李雅普诺夫方法

合集下载

第10讲 稳定性和李雅普诺夫第一方法

第10讲  稳定性和李雅普诺夫第一方法
➢ 李雅普诺夫稳定性理论讨论的是动态系统各平衡态附近 的局部稳定性问题。
✓ 它是一种具有普遍性的稳定性理论, 不仅适用于线性 定常系统,而且也适用于非线性系统、时变系统、分 布参数系统。
✓ 本节先讨论李雅普诺夫稳定性理论的基础--李雅普 诺夫稳定性定义。
李雅普诺夫稳定性的定义(3/4)
本节主要讨论李雅普诺夫意义下的各种稳定性的定义和意义。 ➢ 本节主要问题为: 基本概念: 平衡态、李雅普诺夫稳定性、渐近稳定性、 大范围渐近稳定性、不稳定性 基本方法: 求解平衡态方法 ➢ 要掌握好李雅普诺夫稳定性理论,重要的是深刻掌握和理 解李雅普诺夫稳定性定义的实质和意义。 ➢ 在这里,空间想象力对理解李雅普诺夫稳定性的实质和意 义非常有帮助。
➢ 随着状态空间分析法引入动态系统研究和现代控制理论 的诞生,李雅普诺夫第二法又重新引起控制领域人们的 注意,成为近40年来研究系统稳定性的最主要方法,并得 到了进一步研究和发展。
➢ 本章将详细介绍李雅普诺夫稳定性的定义,李雅普诺夫 第一法和第二法的理论及应用。
概述(10/10)
本章需解决的问题: ✓ 动态系统的状态稳定性理论--李雅普诺夫稳定性
概述(3/10)
分析一个控制系统的稳定性,一直是控制理论中所关注的最 重要问题。
➢ 对于简单系统,常利用经典控制理论中线性定常系统 的稳定性判据。
➢ 在经典控制理论中,借助于常微分方程稳定性理论,产生 了许多稳定性判据,如劳斯-赫尔维茨(Routh-Hurwitz)判 据和奈奎斯特判据等,都给出了既实用又方便的判别 系统稳定性的方法。
➢ 但这些稳定性判别方法仅限于讨论SISO线性定常系统 输入输出间动态关系,讨论的是
✓ 线性定常系统的有界输入有界输出(BIBO)稳定性,

第四章(稳定性与李雅普诺夫方法)

第四章(稳定性与李雅普诺夫方法)

1、构造Liaponov 函数没有确定的方法,要求一定的技巧,一般 用于非线性系统或时变系统; 2、必须是稳定性判据的标量函数,且有一阶连续偏导; 3、非唯一但不影响结论的正确性; 4、最简单的形式为二次型。
§4.4 Liaponov 方法在系统中的应用
一、线性定常连续系统渐近稳定判据 1、判据 的平衡状态xe =0 大范围渐进稳定充要条件是: 对于任意给定的正定实对称矩阵Q,存在正定的实对称矩阵P,满足 Liaponov方程: T
1、 Liyaponov意义下的稳定
0, ( , t 0 ) 0, s.t. if || x 0 x e || ( , t 0 ) || (t , x 0 , t 0 ) x e || then其解 (t 0 t )
称平衡状态xe为 Liyaponov意义下的稳定,简称稳定。
V (x) x T Px [ x1
x2
如果 pij =
p ji ,则称P
为实对称阵。例如
1 1 0 P 1 1 0 0 0 1
P为实对称阵,存在正交阵T,使当
V ( x) x Px x T PTx x T
T T T T 1
X T X
___
2 1 2 2 1 2 2 1 2 2 2 1 2
2
1
2
[例4-3]
判别下列各函数的符号性质.
(1)设 x x1
x2
x3
T
标量函数为
2 V ( x) ( x1 x2 )2 x3
因为有V(0)=0,而且对非零x,例如 x 所以V(x)为半正定(或非负定)的. (2)设
a a 0
设V(x)为由n维矢量x所定义的标量函数,x∈Ω,且x=0处,恒有 V(x)=0。对所有在域Ω中的任何非零矢量x,如果成立 ①V(x)>0,则称V(x)为正定的.例如,V (x) x 2x V ( x) ( x x ) ②V(x)≥0,则称V(x)为半正定(或非负定)的.例如, ③V(x)<0,则称V(x)为负定的.例如,V (x) (x 2x ) ④V(x)≤0,则称V(x)为半负定的.例如,V ( x) ( x x ) ⑤V(x)>0或V(x)<0,则称V(x)为不定的.例如, V ( x) x x

