总结导数的应用中常见四类问题
70知识讲解_导数的综合应用题(基础)(文)

导数及其应用》全章复习与巩固学习目标】能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问要点梳理】 要点一:有关切线问题 直线与曲线相切,我们要抓住三点: ① 切点在切线上; ② 切点在曲线上;③ 切线斜率等于曲线在切点处的导数值 要点诠释: 通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程要点二:有关函数单调性的问题要点诠释:则 f '(x) 0.2) f '(x) 0或 f'(x) 0恒成立,求参数值的范围的方法: ① 分离参数法: m g(x)或m g(x).1 )如果恒有 f '(x) 0,则函数f(x)在(a, b)内为增函数; 2)如果恒有 f '(x) 0,则函数f(x)在(a, b)内为减函数; 3)如果恒有 f '(x) 0,则函数f (x)在(a, b)内为常数函数.设函数 y f (x) 在区间1. 会利用导数解决曲线的切线的问题2. 会利用导数解决函数的单调性等有关问题3. 会利用导数解决函数的极值、最值等有关问题组.4. (a, b)内可导,(1)若函数f(x)在区间(a, b)内单调递增,则f'(X) 0,若函数f(x)在(a, b)内单调递减,② 若不能隔离参数,就是求含参函数 f(x,m) 的最小值 f(x,m)min或是求含参函数 f(x,m) 的最大值 f(x,m)max ,使 f ( x, m)max 0) 要点三:函数极值、最值的问题 函数极值的问题求方程 f (x) 0 的根;负右正,则 f(x) 在这个根处取得极小值 .( 最好通过列表法 ) 要点诠释: ① 先求出定义域② 一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点; 变正,则该点为极小值点注意:无定义的点不用在表中列出③ 根据表格给出结论:注意一定指出在哪取得极值 函数最值的问题若函数y f (x)在闭区间[a,b ]有定义,在开区间(a,b)内有导数,则求函数y f (x)在[a,b ]上的最 大值和最小值的步骤如下:求在(a,b)内所有使f(X) 0的的点的函数值和 f(x)在闭区间端点处的函数值 f (a), f (b);y f (x)在闭区间[a,b ]上的最小值.要点诠释: ①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的 函数值进行比较即可 .使f ( x, m)min 01) 确定函数的定义域; 2) 求导数 f (x) ;4) 检查f'(x)在方程根左右的值的符号,如果左正右负,则f(x) 在这个根处取得极大值;如果左若由负1) 求函数f (x)在(a, b)内的导数f(X); 2) 求方程f(X)0在(a,b)内的根;4) 比较上面所求的值,其中最大者为函数y f(x)在闭区间[a,b ]上的最大值,最小者为函数② 若f (x )在开区间(a,b )内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值 要点四:优化问题在实际生活中用料最省、利润最大、效率最高等问题,常常可以归结为函数的最大值问题,从而可 用导数来解决.我们知道,导数是求函数最大(小)值的有力工具,导数在实际生活中的应用主要是解决 有关函数最大值、最小值的实际问题利用导数解决实际问题中的最值的一般步骤:分析实际问题中各量之间的关系,找出实际问题的数学模型,写出实际问题中变量之间的函数关系式y f (x );求函数的导数f '(X ),解方程f '(X ) 0 ; 比较函数在区间端点和极值点的函数值大小,最大 (小)者为最大(小)值.要点诠释:①解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定 函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系 相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 利用导数解决优化问题的基本思路:②得出变量之间的关系 y f (X )后,必须由实际意义确定自变量 X 的取值范围;③ 在实际问题中,有时会遇到函数在区间内只有一个点使(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.④ 在求实际问题的最大(小)值时,一定要注意考虑实际问题的意义,不符合实际意义的值应舍去. 【典型例题】类型一: 利用导数解决有关切线问题 3X 3X ,过点A (016)作曲线y f (x )的切线,求此切线方程.(1) .再通过研究f '(X ) 0的情形,如果函数在这点有极大例1.已知函数y【思路点拨】因为点 A 不在曲线上,所以应先设出切点并求出切点. 【解析】曲线方程为 3y X 3X ,点A (016)不在曲线上.3a)点A(016)在切线上,则有16 (X)33x 0)3化简得X o 8,解得X o 2 .所以,切点为 M( 2,2),切线方程为9xA 是否在曲线上,若点 A 不在曲线上,应先设出切点, 然后根据直线与曲线相切的三个关系列方程组,从而求得参数值举一反三:【变式1】曲线y=x(3lnx+1)在点(1,1)处的切线方程为 【答案】y 4x1(2,o)且与曲线y -相切的直线方程. X类型二: 利用导数解决有关函数单调性、极值最值的问题 例 2.设函数 f(x) -x 32ax 23a 2x b (a,b3【思路点拨】求导后,求导数为零的根,两根大小的判断是确定分类点的依据Q Q【解析】f (x) X 4ax 3a (x a)(x(1 )当 a o 时,f(X) X 2o , f (X)在(设切点为M (X o, y 0),则点M 的坐标满足y o3 c X o 3x o .2因 f(X o ) 3(X o 1), 故切线的方程为y y 023(X o 1)(x X o ).23(x o 1)(o X o ).【变式2】求过点【答案】设P(xo, y o )为切点,则切线的斜率为 y 1X X o1~2X o•••切线方程为y 1 1 y o —(x X o ),即 yX oX o又已知切线过点 (2,0),把它代入上述方程,得-V(x X o 1 x o ). X o丄(2 X o ).X o解得X o 1, y o—1,即 X y 2 o. X o【总结升华】此类题的解题思路是,先判断点 R),求f (x)的单调区间和极值.令 f(X)o 得 X 24ax 3a 2 o 即(x a)(x3a) 0,解得 X a 或 x 3a ,)上单调递减,没有极值;(2)当a o时,由f(X) o得a X 3a,由f (x) o得x a或x 3a ,3a)•••当X a 或X 3a 时,f (x)0 , f (x)单调递减;X 2当a x 3a 时,f(X)0, f(x)单调递增;【总结升华】(1)解决此类题目,关键是解不等式 f '(X) 0或f '(X) 0,若f '(X)中含有参数,须分类讨论.(2)特别应注意,在求解过程中应先写出函数的定义域 举一反三:aa0,-r1,XV a X 0 时,4 3--f (X)极小 f (a)— ab , f (X)极大 f (3a) b , ••• f(x)的递减区间为(,a) , (3a, );递增区间为(a,3a);f(X)极小 3 a'f(x)极大b .(3)当a 0时,由f (X) 0 得 3a X a ,由 f (X) 0 得 X 3a 或 x a ,•••当X 3a 或X a 时, f (X) 0 , f(x)单调递减;当3a X a 时,f (X) 0 , f(x)单调递增;••• f(x)极小 f (3a)f (X)极大 f(a) • f(x)的递减区间为3a), (a,递增区间为(3a, a);f (x)极大 4 a'f (x)极小b .