小学奥数教程组合之插板法 全国通用含答案
排列组合中的解题方法之插板法

排列组合中的解题方法之插板法一、基础理论:插板是一个无形的东西即板子,它不能代表一个元素,它区别于插空法。
插板法是用于解决“相同元素”分组问题。
判断插板法的题目主要看题干中的两个词语:①相同元素②至少为1,如果有这样两个词语一般此题就可以直接插板进行解题。
引例说明:春节前单位慰问困难职工,将10份相同的慰问品分给6名职工,每名职工至少要分得1份慰问品,分配方法共有:A.84种B.126种C.210种D.252种【分析】此题第一眼给人的感觉是能用列举法进行分类解题,但是细一思考分类的情况太多了,不易计算,因为想用插板法解题一般是分两类或三类。
而插板法就可以使这种为题迎刃而解。
利用无形的板子把其分割开来。
【解析】“10份慰问品相同且每人至少得1份”,满足插板法的两个前提①相同元素②至少为1,故可直接使用插板法。
将10份慰问品依次排成一条直线,我们用插板的形式把慰问品分给6名职工,中间形成9个空,插上第1个板子,则第一个板子之前的分给第一名职工,在后面又插了一个板子,表示第1个板子和第2个板子之间的分给第二名职工,依次类推,因为要分给6个人,所以要插5个板子,第5个板子之后的分给第六名职工,所以只要板子固定了,那么每名职工分几份慰问品就固定了。
所以10分慰问品中间形成了9个空;分给6个人,插入5个板;共有=126种分配方法。
注:估计有的同学会问,为什么第一个慰问品之前的位置和最后一个慰问品之后的位置不能放板子。
其实原因在于“每名员工至少分1份慰问品”,如果在第一个慰问品之前的位置放板子那么第一名职工就一份分不到了,如果在最后一个慰问品之后的位置放板子那么最后一名职工就一份分不到了。
二、真题举例:例1、假设x、y、z是三个非零自然数,且有x+y+z=36,则共有多少组满足条件的解?A.700B.665C.630D.595【分析】此题可以看做是36块糖排成一排,即元素相同;由于x、y、z是非零自然数,即至少为1,问题:x+y+z=36,顺便看成3个人来分这36块糖。
排列组合 插板法 插空法 捆绑法

排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻)插板法(m为空的数量)【基本题型】有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分法?图中“”表示相同的名额,“”表示名额间形成的空隙,设想在这几个空隙中插入六块“挡板”,则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含的名额数分给第一、二、三……七所学校,则“挡板”的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的,【总结】需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。
注意:这样对于很多的问题,是不能直接利用插板法解题的。
但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果。
插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n 个元素分成(b+1)组的方法.应用插板法必须满足三个条件:(1)这n个元素必须互不相异?(2)所分成的每一组至少分得一个元素?(3) 分成的组别彼此相异?举个很普通的例子来说明?把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况? 问题的题干满足条件(1)(2),适用插板法,c9 2=36?下面通过几道题目介绍下插板法的应用?e 二次插板法?例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?-o - o - o - o - o - o - 三个节目abc?可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位?所以一共是c7 1×c8 1×c9 1=504种【基本解题思路】将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。
