.若Rt △ABC 中两直角边为a 、b ,斜边c 上的高为h ,则1h 2=1a 2+1b 2,如右图,在正方体的一角上截取三棱锥P -ABC ,PO 为棱锥的高,记M =1PO 2,N =1P A 2+1PB 2+1PC 2,那么M 、N 的大小关系是__________.解析:在Rt △ABC 中,c 2=a 2+b 2①,由等面积法得ch =ab ,∴c 2·h 2=a 2·b 2②,①÷②整理得1h 2=1a 2+1b2.类比得,S 2△ABC =S 2△P AB +S 2△PBC +S 2P AC ③,由等体积法得S △ABC ·PO =12P A ·PB ·PC , ∴S 2△ABC ·PO 2=14P A 2·PB 2·PC 2④,③÷④整理得M =N . 答案:M =N三、解答题(本大题共6小题,共70分)17.(10分)满足z +5z 是实数且z +3的实部与虚部是相反数的虚数z 是否存在?若存在,求出虚数z ;若不存在,请说明理由.解:设虚数z =x +y i(x ,y ∈R ,且y ≠0) z +5z =x +y i +5x +y i =x +5x x 2+y 2+(y -5y x 2+y 2)i , 由已知得⎩⎪⎨⎪⎧y -5y x 2+y 2=0,x +3=-y .∵y ≠0,∴⎩⎪⎨⎪⎧ x 2+y 2=5,x +y =-3, 解得⎩⎪⎨⎪⎧x =-1,y =-2或⎩⎪⎨⎪⎧x =-2,y =-1.∴存在虚数z =-1-2i 或z =-2-i 满足以上条件. 18.(12分)已知函数f (x )=a x +x -2x +1(a >1).(1)证明函数f (x )在(-1,+∞)上为增函数; (2)用反证法证明方程f (x )=0没有负数根. 证明:(1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1,且ax 1>0, ∴ax 2-ax 1=ax 1(ax 2-x 1-1)>0. 又∵x 1+1>0,x 2+1>0, ∴x 2-2x 2+1-x 1-2x 1+1= x 2-x 1+-x 1-x 2+x 1+x 2+=x 2-x 1x 1+x 2+1>0.于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.(2)证法一:假设存在x 0<0(x 0≠-1)满足f (x 0)=0, 则ax 0=x 0-2x 0+1,且0<ax 0<1,∴0<-x 0-2x 0+1<1,即12<x 0<2.与假设x 0<0矛盾,故方程f (x )=0没有负数根. 证法二:假设存在x 0<0(x 0≠-1)满足f (x 0)=0. ①若-1<x 0<0,则x 0-2x 0+1<-2,0<ax 0<1,∴f (x 0)<-1,与f (x 0)=0矛盾; ②若x 0<-1,则x 0-2x 0+1>0,0<ax 0<1,∴f (x 0)>0,与f (x 0)=0矛盾. 故方程f (x )=0没有负数根.19.(12分)设z 1=1+2a i ,z 2=a -i(a ∈R ),已知A ={z ||z -z 1|≤2},B ={z ||z -z 2|≤22}, A ∩B =∅,求a 的取值范围.解:∵集合A 、B 在复平面内对应的点是两个圆面,又A ∩B =∅,∴这两个圆外离. 所以|z 1-z 2|>32, 即|(1+2a i)-(a -i)|>3 2.解之得a ∈(-∞,-2)∪⎝⎛⎭⎫85,+∞.20.(12分)已知函数f (x )=⎩⎪⎨⎪⎧2-x x ,2 x =,2+x x ,设计一个输入x 值,输出y 值的流程图.解:流程图如图所示.21.(12分)为了调查胃病是否与生活规律有关,对某地540名40岁以上的人进行了调查,结果如下:生活规律有关系?解:根据公式得K 2的观测值 k =-280×460×220×320≈9.638>6.635,因此,在犯错误的概率不超过0.01的前提下,认为40岁以上的人患胃病与生活规律有关.22.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:(1)(2)求出y 关于x 的线性回归方程y ^=b ^x +a ^,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间?(注:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y=b ^x .)解:(1)散点图如图.(2)由表中数据得:∑i =14x i y i =52.5,x =3.5,y =3.5,∑i =14x 2i =54,∴b ^=0.7.∴a ^=1.05,∴y ^=0.7x +1.05. 回归直线如图所示.(3)将x =10代入线性回归方程,得y ^=0.7×10+1.05=8.05(小时). ∴预测加工10个零件需要8.05小时.。