【变式1】求函数f (X) X a-(a 0)的单调区间. X【答案】 f '(X) 1令 f'(X)a~2X a 2XX 2a ,(1)J a 或XT a 时,所以, f'(X) 0;(2)1.【高清课堂:导数的应用综合 370878 例题4】【变式2】 已知函数f(x)=ax 3+x 2+1 , x€ (0 , 1]若f(x)在(0,1)上是增函数,求实数 a 的取值范围;【答案】••• f(x)在(0, 1)上是增函数,••• x€( 0 , 1)时,f’(x)=3ax 2+2x>0 恒成立, 2即a 一对x €( 0, 1 )恒成立, 3x2•-—在(0, 1)上单调增,3x2 2••• x=1时,—取最大值 -3x 32 2— (a —时也符合题意),则a 3 3(2)又 f(1) a 2 27^ 1.27a所以,f'(x) 0• • f (x)的单调增区间是,单调减区间是J a, 0 , 0, j a .(2) 求f(x)在(0,1)上的最大值.(1) (1) f’(x)=3ax 2+2x,①当a ②当a 2-时,f(x)在(0 ,1)上单调增, 32 2一时,令f '(x) 3ax 2x 0,由x 0 ,得x3 2 一时,f '(x) 0;当3a 2 f(x)max f(1) a 2.23a 2 3a 427a 20,【高清课堂:导数的应用综合 370878 例题1】例3.已知函数f (x) ax 3bx c 在x 2处取得极值为c (1)求a 、b 的值;(2)若f(x)有极大值28,求f(x)在[•- f(x)在(0,1)上的最大值为4 27a 216,3,3]上的最大值.【高清课堂:导数的应用综合370878 例题1】1 12举一反三:(2) 由( 1) 知 f (X) 3 X 12x c , f (x)23x 12,令f (X) 0 ,得X 1 2,X 2 2当X (J2)时 f(X) 0, 故f(x)在(,2)上为增函数;当X (2,2) 时 f(X) 0, 故 f(x)在(2,2)上为减函数;当X (2,)时 f(X) 0, 故 f (X)在(2, )上为增函数由此可知f(X)在X j2处取得极大值f( 2)16 c ,其导函数 f(X),且函数f (X)在X 2处取得极小值,则函数【变式1】设函数f(x)在R 上可导, 【解析】 3(1 )因 f(x) ax bx c 故f (x) 3ax 2b 由于f (x)在点x 2处取得极值故有f (2) 0 f (2) c 1612a b 8a 2b cc 16解得f(X)在X 2 2处取得极小值f(2) c 16,由题设条件知16 c 28得c 12,此时 f( 3) 9 c 21, f (3)3 , f(2) c 164,因此f(x)上[3,3]的最小值为 f(2) 4.【高清课堂:导数的应用综合370878 例题1】x5x y 80.(1)若a 0,当x 变化时,f(X)的正负如下表:xg 旦3a 3a a3a(a,g )f (x)oaa/ 因此,函数f(x)在x-处取得极小值fa ,且f3^a3 ;【答案】C 【变式2】函数f(X)— 2sin x 的图象大致是( )2首先易判断函数为奇函数,排除 A,求导后解导数大于零可得周期性区间, 从而排除 B 、D,故选C.例4.设函数f(x) x(x 、2a) ( x(I)当 a 1时,求曲线 y f(x)在点(2, f(2))处的切线方程; (n)当 a 0时,求函数f (x)的极大值和极小值. 【解析】 (I)当a 1时,f (x) x(x 1)2 x 3 2x 2 x ,得 f(2)2,且f (x) 3x 24x 1 , f (2)5.所以,曲线yx(x 21)在点(2, 2)处的切线方程是y 25(x 2),整理得(n) f(x)x(xa)2 2ax 2 (x)3x 2 4 axa 2(3x a)(x a).由于aa或30,以下分两种情况讨论.f (x) 0,解得x函数f(x)在x a 处取得极大值f(a),且f(a) 0 .(2)若a 0,当x 变化时,f(X)的正负如下表:因此,函数f (x)在x a 处取得极小值f (a),且f(a) 0 ;aa a 4 Q函数f(x)在x 3处取得极大值f -,且 f- 护-【总结升华】1.导数式含参数时,如何讨论参数范围而确定到数值的正负是解决这类题的难点,一般采用求根法和图像法.举一反三:2. 列表能比较清楚的看清极值点3. 写结论时极值点和极大(小) 值都要交代清楚【高清课堂: 导数的应用综合 370878例题2】1【变式1】设函数f(X)-x In 3x(x 0),则 y f(X)(A. 在区间(一,1),(1,e)内均有零点.eB. 在区间(丄⑴门闾内均无零点e '1C. 在区间(一,1)内有零点,在区间e 1D. 在区间(一,1)内无零点,在区间 (1,e)内无零点. (1,e)内有零点.由题得f'(x)13 1 X 3x 3x,令 f'(X) 0 得 x 3 ; 令 f'(x) 0 得 0 x 3 ; f'(x) 0 得x 3,故知函数 f (x)在区间 (0,3)上为减函数,在区间(3,)为增函数,在点 x 3处有极小值1 ln3 0 ;又 f(1) l,f e3 e1 0, f(1) — 3 e 3e1 0,故选择D.每月生产200吨产品时利润达到最大,最大利润为 315万元.【变式2】(1)试确定a,b 的值;(2)讨论函数f(x)的单调区间.又对f(x)求导得x 1时,f(X) 0,此时f(x)为减函数; 1时,f(X)0,此时f (x)为增函数.例5.某工厂生产某种产品,已知该产品的月生产量X (吨)与每吨产品的价格 P (元/吨)之间的关系式1 2为:P 24200-X ,且生产X 吨的成本为R 50000 200x (元).问该厂每月生产多少吨产品才能使 5利润L 达到最大?最大利润是多少?(利润=收入一成本)1【解析】:每月生产X 吨时的利润为f(x) (24200 -X 2)x (50000 200x) 5故它就是最大值点,且最大值为:f (200)1(200)3 24000 2005已知函数 f(x) ax 41nx bx 4C (x>0)在 x = 1 处取得极值-3-c , 其中a,b,c 为常数.【答案】(1)由题意知f(1)C ,从而b3f (x) 4ax ln x 41ax g- X4bx 3 x 3(4a l nx由题意f (1) 0 , 因此a 4b 0,解得 a 12,b(2)由(I)知 f(X)348x In X ( x 0),令 f(X)0,解得x因此 f(x)的单调递减区间为(0,1),而f(x)的单调递增区间为(1, g ).类型三:利用导数解决优化问题lx 3 24000 X 50000 (x5 0)3 2由 f(X) -X 24000 0解得X 1200, X 2 200(舍去). 因f (x)在[0,)内只有一个点X 200,使f (X) 050000 3150000(元)【总结升华】禾u用导数求实际问题中的最大值或最小值时,如果函数在区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点举一反三:【变式】某单位用 2 160万元购得一块空地,计划在该空地上建造一栋至少房•经测算,如果将楼房建为x( X> 10)层,则每平方米的平均建筑费用为560+48X (单位:元)•为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用当 X > >15 时,f '(X)0,当 10< X < 15 时,f '(X)因此,当X=15时,f(X)取得最小值f(15)2000 •10层、每层2000平方米的楼购地总费用)建筑总面积【答案】设楼房每平方米的平均综合费用为f(X),则2160 10000 f(X)(560 48X)——2000Xf'(X)48 10800,令f'(X)0 ,X 560 48x 10, X N)•得x=15•为了使楼房每平方米的平均综合费用最少,该楼房应建为15层.。