奥数精编训练-组合之插板法【精品】

1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步:第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法.根据乘法原理,得到m m m n n m P C P =⨯. 因此,组合数12)112321mm n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()(). 这个公式就是组合数公式.二、组合数的重要性质一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)7-5-4.组合之插板法教学目标知识要点这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =.规定1n nC =,01n C =.插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.使用插板法一般有如下三种类型:⑴ m 个人分n 个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的(1)n -个空隙中放上(1)m -个插板,所以分法的数目为11m n C --.⑵ m 个人分n 个东西,要求每个人至少有a 个.这个时候,我们先发给每个人(1)a -个,还剩下[(1)]n m a --个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1(1)1m n m a C ----. ⑶ m 个人分n 个东西,允许有人没有分到.这个时候,我们不妨先借来m 个东西,每个人多发1个,这样就和类型⑴一样了,不过这时候物品总数变成了()n m +个,因此分法的数目为11m n m C -+-.【例 1】 将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有种不同的放法。
(推荐)排列组合问题之插板法

排列组合问题之插板法:插板法是用于解决“相同元素”分组问题,且要求每组均“非空”,即要求每组至少一个元素;若对于“可空”问题,即每组可以是零个元素,又该如何解题呢?例1.现有10个完全相同的球全部分给7个班级,每班至少1个球,问共有多少种不同的分法?【解析】:题目中球的分法共三类:第一类:有3个班每个班分到2个球,其余4个班每班分到1个球。
其分法种数为C37=35。
第二类:有1个班分到3个球,1个班分到2个球,其余5个班每班分到1个球。
其分法种数2*C27=42。
第三类:有1个班分到4个球,其余的6个班每班分到1个球。
其分法种数C17=7。
所以,10个球分给7个班,每班至少一个球的分法种数为84:。
由上面解题过程可以明显感到对这类问题进行分类计算,比较繁锁,若是上题中球的数目较多处理起来将更加困难,因此我们需要寻求一种新的模式解决问题,我们创设这样一种虚拟的情境——插板。
将10个相同的球排成一行,10个球之间出现了9个空档,现在我们用“档板”把10个球隔成有序的7份,每个班级依次按班级序号分到对应位置的几个球(可能是1个、2个、3个、4个),借助于这样的虚拟“档板”分配物品的方法称之为插板法。
由上述分析可知,分球的方法实际上为档板的插法:即是在9个空档之中插入6个“档板”(6个档板可把球分为7组),其方法种数为C39=84。
由上述问题的分析解决看到,这种插板法解决起来非常简单,但同时也提醒各位考友,这类问题模型适用前提相当严格,必须同时满足以下3个条件:①所要分的元素必须完全相同;②所要分的元素必须分完,决不允许有剩余;③参与分元素的每组至少分到1个,决不允许出现分不到元素的组。
下面再给各位看一道例题:例2.有8个相同的球放到三个不同的盒子里,共有()种不同方法.A.35 B.28 C.21 D.45【解析】:这道题很多同学错选C,错误的原因是直接套用上面所讲的“插板法”,而忽略了“插板法”的适用条件。
排列组合中的插板法

排列组合中的插板法排列组合中让你傻傻分不清楚的乘法原理和加法原理国考中的排列组合与概率问题算的上是一个高频考点,该部分知识点比较多,很多同学在高中时候没有学好相关的知识,心里没底,做起题来感觉特别吃力。