李雅普诺夫能量函数

李雅普诺夫能量函数

李雅普诺夫能量函数
李雅普诺夫能量函数是控制系统理论中的一种重要方法,可以用于描述非线性系统的稳定性。

该函数的名称来源于19世纪俄罗斯数学家亚历山大·米哈伊洛维奇·李雅普诺夫。

在控制系统中,我们经常需要研究一些非线性系统,例如非线性电路、非线性机械系统等。

这些系统具有复杂的特性,很难通过直接的方法来分析其稳定性。

因此,我们需要一些更为有效的方法来描述这些系统的稳定性和动态特性。

李雅普诺夫能量函数就是这样一种方法。

李雅普诺夫能量函数是指一个非负的、可微的函数,通常用V(x)表示,其中x表示系统状态。

该函数可以描述系统的能量状态,通过分析它的变化情况,我们可以判断系统的稳定性。

具体来说,李雅普诺夫函数可归纳为如下几种类型:
指数型李雅普诺夫函数的形式为:
V(x) = e^(αx)
其中α是一个正实数。

指数函数具有单调递增的性质,因此V(x)也是单调递增的。

当系统状态x趋近于无穷大时,函数值也会趋近于无穷大,表示系统不稳定。

反之,当系统状态x趋近于零时,函数值也会趋近于零,表示系统稳定。

在使用李雅普诺夫能量函数进行稳定性分析时,我们通常会采用李雅普诺夫定理,它可以判断系统的稳定性。

具体来说,李雅普诺夫定理有如下几个方面:
1. 如果李雅普诺夫函数是严格单调递减的,那么系统是渐近稳定的。

需要注意的是,使用李雅普诺夫能量函数进行稳定性分析还需要满足一些前提条件,例如系统需要是局部可观测和可控的。

此外,我们还需要选择合适的李雅普诺夫函数,以便更准确地描述系统的稳定性。

李雅普诺夫方法分析控制系统稳定性0306

李雅普诺夫方法分析控制系统稳定性0306

2.渐近稳定 1)是李氏意义下的稳定
x(t ; x0 , t0 ) xe 0 2)lim t
与t0无关 一致渐进稳定
3.大范围内渐进稳定性
对 x0 s( )
t

都有 lim x(t; x0 , t0 ) xe 0
初始条件扩展到整个空间,且是渐进稳定性。
3.4 李雅普诺夫第二法(直接法)
稳定性定理:
f ( x, t ) 设系统状态方程:x 其平衡状态满足 f (0, t ) 0 ,假定 状态空间原点作为平衡状态( xe 0),并设 在原点邻域存在V ( x, t )对 x 的连续一阶偏 导数。
定理1:若(1) V ( x, t ) 正定; . (2) V ( x, t ) 负定; 则原点是渐进稳定的。 . 说明: V ( x, t ) 负定 能量随时间连续单调 衰减。 定理2:若(1) V . ( x, t ) 正定; (2) V . ( x, t ) 负半定; (3) V [ x(t ; x0 , t ), t ] 在非零状态不 恒为零,则原点是渐进稳定的。 V ( x) 如果V(x)还满足 lim x
数判据,Nquist稳定判据,根轨迹 判据等
非线性系统:相平面法(适用于一,
二阶非线性系统)
1982年,俄国学者李雅普诺夫提出的
稳定性定理采用了状态向量来描述, 适用于单变量,线性,非线性,定常, 时变,多变量等系统。
应用:自适应,最优控制,非线性控
制等。
主要内容:
李氏第一法(间接法):求解特征方
程的特征值
李氏第二法(直接法):利用经验和
技巧来构造李氏函数
2.1 稳定性基本概念
=Ax+Bu(u=0) 1.自治系统:输入为0的系统 x