导数题型总结

导数题型总结导数题型总结导数及其应用题型总结题型一:切线问题①求曲线在点(xo,yo)处的切线方程②求过曲线外一点的切线方程③求已知斜率的切线方程④切线条数问题例题1:已知函数f(x)=x+x-16,求:(1)曲线y=f(x)在点(2,-6)处的切线方程(2)过原点的直线L是曲线y=f(x)的切线,求它的方程及切点坐标(3)如果曲线y=f(x)的某一切线与直线y=-(1/4)x+3垂直,求切线方程及切点坐标例题2:已知函数f(x)=ax+2bx+cx在xo处去的极小值-4.使其导数f”(x)>0的x的取值范围为(1,3),求:(1)f(x)的解析式;(2)若过点P (-1,m)的曲线y=f(x)有三条切线,求实数m的取值范围。
题型二:复合函数与导数的运算法则的综合问题例题3:求函数y=xcos (x+x-1)sin(x+x-1)的导数题型三:利用导数研究函数的单调区间①求函数的单调区间(定义域优先法则)②求已知单调性的含参函数的参数的取值范围③证明或判断函数的单调性例题4:设函数f(x)=x+bx+cx,已知g(x)=f(x)-f”(x)是奇函数,求y=g (x)的单调区间例题5:已知函数f(x)=x3-ax-1,(1)若f(x)在实数集R上单调递增,求实数a的取值范围(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的范围;若不存在,说明理由。
例题6:证明函数f(x)=lnx/x2在区间(0,2)上是减函数。
题型四:导数与函数图像问题例1:若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在[a,b]上的图象可能是y题型五:利用导数研究函数的极值和最值例题7:已知函数f(x)=-x3+ax2+bx在区间(-2,1)上x=-1时取得极小值,x=2/3时取得极yy32323oaoobxoabxbxabxaA.B.C.D.大值。
求(1)函数y=f(x)在x=-2时的对应点的切线方程(2)函数y=f(x)在[-2,1]上的最大值和最小值。
导数及其应用知识点总结

导数及其应用知识点总结导数及其应用是微积分中的重要概念,它可以用来描述一个函数在其中一点的变化率,进而用于求解曲线的切线、求解最值、优化问题等。
在学习导数及其应用的过程中,我们需要掌握导数的定义、导数的计算法则、导数与函数性质的关系以及导数在几何和物理问题中的应用等知识点。
一、导数的定义1.函数在其中一点的导数:函数f(x)在点x=a处的导数定义为:f'(a) = lim(h→0) (f(a+h)-f(a))/h2.函数的导函数:函数f(x)在定义域上每一点的导数所构成的新函数,被称为函数f(x)的导函数,记作f'(x)。
二、导数的计算法则1.常数法则:对于常数k,有:(k)'=0。
2.幂函数法则:对于幂函数y=x^n,其中n为常数,则有:(x^n)'=n*x^(n-1)。
3.基本初等函数法则:对于基本初等函数(如幂函数、指数函数、对数函数、三角函数和反三角函数),可以通过求导法则求得其导函数。
4.乘积法则:对于函数u(x)和v(x),有:(u*v)'=u'*v+u*v'。
5.商数法则:对于函数u(x)和v(x),有:(u/v)'=(u'*v-u*v')/v^26.复合函数法则:对于复合函数y=f(g(x)),有:y'=f'(g(x))*g'(x)。
三、导数与函数性质的关系1.导函数与函数的单调性:若函数f(x)在区间I上可导,则f'(x)在I上的符号与f(x)在I上的单调性一致。
2.导函数与函数的极值:若函数f(x)的导函数在点x=a处存在,且导数的符号在x=a左侧从正数变为负数,那么函数在点x=a处取得极大值;若导数的符号在x=a左侧从负数变为正数,那么函数在点x=a处取得极小值。
3.导函数与函数的凹凸性:函数f(x)的导函数f''(x)的符号与函数f(x)的凹凸性一致。
导数应用常见九种错解剖析

导数应用常见九种错解剖析导数作为一种工具,在解决数学问题时极为方便,尤其是利用导数求函数的单调性、极值、最值、和切线的方程,但是笔者在教学过程中,发现导数的应用还存在许多误区。
一、对导数的定义理解不清致错例1、已知函数,则A-1 B 0 C D 2错解:,从而选;或剖析:防错的关键是认真理清导数的定义特别是要分清导数定义中“”与“”的对应形式的多样性。
正解:原式=,从而应选C。
点评:=,函数在某一点x0处的导数,就是函数在这一点的函数值的增量与自变量的增量的比值在自变量的增量趋近于零时的极限,分子分母中的自变量的增量必须保持对应一致,它是非零的变量,它可以是-2,等。
在导数定义中应特别注意“”与“”的对应形式的多样性,但不论哪种形式都应突现“”与“”的一致性。
二、对“连续”与“可导”定义理解不清致错。
例2、函数y=f(x)在x=x0处可导是函数y=f(x)在x=x0处连续的()A、充分不必要条件 B必要不充分条件C、充要条件D、既不充分也不必要条件错解:认为“连续”与“可导”是同一个概念而错选C。
或者对充分、必要条件的概念不清而导致错选B。
剖析:防错关键是(1)理清充分、必要条件的概念;(2)函数y=f(x)在x=x0处可导必在x=x0处连续,函数y=f(x)在x=x0处连续不一定在x=x0处可导。
如函数在x=0处连续但在x=0处不可导。
在x=0处连续,当时,的左右极限不相等,所以其极限不相等,因此函数在x=0处不可导。
从而本题应选A。
三、对为极值的充要条件理解不清致错。
例3、函数f(x)=x3+ax2+bx+a2在x=1处有极值10,求a、b的值。
错解:=3x2+2ax+b,由题意知 =0,且f(1)=10,即2a+b+3=0,且a2+a+b+1=10,解之得a=4,b=-11 ,或a=-3b=3剖析:错误的主要原因是把为极值的必要条件当作了充要条件,为极值的充要条件是=0且x0附近两侧的符号相反.,所以后面应该加上:当a=4,b=-11时=3x2+8x-11=(3x+11)(x-1),在x=1附近两侧的符号相反, a=4,b=-11.当a=-3 b=3时f l(x)=3(x-1)2, 在x=1附近两侧的符号相同,所以a=-3 b=3舍去。
导数证明的基本方法与策略总结

导数证明的基本方法与策略总结导数是微积分中一个重要的概念,它描述了函数在某一点处的变化率。
在实际应用中,导数的计算和证明是必不可少的。
本文将总结导数证明的基本方法与策略,帮助读者更好地理解和应用导数概念。
一、定义法证明定义法是导数证明中最基本也是最常用的方法。
导数的定义为函数在某一点处的极限,即f'(x) = lim┬(Δx→0)〖(f(x+Δx)-f(x))/Δx〗。
基于该定义,我们可以通过极限的性质和运算法则,逐步推导出导数的具体形式。
以函数f(x) = x²为例,我们可以使用定义法证明其导数。
首先,根据导数的定义,计算差商:(f(x+Δx)-f(x))/Δx = ((x+Δx)²-x²)/Δx = (x²+2xΔx+Δx²-x²)/Δx化简得:(2x+Δx)/Δx = 2x+Δx/Δx当Δx→0时,上式的极限为2x。
因此,f'(x) = 2x,即导数为2x。
通过定义法,我们成功证明了函数f(x) = x²的导数为2x。
二、公式法证明公式法是导数证明的另一种常用方法。