其实国考的行测中,考查该模块的题型都是比较浅的,掌握好套路,即使基础不好,也能杀出一条血路。
首先我们先来了解一下什么是乘法原理和加法原理。
乘法原理:做一件事要分许多个步骤才能完成,每一个步骤都不能单独完成,且这几个步骤都是缺一不可的,那么完成这一件事方法的总数等于各个步骤的乘积,即乘法原理。
【例1】一次会议某单位邀请了10名专家,该单位预定了10个房间,其中一层5间、二层5间。
已知邀请专家中4人要求住二层、3人要求住一层、其余3人住任一层均可。
那么要满足他们的住房要求且每人1间,有多少种不同的安排方案?A.43200B.7200C.450D.75【答案】:B【解析】:本题考查排列组合问题-乘法原理。
10个专家提出了3个要求,都要满足这些要求才算是完成任务,所以每一个步骤都是缺一不可的,要用乘法原理来解决。
第一个要求:安排4人住二层,5个房间中选4个,且顺序对结果有影响,用排列A,共45120A=种。
第二个要求:安排3个人住一层,同理:3560A=种。
第三个要求:剩下3人选房间,A=种。
故总数为:43355343200A A A=种。
故答案为A。
加法原理:做一件事有多种方法可以完成,每一种方法都可以帮我们实现目的,那么完成这一件事方法的总数等于各种方法的总和,即加法原理。
举个例子:我从家到单位可以跑步,公交,地铁或者开车。
那我一共有多少种方式可以到单位?显然易见:1+1+1+1=4。
每一种方式都能实现目的,所以加起来就可以了。
【例2】某单位组织职工参加周末培训, 其中英语培训和财务培训均在周六, 公文写作培训和法律培训均在周日。
同一天举办的两场培训每人只能报名参加一场, 但不在同一天的培训可以都参加。
小学奥数计数之插板法习题【三篇】

小学奥数计数之插板法习题【三篇】【第一篇】插板法就是插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法。
应用插板法必须满足三个条件:(1)这n个元素必须互不相异(2)所分成的每一组至少分得一个元素(3) 分成的组别彼此相异举个很普通的例子来说明把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?问题的题干满足条件(1)(2),适用插板法,c9 2=36下面通过几道题目介绍下插板法的应用a 凑元素插板法(有些题目满足条件(1),不满足条件(2),此时可适用此方法)1 :把10个相同的小球放入3个不同的箱子,问有几种情况?2:把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个,第三个箱子可以放空球,有几种情况?b 添板插板法3:把10个相同小球放入3个不同的箱子,问有几种情况?4:有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数共有几个?5:有一类自然数,从第四个数字开始,每个数字都恰好是它前面三个数字之和,直至不能再写为止,如2349,1427等等,这类数共有几个?答案:1、3个箱子都可能取到空球,条件(2)不满足,此时如果在3个箱子种各预先放入1个小球,则问题就等价于把13个相同小球放入3个不同箱子,每个箱子至少一个,有几种情况?显然就是c12 2=662、我们可以在第二个箱子先放入10个小球中的2个,小球剩8个放3个箱子,然后在第三个箱子放入8个小球之外的1个小球,则问题转化为把9个相同小球放3不同箱子,每箱至少1个,几种方法?c8 2=283、-o - o - o - o - o - o - o - o - o - o - o表示10个小球,-表示空位11个空位中取2个加入2块板,第一组和第三组可以取到空的情况,第2组始终不能取空此时若在第11个空位后加入第12块板,设取到该板时,第二组取球为空则每一组都可能取球为空c12 2=664、因为前2位数字对应了符合要求的一个数,只要求出前2位有几种情况即可,设前两位为ab显然a+b1 -1- 1 -1 -1 -1 -1 -1 -1 - - 1代表9个1,-代表10个空位我们可以在这9个空位中插入2个板,分成3组,第一组取到a 个1,第二组取到b个1,但此时第二组始终不能取空,若多添加第10个空时,设取到该板时第二组取空,即b=0,所以一共有c10 2=455、类似的,某数的前三位为abc,a+b+c1 -1- 1 -1 -1 -1 -1 -1 -1 - - -在9个空位种插如3板,分成4组,第一组取a个1,第二组取b 个1,第三组取c个1,由于第二,第三组都不能取到空,所以添加2块板设取到第10个板时,第二组取空,即b=0;取到第11个板时,第三组取空,即c=0。