数学选修1-2测试卷

数学选修1-2测试卷

2008――2009学年第一学期测试数学试卷(文科) 时间:120分钟 满分:150分参考公式: 22()()()()()n ad bc k a b c d a c b d -=++++ 21R =-残差平方和总偏差平方和用最小二乘法求线性回归方程系数公式1221ˆˆˆni ii ni i x y nx ybay bx x nx==-==--∑∑, 一、选择题1.设集合{}{}|1|22A x x B x x =>-=-<<,,则A B = ( ) A.{}|2x x >-B.{}1x x >-|C.{}|21x x -<<- D.{}|12x x -<<2.命题“存在实数x ,使012<+x ”的否定可以写成 ( )A .若01,2<+∈x R x 则 B .01,2≥+∈∃x R x C .01,2<+∈∀x R x D .01,2≥+∈∀x R x 4.某班主任对全班50名学生进行了作业量多少的调查,喜欢玩电脑游戏的同学认为作业多的有18人,认为作业不多的有9人,不喜欢玩电脑游戏的同学认为作业多的有8人,认为作业不多的有15人,则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约是 ( )A.97.5%B.95%C.90% D 无充分根据5.命题“若2x <1,则-1<x<1”的逆否命题是 ( )A .若2x ≥1,则-x ≥1或x ≤-1B .若-1<x<1, 则2x <1C .若x ≥1或x ≤-1,则2x ≥1D .若x>1或x<-1,则2x >16.当213m <<时,复数()()32m i i +-+在复平面内对应的点位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.图2给出的是计算201614121++++ 的值的一个流程图, 其中判断框内应填入的条件是( )(A ) 10>i (B ) 10<i (C ) 20>i (D ) 20<i 8.观察图3中各正方形图案,每条边上有(2)n n ≥个圆点,第n 个图案中圆点的总数是n S .按此规律推断出n S 与n 的关系式为( )图2n =2 n =3 n =4(A) n S =2n (B) n S =4n (C) n S =2n (D) n S =4n -4 二、填空题(每题5分,共25分)9.抛物线的顶点在坐标原点,焦点是椭圆2228x y +=的一个焦点,则此抛物线的标准方程是 ,焦点到其准线的距离等于 ;10.i 是虚数单位,238i 2i 3i 8i ++++= .(用i a b +的形式表示,a b ∈R ,) 11.设函数1()f x =112223()(),x f x x f x x -==,,则123(((2007)))f f f = . 12.定义某种运算⊗,S a b =⊗的运算原理如图4: 则式子5324⊗+⊗=__________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学选修1-2试题及答案
总分:120;时间:100分钟
一、选择题(55分)
1.下列两个量之间的关系是相关关系的为( )
A .正方体的体积与棱长的关系
B .学生的成绩和体重
C .路上酒后驾驶的人数和交通事故发生的多少
D .水的体积和重量 2.复数
2
1i
-等于( )
A .1i +
B .1i -
C .1i -+
D .1i --
3. “所有金属都能导电,铁是金属,所以铁能导电”这种推理方法属于( ) A .演绎推理 B .类比推理 C .合情推理 D .归纳推理 4.对于分类变量X 与Y 的随机变量2K 的观测数值k ,下面说法正确的是( ) A .k 越大,推断“X 与Y 有关系”,犯错误的概率越大; B .k 越小,推断“X 与Y 有关系”,犯错误的概率越大;
C .k 越接近于0,推断“X 与Y 无关”,犯错误的概率越大;
D .k 越大,推断“X 与Y 无关”,犯错误的概率越小.
5. 程序框图的作用是输出两数中的较大者,则①②处分别为( )
A .输出m ;交换m 和n 的值
B .交换m 和n 的值;输出m
C .输出n ;交换m 和n 的值
D .交换m 和n 的值;输出n 6. 命题“对任意的x R ∈,3210x x -+≤”的否定是( )
A .不存在x R ∈,3210x x -+≤
B .存在x R ∈,3210x x -+≤
C .存在x R ∈,3210x x -+>
D .对任意x R ∈,3210x x -+> 7.甲、乙两人独立地解决同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么恰好有一人解决这个问题的概率是( ) A. P 1P 2 B. P 1(1-P 2) +P 2(1-P 1) C.1- P 1P 2 D. 1-(1-P 1)(1-P 2)
8.设0a >,0b >
,A =
,B =A ,B 的大小关系是( ) A .A B ≥ B. A B ≤ C. A B > D. A B <
9.按流程图的程序计算,若开始输入的值为3x =,则输出的x 的值是 ( )
A .6
B .21
C .156
D .231
10. 已知对任意实数x ,都有f (-x )=-f (x ),g (-x )=g (x ),且x >0时, f ′(x )>0,g ′(x )>0,则x <0时( )
A . f ′(x )>0,g ′(x )>0
B . f ′(x )>0,g ′(x )<0
C . f ′(x )<0,g ′(x )>0
D . f ′(x )<0,g ′(x )<0
11.n 个连续自然数按规律排成如图所示: 0 3→4 7→8 11… ↓ ↑ ↓ ↑ ↓ ↑ 1→2 5→6 9→10
根据规律,从2002到2004,箭头方向依次为( ) A .↓→ B.→↑ C. →↓ D. ↑→ 二、填空题(20分) 12.观察下列等式:
()2
331212+=+,()2
333123123++=++,()2
333312341234+++=+++,…,根
据上述规律,第五个等式为
13.某商场在销售过程中投入的销售成本x 与销售额y 的统计数据如下表:
根据上表可得, 该数据符合线性回归方程:ˆˆ9y
bx =-,由此预测销售额为100万元时,投入的销售成本大约为 万元。