对于一些常见的函数,我们可以利用已知的导数公式,快速推导出其他函数的导数。
以常数函数f(x) = c为例,其中c为常数。
显然,该函数在任意一点处变化率都为0。
因此,根据导数的定义,导数f'(x) =lim┬(Δx→0)〖(f(x+Δx)-f(x))/Δx〗= lim┬(Δx→0)(c-c)/Δx =lim┬(Δx→0)0 = 0。
根据公式法,我们推导出常数函数的导数为0。
三、初等函数法证明初等函数法是导数证明中的一种常见策略。
根据初等函数的定义和性质,我们可以运用代数和函数的操作法则,推导出复杂函数的导数。
以幂函数f(x) = xⁿ为例,其中n为整数。
我们可以通过利用幂函数的指数法则,推导出其导数的一般形式。
首先,利用指数法则可得:f'(x) = d/dx (xⁿ) = d/dx (x * x * ... * x) =xⁿ⁻¹ * 1 + xⁿ⁻¹ * 1 + ... + xⁿ⁻¹ * 1 = nxⁿ⁻¹通过初等函数法,我们求得了幂函数f(x) = xⁿ的导数为nxⁿ⁻¹。
破解导数问题常用到的4种方法

第2课时破解导数问题常用到的4种方法构造函数法解决抽象不等式问题以抽象函数为背景、题设条件或所求结论中具有“f(x)±g(x),f(x)g(x),f(x)g(x)”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.类型一构造y=f(x)±g(x)型可导函数[例1]设奇函数f(x)是R上的可导函数,当x>0时有f′(x)+cos x<0,则当x≤0时,有()A.f(x)+sin x≥f(0)B.f(x)+sin x≤f(0)C.f(x)-sin x≥f(0) D.f(x)-sin x≤f(0)[解析]观察条件中“f′(x)+cos x”与选项中的式子“f(x)+sin x”,发现二者之间是导函数与原函数之间的关系,于是不妨令F(x)=f(x)+sin x,因为当x>0时,f′(x)+cos x<0,即F′(x)<0,所以F(x)在(0,+∞)上单调递减,又F(-x)=f(-x)+sin(-x)=-[f(x)+sin x]=-F(x),所以F(x)是R上的奇函数,且F(x)在(-∞,0)上单调递减,F(0)=0,并且当x≤0时有F(x)≥F(0),即f(x)+sin x≥f(0)+sin 0=f(0),故选A.[答案] A[题后悟通]当题设条件中存在或通过变形出现特征式“f′(x)±g′(x)”时,不妨联想、逆用“f′(x)±g′(x)=[f(x)±g(x)]′”.构造可导函数y=f(x)±g(x),然后利用该函数的性质巧妙地解决问题.类型二构造f(x)·g(x)型可导函数[例2]设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不等式f(x)g(x)>0的解集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3)[解析]利用构造条件中“f′(x)g(x)+f(x)g′(x)”与待解不等式中“f(x)g(x)”两个代数式之间的关系,可构造函数F(x)=f(x)g(x),由题意可知,当x<0时,F′(x)>0,所以F(x)在(-∞,0)上单调递增.又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以F(x)是定义在R上的奇函数,从而F(x)在(0,+∞)上单调递增,而F(3)=f(3)g(3)=0,所以F(-3)=-F(3),结合图象可知不等式f(x)g(x)>0⇔F(x)>0的解集为(-3,0)∪(3,+∞),故选A.[答案] A[题后悟通]当题设条件中存在或通过变形出现特征式“f′(x)g(x)+f(x)g′(x)”时,可联想、逆用“f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′”,构造可导函数y=f(x)g(x),然后利用该函数的性质巧妙地解决问题.类型三构造f(x)g(x)型可导函数[例3] 已知定义在R 上函数f (x ),g (x )满足:对任意x ∈R ,都有f (x )>0,g (x )>0,且f ′(x )g (x )-f (x )g ′(x )<0.若a ,b ∈R +且a ≠b ,则有( ) A .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2>f (ab )g (ab ) B .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2<f (ab )g (ab ) C .f ⎝⎛⎭⎫a +b 2g (ab )>g ⎝⎛⎭⎫a +b 2f (ab ) D .f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2f (ab )[解析] 根据条件中“f ′(x )g (x )-f (x )g ′(x )”的特征,可以构造函数F (x )=f (x )g (x ),因为f ′(x )g (x )-f (x )g ′(x )<0,所以F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,F (x )在R 上单调递减.又因为a +b 2>ab ,所以F ⎝⎛⎭⎫a +b 2<F (ab ),即f ⎝⎛⎭⎫a +b 2g⎝⎛⎭⎫a +b 2<f (ab )g (ab ),所以f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2·f (ab ),故选D.[答案] D [题后悟通]当题设条件中存在或通过变形出现特征式“f ′(x )g (x )-f (x )g ′(x )”时,可联想、逆用“f ′(x )g (x )-f (x )g ′(x )[g (x )]2=⎣⎡⎦⎤f (x )g (x )′”,构造可导函数y =f (x )g (x ),然后利用该函数的性质巧妙地解决问题. [方法技巧]构造函数解决导数问题常用模型(1)条件:f ′(x )>a (a ≠0):构造函数:h (x )=f (x )-ax . (2)条件:f ′(x )±g ′(x )>0:构造函数:h (x )=f (x )±g (x ). (3)条件:f ′(x )+f (x )>0:构造函数:h (x )=e x f (x ). (4)条件:f ′(x )-f (x )>0:构造函数:h (x )=f (x )e x. (5)条件:xf ′(x )+f (x )>0:构造函数:h (x )=xf (x ). (6)条件:xf ′(x )-f (x )>0:构造函数:h (x )=f (x )x. [针对训练]1.已知定义域为R 的函数f (x )的图象经过点(1,1),且对于任意x ∈R ,都有f ′(x )+2>0,则不等式f (log 2|3x -1|)<3-log2|3x-1|的解集为( )A .(-∞,0)∪(0,1)B .(0,+∞)C .(-1,0)∪(0,3)D .(-∞,1)解析:选A 根据条件中“f ′(x )+2”的特征,可以构造F (x )=f (x )+2x ,则F ′(x )=f ′(x )+2>0,故F (x )在定义域内单调递增,由f (1)=1,得F (1)=f (1)+2=3,因为由f (log 2|3x -1|)<3-log2|3x-1|可化为f (log 2|3x-1|)+2log 2|3x -1|<3,令t =log 2|3x -1|,则f (t )+2t <3.即F (t )<F (1),所以t <1.即log 2|3x -1|<1,从而0<|3x -1|<2,解得x <1且x ≠0,故选A.2.