(小学奥数)组合之插板法

1.使學生正確理解組合的意義;正確區分排列、組合問題;2.瞭解組合數的意義,能根據具體的問題,寫出符合要求的組合;3.掌握組合的計算公式以及組合數與排列數之間的關係;4.會分析與數字有關的計數問題,以及與其他專題的綜合運用,培養學生的抽象能力和邏輯思維能力;通過本講的學習,對組合的一些計數問題進行歸納總結,重點掌握組合的聯繫和區別,並掌握一些組合技巧,如排除法、插板法等.一、組合問題 日常生活中有很多“分組”問題.如在體育比賽中,把參賽隊分為幾個組,從全班同學中選出幾人參加某項活動等等.這種“分組”問題,就是我們將要討論的組合問題,這裏,我們將著重研究有多少種分組方法的問題.一般地,從n 個不同元素中取出m 個(m n ≤)元素組成一組不計較組內各元素的次序,叫做從n 個不同元素中取出m 個元素的一個組合.從排列和組合的定義可以知道,排列與元素的順序有關,而組合與順序無關.如果兩個組合中的元素完全相同,那麼不管元素的順序如何,都是相同的組合,只有當兩個組合中的元素不完全相同時,才是不同的組合.從n 個不同元素中取出m 個元素(m n ≤)的所有組合的個數,叫做從n 個不同元素中取出m 個不同元素的組合數.記作m n C .一般地,求從n 個不同元素中取出的m 個元素的排列數m n P 可分成以下兩步: 第一步:從n 個不同元素中取出m 個元素組成一組,共有m n C 種方法;第二步:將每一個組合中的m 個元素進行全排列,共有m m P 種排法.根據乘法原理,得到m m m n n m P C P =⨯. 因此,組合數12)112321mm n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()(). 這個公式就是組合數公式.知識要點教學目標7-5-4.組合之插板法二、組合數的重要性質一般地,組合數有下麵的重要性質:m n m n n C C -=(m n ≤)這個公式的直觀意義是:m n C 表示從n 個元素中取出m 個元素組成一組的所有分組方法.n m n C -表示從n 個元素中取出(n m -)個元素組成一組的所有分組方法.顯然,從n 個元素中選出m 個元素的分組方法恰是從n 個元素中選m 個元素剩下的(n m -)個元素的分組方法.例如,從5人中選3人開會的方法和從5人中選出2人不去開會的方法是一樣多的,即3255C C =.規定1n n C =,01n C =.插板法一般用來解決求分解一定數量的無差別物體的方法的總數,使用插板法一般有三個要求:①所要分解的物體一般是相同的:②所要分解的物體必須全部分完:③參與分物體的組至少都分到1個物體,不能有沒分到物體的組出現.在有些題目中,已知條件與上面的三個要求並不一定完全相符,對此應當對已知條件進行適當的變形,使得它與一般的要求相符,再適用插板法. 使用插板法一般有如下三種類型:⑴ m 個人分n 個東西,要求每個人至少有一個.這個時候我們只需要把所有的東西排成一排,在其中的(1)n -個空隙中放上(1)m -個插板,所以分法的數目為11m n C --. ⑵ m 個人分n 個東西,要求每個人至少有a 個.這個時候,我們先發給每個人(1)a -個,還剩下[(1)]n m a --個東西,這個時候,我們把剩下的東西按照類型⑴來處理就可以了.所以分法的數目為1(1)1m n m a C ----.⑶ m 個人分n 個東西,允許有人沒有分到.這個時候,我們不妨先借來m 個東西,每個人多發1個,這樣就和類型⑴一樣了,不過這時候物品總數變成了()n m +個,因此分法的數目為11m n m C -+-.【例 1】 將三盆同樣的紅花和四盆同樣的黃花擺放成一排,要求三盆紅花互不相鄰,共有 種不同的放法。
排列组合插板法、插空法、捆绑法