李雅普诺夫第二法

李雅普诺夫第二法

12/23/2012
2 V ( x) ( x1 x2 )( x1 x2 ) 2x1x1 x2 x2 ( x12 x2 )
当 x 时, ( x) ,所以系统在其原点处大范围 V 渐近稳定。
12/23/2012
4.3 李雅普诺夫第二法
x1 x1 x2 例4-8 系统的状态方程为 x2 x1 x2
,
,
可见此二次型函数是正定的,即
12/23/2012
4.3 李雅普诺夫第二法
4.3.2 几个稳定性判据 定理 设系统的状态方程为
x f ( x),
如果平衡状态 xe 0, 即, f ( xe ) 0 如果存在标量函数V(x) 满足:
1) V ( x) 对所有x具有一阶连续偏导数。 2) V ( x) 是正定的;
12/23/2012
4.3 李雅普诺夫第二法
例 设 x x1
x2
x3
T
2 1) V ( x) ( x1 x2 )2 x3
因为V(0) 0,而且对非零向量 ,有x a,a, T 0, x ( - 0) 也使V(x) 0,所以V(x)是半正定的。
2 2) V ( x) x12 x2因为V(0) 0,而且对非零向量 ,有x 0, a) 0, x ( 0, T 也使V(x) 0,所以V(x)是半正定的。
12/23/2012
4.3 李雅普诺夫第二法
2. 二次型标量函数
设 x1,x2 ,xn为n个变量, 二次型标量函数可写为
p11 p V ( x) xT Px x1 x2 xn 21 pn1 其中,P为实对称矩阵。 p12 p22 p1n x1 x2 pnn xn

李雅普诺夫离散系统判据证明

李雅普诺夫离散系统判据证明

李雅普诺夫离散系统判据证明
李雅普诺夫判据是用来证明离散系统稳定性的一种方法。

该判据是基于李雅普诺夫函数的变化性质进行证明的。

首先,假设离散系统的状态变量为x,其演化方程为x(k+1) =
f(x(k)),其中k为离散时间步。

如果存在一个函数V(x),满足
以下条件:
1. V(x)是定义在状态空间D内的连续函数;
2. V(x)在D中严格正定,即V(x) > 0,对于任何非零的x;
3. 对于所有的x(k)满足x(k+1) = f(x(k)),有V(x(k+1)) ≤ V(x(k)) - α(x(k)),其中α(x(k))是一个正定的函数;
4. 如果存在一个正定的函数β(x)满足V(x(k)) ≤ β(x(k)),则系
统是渐近稳定的。

根据以上条件,可以证明系统的稳定性。

具体证明的步骤如下:
1. 首先,确定适合的Lyapunov函数V(x)。

这可以通过系统的
特性和性质进行推导和选择,例如能量函数、误差函数等;
2. 推导出V(x(k+1))和V(x(k))之间的关系式,并解析得到
α(x(k))的表达式;
3. 根据V(x(k+1)) ≤ V(x(k)) - α(x(k)),证明V(x)是单调递减的;
4. 通过比较V(x)和β(x)的形式,得出V(x(k)) ≤ β(x(k))的结论;
5. 根据Lyapunov函数的性质,证明系统是渐近稳定的。

需要注意的是,李雅普诺夫判据只能证明系统的稳定性,不能推导出系统的收敛速度。

李雅普诺夫第二法

李雅普诺夫第二法

李雅普诺夫第二法李雅普诺夫第二法又称直接法,它是从能量观点进行稳定性分析的,它的基本思想是建立在这样一个物理事实基础之上,即:由经典力学理论可知,对于一个振动系统,如果系统的总能量随时间增长而连续减少,直到平衡状态为止,那么振动系统是稳定的。

1)渐进稳定的判据定理1设系统的状态方程为(,)x f x t =其中平衡状态为0e x =,满足(0,)0f t =,如果存在一个具有连续一阶偏导数的标量函数(,)v x t ,且满足以下条件:(1)(,)v x t 是正定的;(2)(,)vx t 是负定的。

则系统在原点处的平衡状态是一致渐进稳定的。

此外,如果当||||x →∞,有(,)v x t →∞,则在原点处的平衡状态是大范围一致渐进稳定的。

2)渐进稳定的判据定理1设系统的状态方程为(,)x f x t =其中平衡状态为(0,)0f t =,如果存在一个具有连续一阶偏导数的标量函数(,)v x t ,且满足以下条件:(1)(,)v x t 是正定的;(2)(,)vx t 是负定的。