设定义在R 上的函数f (x )满足f ′(x )+f (x )=3x 2e -x ,且f (0)=0,则下列结论正确的是( ) A .f (x )在R 上单调递减 B .f (x )在R 上单调递增 C .f (x )在R 上有最大值 D .f (x )在R 上有最小值解析:选C 根据条件中“f ′(x )+f (x )”的特征,可以构造F (x )=e x f (x ),则有F ′(x )=e x [f ′(x )+f (x )]=e x ·3x 2e-x=3x 2,故F (x )=x 3+c (c为常数),所以f (x )=x 3+c e x ,又f (0)=0,所以c =0,f (x )=x 3e x .因为f ′(x )=3x 2-x 3e x,易知f (x )在区间(-∞,3]上单调递增,在[3,+∞)上单调递减,f (x )max =f (3)=27e 3,无最小值,故选C.3.已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x ),则不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为________. 解析:因为f (x )>xf ′(x ),所以xf ′(x )-f (x )<0,根据“xf ′(x )-f (x )”的特征,可以构造函数F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0,故F (x )在(0,+∞)上单调递减.又因为x >0,所以x 2f ⎝⎛⎭⎫1x -f (x )<0可化为xf ⎝⎛⎭⎫1x -f (x )x <0,即f ⎝⎛⎭⎫1x 1x -f (x )x <0,即f ⎝⎛⎭⎫1x 1x <f (x )x ,即F ⎝⎛⎭⎫1x <F (x ),所以⎩⎪⎨⎪⎧x >0,1x >x ,解得0<x <1,故不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为(0,1). 答案:(0,1)分类讨论法解决含参函数单调性问题函数与导数问题中往往含有变量或参数,这些变量或参数取不同值时会导致不同的结果,因而要对参数进行分类讨论.常见的有含参函数的单调性、含参函数的极值、最值等问题,解决时要分类讨论.分类讨论的原则是不重复、不遗漏,讨论的方法是逐类进行,还必须要注意综合讨论的结果,使解题步骤完整. [例1] 已知函数f (x )=x 3+ax 2+x +1. (1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝⎛⎭⎫-23,-13内是减函数,求a 的取值范围. [解] (1)因为f ′(x )=3x 2+2ax +1.①当Δ≤0⇒-3≤a ≤3,f ′(x )≥0,且在R 的任给一子区间上,f ′(x )不恒为0,所以f (x )在R 上递增; ②当Δ>0⇒a <-3或a > 3.由f ′(x )=0⇒x 1=-a -a 2-33,x 2=-a +a 2-33.所以f (x )1212(2)因为f (x )在⎝⎛⎭⎫-23,-13内是减函数,所以⎝⎛⎭⎫-23,-13⊆(x 1,x 2). 所以f ′(x )=3x 2+2ax +1≤0在⎝⎛⎭⎫-23,-13上恒成立. 所以2a ≥-3x -1x 在⎝⎛⎭⎫-23,-13上恒成立,所以a ≥2. [题后悟通]本题求导后,转化为一个二次型函数的含参问题,首先考虑二次三项式是否存在零点,即对判别式Δ进行Δ≤0和Δ>0两类讨论,可归纳为“有无实根判别式,两种情形需知晓”. [例2] 函数f (x )=2ax -a 2+1x 2+1,当a ≠0时,求f (x )的单调区间与极值.[解] 因为f ′(x )=-2ax 2+2(a 2-1)x +2a (x 2+1)2=-2a (x 2+1)2·(x -a )⎝⎛⎭⎫x +1a . (1)a >0时f (x )的极小值为f (-(2)当a <0时,f (x )的极小值为f (-综上,当a >0时,f (x )的递增区间是(-a -1,a ),递减区间是(-∞,-a -1),(a ,+∞),f (x )的极小值为f (-a-1)=-a 2,极大值为f (a )=1.当a <0时,f (x )的递增区间是(-∞,a ),(-a -1,+∞),递减区间是(a ,-a -1),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1. [题后悟通]求导后,若导函数中的二次三项式能因式分解需考虑首项系数是否含有参数.若首项系数有参数,就按首项系数为零、为正、为负进行讨论.可归纳为“首项系数含参数,先证系数零正负”. [例3] 已知函数f (x )=ln(x +1)-axx +a (a >1),讨论f (x )的单调性.[解] f ′(x )=x (x -(a 2-2a ))(x +1)(x +a )2.①当a 2-2a <0时,即1<a <2,又a 2-2a =(a -1)2-1>-1.②当a =2时,f ′(x )=x (x +1)(x +2)2≥0,f (x )在(-1,+∞)上递增.③当a 2-2a >0时,即a >2时,综上,当1<a <2时,f (x )的递增区间是(-1,a 2-2a ),(0,+∞),递减区间是(a 2-2a,0);当a >2时,f (x )的递增区间是(-1,0),(a 2-2a ,+∞),递减区间是(0,a 2-2a );当a =2时,f (x )在(-1,+∞)上递增. [题后悟通]求导后且导函数可分解且首项系数无参数可求出f ′(x )的根后比较两根大小,注意两根是否在定义域内,可归纳为“首项系数无参数,根的大小定胜负.定义域,紧跟踪,两根是否在其中”.[方法技巧]利用分类讨论解决含参函数的单调性、极值、最值问题的思维流程[口诀记忆]导数取零把根找,先定有无后大小; 有无实根判别式,两种情形需知晓. 因式分解见两根,逻辑分类有区分; 首项系数含参数,先论系数零正负. 首项系数无参数,根的大小定胜负; 定义域,紧跟踪,两根是否在其中.[针对训练]4.已知函数f (x )=e x (e x -a )-a 2x ,讨论f (x )的单调性. 解:函数f (x )的定义域为(-∞,+∞), f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. ③若a <0,则由f ′(x )=0,得x =ln ⎝⎛⎭⎫-a2. 当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0; 当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减,在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增.转移法解决求解最值中计算困难问题[典例] 函数f (x )=e x -e -x -2x ,设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值.[解题观摩] 因为g (x )=e 2x -e-2x-4x -4b e x +4b e -x +8bx ,所以g ′(x )=2(e x +e -x -2)(e x +e -x -2b +2). 因为e x +e -x ≥2e x ·e -x =2.①当b ≤2时,g ′(x )≥0,所以g (x )在R 上递增. 所以当x >0时,g (x )>g (0)=0.②当b >2时,由e x +e -x -2b +2=0⇒x 1=ln(b -1+b 2-2b )>0,x 2=ln(b -1-b 2-2b )<0. 所以当0<x <ln(b -1+b 2-2b )时,g ′(x )<0. 