排列组合问题——插板法(分组)、插空法(不相邻)、捆绑法(相邻)插板法(m为空的数量)【基本题型】有n个相同的元素,要求分到不同的m组中,且每组至少有一个元素,问有多少种分图中“”表示相同的名额,“”表示名额间形成的空隙,设想在这几个空隙中插入六块“挡板”,则将这10 个名额分割成七个部分,将第一、二、三、……七个部分所包含的名额数分给第一、二、三……七所学校,则“挡板”的一种插法恰好对应了10 个名额的一种分配方法,反之,名额的一种分配方法也决定了档板的一种插法,即挡板的插法种数与名额的分配方法种数是相等的,【总结】需满足条件:n个相同元素,不同个m组,每组至少有一个元素,则只需在n个元素的n-1个间隙中放置m-1块隔板把它隔成m份即可,共有种不同方法。
注意:这样对于很多的问题,是不能直接利用插板法解题的。
但,可以通过一定的转变,将其变成符合上面3个条件的问题,这样就可以利用插板法解决,并且常常会产生意想不到的效果。
插板法就是在n个元素间的(n-1)个空中插入若干个(b)个板,可以把n个元素分成(b+1)组的方法.应用插板法必须满足三个条件:(1)这n个元素必须互不相异(2)所分成的每一组至少分得一个元素(3) 分成的组别彼此相异举个很普通的例子来说明把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?问题的题干满足条件(1)(2),适用插板法,c9 2=36下面通过几道题目介绍下插板法的应用e 二次插板法例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况?-o - o - o - o - o - o - 三个节目abc可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位所以一共是c7 1×c8 1×c9 1=504种【基本解题思路】将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合之插板法7-5-4.教学目标1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.知识要点一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从个不同元素中取出个()元素组成一组不计较组内各元素的次序,叫做从个不同元nm?nnm素中取出个元素的一个组合.m从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从个不同元素中取出个元素()的所有组合的个数,叫做从个不同元素中取出个不同元素的nm?mmnn m组合数.记作.C nm可分成以下两步:个元素的排列数一般地,求从个不同元素中取出的Pmn nm第一步:从个不同元素中取出个元素组成一组,共有种方法;Cmn nm第二步:将每一个组合中的个元素进行全排列,共有种排法.Pm mmmm.根据乘法原理,得到CP?P?nmnm Pn (?n?1)(?n?2)?(?n?m?1)mn.因此,组合数?C?n m m (?m?1)(?m?2)??3?2?1P m这个公式就是组合数公式.二、组合数的重要性质mn?m?CCm?n)(一般地,组合数有下面的重要性质:nnmn?m CC表示从个个元素中取出这个公式的直观意义是:个元素组成一组的所有分组方法.表示从nmn nn元素中取出()个元素组成一组的所有分组方法.显然,从个元素中选出个元素的分组方法恰是从个nn?mnm元素中选个元素剩下的()个元素的分组方法.mmn?32?CC.人不去开会的方法是一样多的,即例如,从人中选人开会的方法和从人中选出553255n0?1C?1C规定.,nn例题精讲插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.使用插板法一般有如下三种类型:⑴个人分个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的(n?1)nm m?1个空隙中放上个插板,所以分法的数目为.C1)?(m1?n⑵个人分个东西,要求每个人至少有个.这个时候,我们先发给每个人个,还剩下[n?m(a?1)]1)?(aamn m?1个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为.C1?a?1)n?m(⑶个人分个东西,允许有人没有分到.这个时候,我们不妨先借来个东西,每个人多发1个,这样就mnm m?1和类型⑴一样了,不过这时候物品总数变成了,因此分法的数目为.C)m?(n个1?m?n【例1】将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有种不同的放法。