14.i +2i +3i +4i +…+2010i = .
15. 若函数f (x )=x 3-3x +a 有3个不同的零点,则实数a 的取值范围是 .
16. 已知正项数列{}n a 满足112n
n n S a a ⎛⎫
=+ ⎪⎝⎭
,试猜想出这个数列的通项公式
为 .
三、解答题(共50分)
17.把下面在平面内成立的结论类比地推广到空间(直线推广为平面),并判断类比结论是否成立,若成立请给出证明,若不成立请说明理由。

(1)如果一条直线和两平行线中的一条相交,则必与另一条相交; (2)如果两直线同时垂直于第三条直线,则这两条直线互相平行。

(1)类比为:
结论是否成立: 证明或理由:
(1)类比为:
结论是否成立: 证明或理由:
18.设,a b )2
a b ≥+.
19.当实数a分别取何值时,复数
2
2
34
(56)
7
a a
z a a i
a
--
=+--
+
,是:
(1)实数?(2)虚数?(3)纯虚数?
20.已知a是实数,函数f(x)=32
x ax
-,求f(x)在区间[0,2]上的最大值.
答案:
二、 填空题
12. 333333212345621+++++= 13. 10.9 14.1i -
15. 22a -<< 16. n a =三、
解答题
17. 解:(1)类比为:如果一个平面和两平行平面中的一个相交,则必与另一个相交。

结论是正确的。

证明:设α∥β,且a αγ⋂=,则必有b βγ⋂=.
假设γ与β不相交,则必有γ∥β.又α∥β,所以α∥γ,这与a αγ⋂=相矛盾,所以假设不成立, b βγ⋂=成立.
(2)类比为: 如果两平面同时垂直于第个平面,则这两个平面互相平行.结论是错误的.
理由:这两个平面也可能相交.
18. 证:①当0a b +≤0≥()2
a b ≥
+成立. ②当0a b +>时,用分析法证明如下:
)2
a b ≥
+,
只需证
)2
2
2a b ⎤≥+⎢⎥⎣⎦
, 即证()222
2122
a b a b ab +≥
++, 即证222a b ab +≥,
∵222a b ab +≥对一切实数恒成立,
)
2
a b
≥+成立
综上所述,不等式得证。

19.解:(1)当
2560
70
a a
a
a
⎧--=



⎪+≠

=-1或a=6时,z是实数;
(2)当
2560
7
70
a a
a
a
⎧--≠

⇒≠-

⎪+≠

、-1、6时,z是虚数;
(3)当
2
2
560
3404
70
a a
a a a
a
⎧--≠


--=⇒=


+≠


时,z是纯虚数;
20.解:f′(x)=3x2-2ax,令f′(x)=0,解得x1=0,x2=
2a
3
.

2a
3
≤0,即a≤0时,f(x)在[0,2]上单调递增,从而f(x)max=f(2)=8-4a;当
2a
3
≥2时,即a≥3时,f(x)在[0,2]上单调递减,从而f(x)max=f(0)=0;当0<
2a
3
<2,即0<a<3时,f(x)在[0,
2a
3
]上单调递减,在[
2a
3
,2]上单调递增,
从而f(x)max=


⎧8-4a,0<a<2
0,2<a<3
综上所述,f(x)max=


⎧8-4a,a≤2
0,a>2。

相关文档
最新文档