所以g (ln(b -1+b 2-2b ))<g (0)=0,不合题意. 综上,b ≤2,∴b max =2. [题后悟通]在一些不等式证明或恒成立的问题中,通常需要判定函数极值或最值的正负.有时直接计算函数的极值涉及复杂的运算,甚至无法算出一个显性的数值.这时可以考虑不直接计算函数极值,通过计算另一个特殊点的函数值来确定函数极值或最值的正负,这个特殊点通常在解题过程中已出现过.如在本题②中要直接算出g (ln(b -1+b 2-2b ))很难,转移到计算g (0)就很简单,而且g (0)在解题过程中已出现过,这就是转移法.[口诀记忆]最值运算入逆境,位置挪移绕道行; 挪动位置到何处,解题过程曾途经.[针对训练]5.函数f (x )=1+x 1-x e -ax,对任意x ∈(0,1)恒有f (x )>1,求a 的取值范围.解:①当a ≤0时,因为x ∈(0,1), 所以1+x 1-x>1且e -ax >1,所以f (x )>1. 因为f ′(x )=a e -ax (1-x )2⎝⎛⎭⎫x 2-1+2a =0⇒x 2=1-2a . ②当0<a ≤2时,f ′(x )≥0,所以f (x )在(0,1)上递增, 所以f (x )>f (0)=1. ③当a >2时,f (x )在⎝⎛⎭⎫-1-2a , 1-2a 上递减.所以当x ∈⎣⎡⎭⎫0,1-2a 时,f (x )<f (0)=1,不合题意.综上a ≤2.二次求导法解决判断f ′(x )符号困难问题[例1] 若函数f (x )=sin xx,0<x 1<x 2<π.设a =f (x 1),b =f (x 2),试比较a ,b 的大小. [解题观摩] 由f (x )=sin xx ,得f ′(x )=x cos x -sin x x 2,设g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x -cos x =-x sin x .∵0<x <π,∴g ′(x )<0,即函数g (x )在(0,π)上是减函数. ∴g (x )<g (0)=0,因此f ′(x )<0,故函数f (x )在(0,π)是减函数, ∴当0<x 1<x 2<π,有f (x 1)>f (x 2),即a >b . [题后悟通]从本题解答来看,为了得到f (x )的单调性,须判断f ′(x )的符号,而f ′(x )=x cos x -sin xx 2的分母为正,只需判断分子x cos x -sin x 的符号,但很难直接判断,故可通过二次求导,判断出一次导函数的符号,并最终解决问题.[例2] 已知函数f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,其中e 为自然对数的底数. (1)求函数f (x )的图象在点(1,f (1))处的切线方程;(2)若g (x )≥f (x )对任意的x ∈(0,+∞)恒成立,求t 的取值范围. [解题观摩] (1)由f (x )=e x -x ln x ,知f ′(x )=e -ln x -1, 则f ′(1)=e -1,而f (1)=e ,则所求切线方程为y -e =(e -1)(x -1), 即y =(e -1)x +1.(2)∵f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,∴g (x )≥f (x )对任意的x ∈(0,+∞)恒成立等价于e x -tx 2+x -e x +x ln x ≥0对任意的x ∈(0,+∞)恒成立, 即t ≤e x +x -e x +x ln x x 2对任意的x ∈(0,+∞)恒成立.令F (x )=e x +x -e x +x ln xx 2,则F ′(x )=x e x +e x -2e x -x ln x x 3=1x 2⎝⎛⎭⎫e x +e -2e xx -ln x , 令G (x )=e x+e -2e xx -ln x ,则G ′(x )=e x-2(x e x -e x )x 2-1x =e x (x -1)2+e x -xx 2>0,对任意的x ∈(0,+∞)恒成立.∴G (x )=e x+e -2e xx -ln x 在(0,+∞)上单调递增,且G (1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0,即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0, ∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴F (x )≥F (1)=1,∴t ≤1,即t 的取值范围是(-∞,1].[题后悟通]本题从题目形式来看,是极其常规的一道导数考题,第(2)问要求参数t 的范围问题,实际上是求F (x )=e x +x -e x +x ln x x 2极值问题,问题是F ′(x )=1x 2( e x+e -2e x x -ln x )这个方程求解不易,这时我们可以尝试对G (x )=x 2·F ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.[方法技巧]判定函数的单调性和求函数极值,都需要判定导函数的正负.有些导函数形式很复杂,它的正负很难直接判定,常常需要建立新函数再次求导,通过探求新函数的最值,以此确定导函数的正负.[针对训练]6.讨论函数f (x )=(x +1)ln x -x +1的单调性.解:由f (x )=(x +1)ln x -x +1,可知函数f (x )的定义域为(0,+∞).易得f ′(x )=ln x +x +1x -1=ln x +1x ,用f ′(x )去分析f (x )的单调性受阻.因此再对f ′(x )=ln x +1x 求导,得f ″(x )=1x -1x 2=x -1x 2.令f ″(x )=x -1x 2=0,得x =1.当0<x ≤1时,f ″(x )≤0,即f ′(x )=ln x +1x 在区间(0,1)上为减函数;当x >1时,f ″(x )>0,即f ′(x )=ln x +1x 在区间(1,+∞)上为增函数.因此f ′(x )min =f ′(1)=1>0,所以函数f (x )在(0,+∞)上单调递增.[课时跟踪检测]1.设定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论一定错误的是( ) A .f ⎝⎛⎭⎫1k <1k B .f ⎝⎛⎭⎫1k >1k -1 C .f ⎝⎛⎭⎫1k -1<1k -1D .f ⎝⎛⎭⎫1k -1>1k -1解析:选C 根据条件式f ′(x )>k 得f ′(x )-k >0,可以构造F (x )=f (x )-kx ,因为F ′(x )=f ′(x )-k >0,所以F (x )在R 上单调递增.又因为k >1,所以1k -1>0,从而F ⎝⎛⎭⎫1k -1>F (0),即f ⎝⎛⎭⎫1k -1-k k -1>-1,移项、整理得f ⎝⎛⎭⎫1k -1>1k -1,因此选项C 是错误的,故选C.2.已知f (x )是定义在R 上的增函数,其导函数为f ′(x ),且满足f (x )f ′(x )+x <1,则下列结论正确的是( )A .对于任意x ∈R ,f (x )<0B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1)时,f (x )<0D .当且仅当x ∈(1,+∞)时,f (x )>0解析:选A 因为函数f (x )在R 上单调递增,所以f ′(x )≥0,又因为f (x )f ′(x )+x <1,则f ′(x )≠0,综合可知f ′(x )>0.