【考点】计数之插板法【难度】2星【题型】填空【关键词】希望杯,五年级,一试,第18题5?4?33【解析】四盆黄花摆好后,剩下5个位子可插进红花,选三个位置将三盆红花插入,,所以=10=C53?2?1有10种选择.【答案】种10【例2】在1,2,3,……,7,8的任意排列中,使得相邻两数互质的排列方式共有______ 种.【考点】复杂乘法原理【难度】4星【题型】解答【关键词】西城实验【解析】这8个数之间如果有公因子,那么无非是2或3.8个数中的4个偶数一定不能相邻,对于这类多个元素不相邻的排列问题,考虑使用“插入法”即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入但在偶数插入时,还要考虑3和6相邻的情况.奇数的排列一共有种24?4!对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插再在剩下的四个位置中插入2、4、8,一共有种24?3?24?所以一共有种.1728?24?24?3【答案】1728【例3】有10粒糖,分三天吃完,每天至少吃一粒,共有多少种不同的吃法?【考点】计数之插板法【难度】2星【题型】解答【解析】如图:○○|○○○○|○○○○,将10粒糖如下图所示排成一排,这样每两颗之间共有9个空,从头开始吃,若相邻两块糖是分在两天吃的,就在其间画一条竖线隔开表示之前的糖和之后的糖不是在同一天吃掉的,九个空中画两条竖线,一共有种方法.362?9?8?【答案】36 【巩固】小红有10块糖,每天至少吃1块,7天吃完,她共有多少种不同的吃法?【考点】计数之插板法【难度】3星【题型】解答【解析】分三种情况来考虑:⑴当小红最多一天吃块时,其余各每天吃块,吃块的这天可以是这七天里的任何一天,有种7414吃法;⑵当小红最多一天吃块时,必有一天吃块,其余五天每天吃块,先选吃块的那天,有种选73312择,再选吃块的那天,有种选择,由乘法原理,有种吃法;4266?7?2⑶当小红最多一天吃块时,必有三天每天吃块,其四天每天吃块,从天中选天,有371227?6?53(种)吃法.35C??73?2?1根据加法原理,小红一共有(种)不同的吃法.84??7?423563?C?84C个空放挡板,有个空,选块糖有另外还可以用挡板法来解这道题,)(种不同的吃610999.法.【答案】84【巩固】有12块糖,小光要6天吃完,每天至少要吃一块,问共有种吃法.【考点】计数之插板法【难度】3星【题型】解答【关键词】西城实验【解析】将12块糖排成一排,中间共有11个空,从11个空中挑出5个空插挡板,把12块糖分成6堆,则11?10?9?8?75这样的每一种分法即对应一种吃法,所以共有种.462C??111?2?3?4?5【答案】462【巩固】把5件相同的礼物全部分给3个小朋友,要使每个小朋友都分到礼物,则分礼物的不同方法一共有种.【考点】计数之插板法【难度】3星【题型】解答【关键词】十三分,小升初,入学测试【解析】把5件相同的礼物排成一列,中间有4个间隔,现在用两个板去隔,每个间隔最多放一个板.这2个板的每一种放法都把5件礼物分成3份,所以这两个板的每一种放法都对应一种分礼物的方法.而2种,所以分礼物的不同方法有6种.板的放法有C6?4【答案】 6【巩固】把7支完全相同的铅笔分给甲、乙、丙3 个人,每人至少1支,问有多少种方法?【考点】计数之插板法【难度】3星【题型】解答【解析】将铅笔排成一排,用两块挡板将这一排铅笔隔开成三份,然后分与甲、乙、丙,挡板可插入的位置一共有个,6个位置中安插两个不分次序的挡板一共有种方法.处理分东西的152?667?1??5?问题用隔板(挡板)法可以顺利解决.