(3)(,)v x t 在0x ≠时不恒等于零,则系统在原点处的平衡状态是大范围渐进稳定的。

3)李雅普诺夫意义下稳定的判别定理设系统的状态方程为=x f x t(,)其中平衡状态为(0,)0f t=,如果存在一个具有连续一阶偏导数的标量函数v x t,且满足以下条件:(,)(1)(,)v x t是正定的;(2)(,)是负定的。

v x t(3)则系统在原点处的平衡状态在李雅普诺夫意义下是一致稳定的。

4)不稳定的判别定理设系统的状态方程为=x f x t(,)其中平衡状态为(0,)0f t=,如果存在一个具有连续一阶偏导数的标量函数v x t,且满足以下条件:(,)(1)(,)v x t是正定的;(2)(,)是正定的。

v x t则系统在原点处的平衡状态是不稳定。

稳定性与李雅普诺夫方法

稳定性与李雅普诺夫方法

只在李雅普诺夫意义下稳定,但不是渐近稳定旳系统则称临界 稳定系统,这在工程上属于不稳定系统。
经典控制理论(线性系统)不稳定 (Re(s)>0) 临界情况 (Re(s)=0) 稳定 (Re(s)<0)
Lyapunov意义下
不稳定
稳定
渐近稳定
2024/10/11
25
4.3 李雅普诺夫第一法
2024/10/11
x描述了系统在n维状态空间中从初始条件(t0,x0)出发旳一条状 态运动旳轨线,称系统旳运动或状态轨线
2024/10/11
15
平衡状态
若系统存在状态向量xe,对全部t,都使: f (xe , t) 0
成立,则称xe为系统旳平衡状态。
对于一种任意系统,不一定都存在平衡状态,有时虽然存在也 未必是唯一旳。
早在1892年,俄国数学家李雅普诺夫就提出将鉴定系统稳定性 旳问题归纳为两种措施:李雅普诺夫第一法和李雅普诺夫第二 法。
前者是经过求解系统微分方程,然后根据解旳性质来鉴定系统 旳稳定性。它旳基本思想和分析措施与经典理论是一致旳。
2024/10/11
3
本章要点讨论李雅普诺夫第二法。
它旳特点是不求解系统方程,而是经过一种叫李雅普诺夫函数旳 标量函数来直接鉴定系统旳稳定性。
所以,它尤其合用于那些难以求解旳非线性系统和时变系统。
李雅普诺夫第二法除了用于对系统进行稳定性分析外,还可用于 对系统瞬态响应旳质量进行评价以及求解参数最优化问题。
另外,在当代控制理论旳许多方面,例如最优系统设计、最优 估值、最优滤波以及自适应控制系统设计等,李雅普诺夫理论 都有广泛旳应用。
2024/10/11
所以,怎样拟定渐近稳定旳最大区域,而且尽量扩大其范围是 尤其主要旳。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

李雅普诺夫方法
李雅普诺夫方法(Lipunov Method)是一种分析系统的动力学性质的方法,它可以用来估计系统的稳定性和收敛性。

它也被称为“Lyapunov函数”或者“Lyapunov理论”。

这种方法最初是由俄罗斯物理学家谢尔盖·李·雅普诺夫(Sergi Lyapunov)提出的。

李雅普诺夫方法是一种可以用来评估系统的稳定性和收敛性的动态分析方法,它是基于系统中用于表示系统状态的状态变量的无穷级数而设计的。

这种方法被广泛应用于工程、科学和数学领域,用于对各种动力学系统的性能进行研究。

在李雅普诺夫方法中,通常使用一个叫做Lyapunov函数的函数来表示系统的状态。

Lyapunov函数是一个满足特定条件的函数,它表示系统当前状态与其原始状态之间的差异。

Lyapunov函数的计算依赖于系统中的状态变量,因此,通过计算Lyapunov函数,可以检测出系统内部是否存在不稳定性(即状态变量的变化率大于期望)。

李雅普诺夫方法可以用来识别系统的稳定性,以及在系统状态发生变化时,系统的性能如何受到影响。

在工程和科学应用中,李雅普诺夫方法可用于模拟和分析系统的行为,以及系统的性能如何受到不确定性因素的影响。

李雅普诺夫方法有许多优点,其中最重要的是它可以用来判断系统的稳定性和收敛性,并评估系统性能的变化情况。

此外,它还可以用来分析系统中存在的非线性关系,以及系统在非线性环境下的行为。

它也可以帮助人们更好地理解系统的行为,从而改善系统的性能。

总之,李雅普诺夫方法是一种用于分析系统的动力学性质的有效方法,它可以用来估计系统的稳定性和收敛性,并且可以分析系统的行为,从而改善系统的性能。

相关文档
最新文档