又因为f (x )f ′(x )+x <1,则f (x )+xf ′(x )<f ′(x ),即f (x )+(x -1)f ′(x )<0,根据“f (x )+(x -1)f ′(x )”的特征,构造函数F (x )=(x -1)f (x ),则F ′(x )<0,故函数F (x )在R 上单调递减,又F (1)=(1-1)f (1)=0,所以当x >1时,x -1>0,F (x )<0,故f (x )<0.又因为f (x )是定义在R 上的增函数,所以当x ≤1时,f (x )<0,因此对于任意x ∈R ,f (x )<0,故选A.3.设y =f (x )是(0,+∞)上的可导函数,f (1)=2,(x -1)[2f (x )+xf ′(x )]>0(x ≠1)恒成立.若曲线f (x )在点(1,2)处的切线为y =g (x ),且g (a )=2 018,则a 等于( ) A .-501 B .-502 C .-503D .-504解析:选C 由“2f (x )+xf ′(x )”联想到“2xf (x )+x 2f ′(x )”,可构造F (x )=x 2f (x )(x >0).由(x -1)[2f (x )+xf ′(x )]>0(x ≠1)可知,当x >1时,2f (x )+xf ′(x )>0,则F ′(x )=2xf (x )+x 2f ′(x )>0,故F (x )在(1,+∞)上单调递增;当0<x <1时,2f (x )+xf ′(x )<0,则F ′(x )=2xf (x )+x 2f ′(x )<0,故F (x )在(0,1)上单调递减,所以x =1为极值点,则F ′(1)=2×1×f (1)+12f ′(1)=2f (1)+f ′(1)=0.由f (1)=2可得f ′(1)=-4,曲线f (x )在点(1,2)处的切线为y -2=-4(x -1),即y =6-4x ,故g (x )=6-4x ,g (a )=6-4a =2 018,解得a =-503,故选C. 4.设f ′(x )是函数f (x )(x ∈R)的导函数,且满足xf ′(x )-2f (x )>0,若在△ABC 中,角C 为钝角,则( ) A .f (sin A )·sin 2B >f (sin B )·sin 2A B .f (sin A )·sin 2B <f (sin B )·sin 2A C .f (cos A )·sin 2B >f (sin B )·cos 2A D .f (cos A )·sin 2B <f (sin B )·cos 2A解析:选C 根据“xf ′(x )-2f (x )”的特征,可以构造函数F (x )=f (x )x 2,则有F ′(x )=x 2f ′(x )-2xf (x )x 4=x [xf ′(x )-2f (x )]x 4,所以当x >0时,F ′(x )>0,F (x )在(0,+∞)上单调递增.因为π2<C <π,所以0<A +B <π2,0<A <π2-B ,则有1>cos A >cos ⎝⎛⎭⎫π2-B =sin B >0,所以F (cos A )>F (sin B ),即f (cos A )cos 2A >f (sin B )sin 2B ,f (cos A )·sin 2B >f (sin B )·cos 2A ,故选C.5.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( ) A .e x 1f (x 2)>e x 2f (x 1) B .e x 1f (x 2)<e x 2f (x 1) C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定解析:选A 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意知g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f (x 1)e x 1<f (x 2)ex 2,所以e x 1f (x 2)>e x 2f (x 1). 6.设定义在R 上的函数f (x )满足f (1)=2,f ′(x )<1,则不等式f (x 2)>x 2+1的解集为________.解析:由条件式f ′(x )<1得f ′(x )-1<0,待解不等式f (x 2)>x 2+1可化为f (x 2)-x 2-1>0,可以构造F (x )=f (x )-x -1,由于F ′(x )=f ′(x )-1<0,所以F (x )在R 上单调递减.又因为F (x 2)=f (x 2)-x 2-1>0=2-12-1=f (12)-12-1=F (12),所以x 2<12,解得-1<x <1,故不等式f (x 2)>x 2+1的解集为{x |-1<x <1}. 答案:{x |-1<x <1}7.若定义在R 上的函数f (x )满足f ′(x )+f (x )>2,f (0)=5,则不等式f (x )<3e x +2的解集为________.解析:因为f ′(x )+f (x )>2,所以f ′(x )+f (x )-2>0,不妨构造函数F (x )=e x f (x )-2e x .因为F ′(x )=e x [f ′(x )+f (x )-2]>0,所以F (x )在R 上单调递增.因为f (x )<3e x +2,所以e xf (x )-2e x <3,即F (x )<3,又因为F (0)=e 0f (0)-2e 0=3,所以F (x )<F (0),则x <0,故不等式f (x )<3e x +2的解集为(-∞,0).答案:(-∞,0)8.已知函数f (x )=x -2x +1-a ln x ,a >0,讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ≤0,即0<a ≤22时,对一切x >0都有f ′(x )≥0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.由f ′(x )>0,得0<x <x 1或x >x 2. 由f ′(x )<0,得x 1<x <x 2.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.9.设a ≥0,求证:当x >1时,恒有x >ln 2x -2a ln x +1. 证明:令g (x )=x -ln 2x +2a ln x -1(x >1), 所以g ′(x )=x -2ln x +2ax. 令u (x )=x -2ln x +2a ,所以u ′(x )=1-2x =x -2x .所以u (x )≥u (2)=2(1-ln 2+a 因为x >1,所以g (x )>g (1)=0,所以原不等式成立. 10.已知函数f (x )=ln(ax +1)+1-x1+x,x ≥0,其中a >0.若f (x )的最小值为1,求a 的取值范围. 解:因为f ′(x )=ax 2+a -2(ax +1)(x +1)2.①当a ≥2时,f ′(x )≥0,所以f (x )在[0,+∞)递增, 所以f (x )min =f (0)=1,满足题设条件. ②当0<a <2时,f (x )在⎣⎢⎡⎭⎪⎫0,2-a a 上递减,在( 2-aa ,+∞ )递增.所以f(x)min=f( 2-a a )<f(0)=1,不满足题设条件.综上,a≥2.。
导数的应用切线与极值问题

导数的应用切线与极值问题导数的应用:切线与极值问题导数是微积分中的重要概念,它在各个科学领域中都有着广泛的应用。
其中,切线与极值问题是导数应用的两个常见问题。
本文将探讨如何使用导数解决切线和极值问题,并通过实例解释其应用。
一、切线问题切线是曲线上某一点处与该点相切的直线。
通过导数,我们可以确定曲线上某点的切线方程。