【答案】15【巩固】学校合唱团要从个班中补充名同学,每个班至少名,共有多少种抽调方法?861【考点】计数之插板法【难度】3星【题型】解答7?652【解析】插板法,8名同学之间有7个空,插5块板,一共有(种)方法.21CC???772?1【答案】21【例4】10只无差别的橘子放到3个不同的盘子里,允许有的盘子空着.请问一共有多少种不同的放法?【考点】计数之插板法【难度】3星【题型】解答【解析】把10只无差别的橘子放到3个不同的盘子里,允许有的盘子空着,然后在每个盘子里再另加一个橘子,这就变成了把13只无差别的橘子放到3个不同的盘子里,不允许任何一个盘子空着.反过来也是一样,把13只橘子放到3个盘子里,不允许任何一个盘子空着,再从每一个盘子中取出一个橘子,这就变回题目中的放法.所以把10只无差别的橘子放到3个不同的盘子里且允许有的盘子空着的放法数目,和把13只无差别的橘子放到3个不同的盘子里且不允许任何一个盘子空着的放法数目相同.我们现在来计算把13只无差别的橘子放到3个不同的盘子里且不允许任何一个盘子空着的放法数目.这时我们用隔板地方法,把这13只橘子排成一列,则这13只橘子之间有12个空隙.我们只要选定这12个空隙中的2个空隙,再这两个空隙中分别放一块隔板,这样就分成了3组,就相当于把这13只橘子分成了3堆,如下图.所以只要求出从12个空隙中选出2个空隙有多少种方法就可以了.2C?12?11?2?66,所以题目中所求的不同的放法有66种.12【答案】66【巩固】将个相同的苹果放到个不同的盘子里,允许有盘子空着。
一共有种不同的放法。
313【考点】计数之插板法【难度】3星【题型】填空【关键词】学而思杯,6年级,第8题2C?105种。
【解析】15【答案】种105个,可以有多少种不同的分法?3个小朋友,每人最少分3个苹果分给20把】5 【例【考点】计数之插板法【难度】3 【题型】解答2种分法.【解析】先给每人2个,还有14个苹果,每人至少分一个,13个空插2个板,有C?7813【答案】78【巩固】三所学校组织一次联欢晚会,共演出14个节目,如果每校至少演出3个节目,那么这三所学校演出节目数的不同情况共有多少种?【考点】计数之插板法【难度】3星【题型】解答【解析】由于每校至少演出3个节目,所以可以由每所学校先分别出2个节目,剩下的8个节目再由3所学校分,也就是在8个物体间插入2个挡板,8个物体一共有7个间隔,这样的话一共有7?6?(2?1)?21种方法.【答案】21【例6】(1)小明有10块糖,每天至少吃1块,8天吃完,共有多少种不同吃法?(2)小明有10块糖,每天至少吃1块,8天或8天之内吃完,共有多少种吃法?【考点】计数之插板法【难度】3星【题型】解答【解析】将10拆成8个自然数的和,有两种拆法,10=1+1+1+1+1+1+1+3=1+1+1+1+1+1+2+2.若8天中有7天每天吃一块,另外一天吃三块,有8种吃法.若8天中有6天每天吃一块,另外2天每天吃两块,有8×7÷2=28种吃法.8+28=36,所以共有36种吃法.(2)考虑有n块糖,每天至少吃1块,n天之内吃完的情况.将n块糖排成一行,这样在n块糖之间就产生了n-1个空隙.可以在这些空隙中插入竖线,如果一条竖线都没有插,就代表着1天把所有的糖吃完.如果每个空隙都插入竖线,就代表着每天吃一块糖,n天吃完.每个空隙都可以选择插或者不插,这样每一种插法都代表着一种吃法.由于每个空隙都有插或者不插两个选择,所以n-1n-1n-1种不同的吃法.当有10块,一共有2块糖时,个空隙就有2101种插法,即n 块糖每天至少吃9=512种吃法.天之内吃完共有210块糖9天吃完时,其中1天要吃2块,其余8天每天吃1块,共有9种吃法.10块糖10天吃完时,每天吃1块,有1种吃法.512-9-1=502,所以10块糖8天或8天之内吃完,共有502种吃法.【答案】502【巩固】有10粒糖,每天至少吃一粒,吃完为止,共有多少种不同的吃法?【考点】计数之插板法【难度】3星【题型】解答【解析】初看本题似乎觉得很好入手,比如可以按天数进行分类枚举:1天吃完的有1种方法,这天吃10块;2天吃完的有9种方法,10=1+9=2+8=……=9+1;当枚举到3天吃完的时,情况就有点错综复杂了,叫人无所适从……所以我们必须换一种角度来思考.不妨从具体的例子入手来分析,比如这10块糖分4天吃完:第1天吃2块;第2天吃3块;第3天吃1块;第4天吃4块.我们可以将10个“○”代表10粒糖,把10个“○”排成一排,“○”之间共有9个空位,若相邻两块糖是分在两天吃的,就在其间画一条竖线(如下图).○○|○○○|○|○○○○比如上图就表示“第1天吃2块;第2天吃3块;第3天吃1块;第4天吃4块.”这样一来,每一种吃糖的方法就对应着一种“在9个空位中插入若干个‘|'的方法”,要求有多少个不同的吃法,就是要求在这9个空位中插入若干个“|”的方法数.由于每个空位都有画‘|'与“不画‘|'两种可能:每个空位都有画“|”与不画“|”两种可能9?2512?22?2??2,这也就说明吃完根据乘法原理,在这9“|”的方法数有:个空位中画若干个910颗糖共有512种不同的吃法.【答案】512【例7】马路上有编号为,,,…,的十只路灯,为节约用电又能看清路面,可以把其中的三只灯10321关掉,但又不能同时关掉相邻的两只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?【考点】计数之插板法【难度】3星【题型】解答【解析】只灯关掉只,实际上还亮只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在只710733种方法.亮着的路灯之间的个空档中放入只熄灭的灯,有C?20366【答案】20 【巩固】学校新修建的一条道路上有盏路灯,为了节省用电而又不影响正常的照明,可以熄灭其中盏灯,212但两端的灯不能熄灭,也不能熄灭相邻的盏灯,那么熄灯的方法共有多少种?2【考点】组合之基本运用【难度】3星【题型】解答【解析】要熄灭的是除两端以外的盏灯,但不相邻.可以看成有盏灯,共有个空位,在这个空位中910929?82找个空位的方法数就是熄灭盏灯的方法数,那么熄灯的方法数有(种).2236?C?9 2?12【答案】C36?9【例8】在四位数中,各位数字之和是4的四位数有多少?【考点】计数之插板法【难度】3星【题型】解答原四位数为,按照题意,我们有,但是对、、析】设、要求不同,因【解ABCDC?C?D?4A?BBAD 为这是一个四位数,所以应当有,而其他三个字母都可以等于0,这样就不能使用我们之前的0A?插板法了,因此我们考虑将、、都加上1,这样、、都至少是1,而且这个时候它们CCBBDD的和为,即问题变成如下表达:73??4一个各位数字不为0的四位数,它的各位数字之和为7,这样的四位数有多少个?3个,对应着原四位数也应采用插板法,共有6个间隔,要插入3个板,可知这样的四位数有C?206该有20个.【答案】20【巩固】大于2000小于3000的四位数中数字和等于9的数共有多少个?【考点】计数之插板法【难度】3星【题型】解答【解析】大于2000小于3000的四位数,首位数字只能为2,所以后三位数字之和为7,后三位数字都有可能为0,为使用隔板法,先将它们变成至少为1的数,可以将每个数都加上1,这样它们的和为10,2种方法,且每个数都至少为1,那么采用隔板法,相当于在9个间隔中选择2个插入隔板,有C?369所以满足题意的四位数有36个.【答案】36【例9】兔妈妈摘了15个相同的磨菇,分装在3个相同的筐子里,如果不允许有空筐,共有多少种不同的装法?如果分装在3个不同的筐子里,不允许有空筐,又有多少种不同的装法?【考点】计数之插板法【难度】4星【题型】解答【解析】⑴分装在3个相同的筐子里,两种不同的装法意味着这两种装法中3个筐子里的蘑菇数量不完全相同.可以进行分类讨论:①如果每个筐至少有个,有种情况;51 ②如果每个筐至少有个,则相当于把个蘑菇分装在3个筐子里,且至少有1个筐子是3?4??3154空的(否则没有筐子是空的,将与①中的情况相同),有(0,0,3)和(0,1,2)种情况;2 ③如果每个筐至少有个,则相当于把6个蘑菇分装在3个筐子里,且至少有1个筐子是空的,有(0,30,6),(0,1,5),(0,2,4)和(0,3,3)种情况;4 ④如果每个筐至少有个,类似分析可知有种情况;52 ⑤如果每个筐至少有个,类似分析可知有种情况.71所以共有种不同的装法.19?7?41?2??5 ⑵如果分装在3个不同的筐子里,不允许有空筐,可以把这15个蘑菇排成一列,中间有14个间隔,现在用两个板去隔,每个间隔最多放一个板.这2个板的每一种放法都把15个蘑菇分成3份,所以2?91C而板的放法有这两个板的每一种放法都对应一种装蘑菇的方法.所以装蘑菇的不同方法种,14有91种.【答案】91。