设曲线方程为y=f(x),点P(x,y)处的切线斜率k即为函数f(x)在该点的导数,即k=f'(x)。
例子1:求曲线y=x^2+2x+1在点P(1,4)处的切线方程。
解:首先求导数:f'(x)=(x^2+2x+1)'=2x+2。
然后求点P(1,4)处的斜率:k=f'(1)=2(1)+2=4。
由切线斜率和点可确定切线方程,即y-4=4(x-1)。
将其化简,得到切线方程为y=4x。
二、极值问题在求解极值问题时,我们可以利用导数为0的点来确定函数的最大值或最小值。
设函数f(x)在[a,b]区间上连续且在区间内可导,若f'(c)=0且c∈(a,b),则c称为f(x)在[a,b]上的临界点。
临界点和区间端点都有可能是函数的极值点。
例子2:求函数f(x)=x^3-3x^2的极小值。
解:首先求导数:f'(x)=(x^3-3x^2)'=3x^2-6x。
然后求导函数的临界点:3x^2-6x=0。
化简得到x(x-2)=0,解得x=0或x=2。
接下来,我们通过判断临界点和区间端点的函数值来确定极小值。
计算f(0)=-0、f(2)=-4,因此f(x)=x^3-3x^2的极小值为-4,在x=2处取得。
综上,我们通过求解导数和判断临界点来确定函数的极值。
三、切线和极值问题的应用切线问题和极值问题在实际应用中有着广泛的运用。
例子3:一辆汽车在某段时间内行驶的路程和时间的关系如图所示。
求该段时间内汽车的平均速度,以及汽车行驶的最快和最慢速度。
图表:时间(小时) 0 2 4 6 8 10路程(公里)***********解:我们可以通过导数来求解这个问题。
微分中值定理与导数的应用总结

微分中值定理与导数的应用总结一、微分中值定理1.拉格朗日中值定理拉格朗日中值定理是微分中值定理的最基本形式,它表述为:如果函数f(x)在区间[a,b]上连续,在开区间(a,b)内可导,则在(a,b)内至少存在一个数c,使得f(b)-f(a)=f'(c)(b-a),其中c属于(a,b)。
拉格朗日中值定理的几何意义是:如果一条曲线在两个点a和b上的斜率相等,则在这两个点之间必然存在一点c,使得曲线在c点和a、b两点之间的切线斜率相等。
2.柯西中值定理柯西中值定理是微分中值定理的推广形式,它给出了两个函数的导数的关系。
设f(x)和g(x)在[a,b]上连续,在开区间(a,b)内可导且g'(x)≠0,则存在一个数c,使得[f(b)-f(a)]/[g(b)-g(a)]=[f'(c)]/[g'(c)]。
柯西中值定理的几何意义是:如果曲线f(x)和g(x)在两个点a和b上的切线斜率之比等于f'(c)和g'(c)的比,则在这两个点之间必然存在一点c,使得曲线f(x)和g(x)在c点的切线斜率之比等于f'(c)和g'(c)的比。
3.罗尔中值定理罗尔中值定理是微分中值定理的特殊形式,它给出了导数为零的充分条件。
设函数f(x)在[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一个数c,使得f'(c)=0。
罗尔中值定理的几何意义是:如果一条曲线在两个端点上的函数值相等,则在这两个端点之间必然存在一个点c,使得曲线在c点的切线斜率为零。
微分中值定理的应用非常广泛,例如在证明极限存在或连续性、研究函数增减性和函数极值、解方程和不等式等问题中都有重要的作用。
在实际生活中,微分中值定理可以应用于求解速度、加速度、距离等问题,帮助我们更好地理解和解决实际问题。
二、导数的应用导数作为微积分的重要概念,具有很多实际应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的应用中常见四类问题导析
导数的引入为解决有关函数问题提供了广阔的思路,利用导数解决一些实际问题是函数内容的继续延伸,使解决问题的方法变得简化,逐渐成为高考的一热点,下面对导数在实际应用四类题型作简单的分析:
一、与容积(体积)有关的实际问题:
例1、如图所示,在边长为60cm 的正方形铁片的四角上切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的长方体箱子,则箱底的边长是多少时,箱子的容积最大?最大容积式多少?
分析:可设箱高为xcm ,然后表达体积关于x 的函数,再求最值。
解:设箱的高为xcm ,则箱底边长为(602)x cm -,则箱子容积V 关于箱高x 的函数关系
式为:2()(62)V x x x =-⋅,(030)x <<
∴2()124803600V x x x '=-+,
令()0V x '=,得10x =或30x =(舍去),
当010x <<时,()0V x '>;当1030x <<时,()0V x '<,
∴当10x =时,()V x 取得最大值。
此时,箱底边长为6021040()cm -⨯=,箱子的容积为2340101600()cm ⨯=,
即当箱子的高为10cm ,箱底边长为40cm 时,箱子容积最大,最大容积为31600()cm 。
点评:在实际问题中,若能判定函数在定义域开区间内有唯一的极值点时,那么可以判定这个极值点的函数值就是最大(小)值。
二、与生产利润有关的实际问题:
例2、某工厂生产某种产品,已知该产品的年生产量()x t 与每吨产品的价格P (元/吨)之间的函数关系式为21242005
P x =-,且生产()x t 的成本为5000020T x =+(元),问该厂每年生产多少吨产品才能使利润达到最大?最大利润为多少?
分析:解本题的关键是利用“利润=收入-成本”这一等量关系,建立目标函数,注意确定
函数定义域,然后利用导数求最值。
解:设每年生产()x t 时的利润为()f x ,
则2311()(24200)(50000200)240005000055f x x x x x x =-
-+=-+-,(0)x ≥ 令23()2400005
f x x '=-+=, 解得12200,200x x ==-(舍去),
∵()f x 在[)0,+∞内只有一个点1200x =,使()0f x '=,且(200)0f >,
∴当200x =时,函数有最大值(200)3150000f =(元),
即该厂每年生产200吨产品才能利润达到最大,最大利润3150000元。
点评:解决本题的关键在于设出变量,建立函数关系式,确定函数的定义域,在利用导数求
解函数的最值,体现了导数在函数中的应用。
三、与建筑用料有关的实际应用:
例3、某单位用木料制作如图所示的框架,框架的下部是边长分别为,x y (单位:m )的矩形,上部是等腰直角三角形,要求框架围成的总面积为2
8m ,问,x y 分别为多少时用料最省?(精确到0.001m )
分析:解答本题可先利用面积为28m ,找出,x y 的关系,再列用料的函数关系式求最值。
解:由题意,得1822x xy x +⋅=,∴2
8844
x x y x x -==
-(0x <<,
于是框架用料长度为316222)(2l x y x x =++⨯=++, 令0l '=
,即231602x
=,
解得1288x x =-=(舍去),
当08x <<-0l '<
;当8x <<时,0l '>,
∴当18x =-l
取得最小值,此时,18 2.343, 2.828x y =-≈≈, 即当x 为2.343m ,y 为2.828m 时,用料最省。
点评:本题中有两个变量,应注意利用题目中的条件寻求两个变量的关键进行消元,变为只含一个变量的函数,消元过程中应特别注意挖掘变量的范围及实际问题中变量的范围。
四、与现实相关的实际问题:
例4、两县城A 和B 相聚20km ,现计划在两县城外以AB 为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度 与所选地点到城市的的距离有关,对城A 和城B 的总影响度为城A 与城B 的影响度之和,记C 点到城A 的距离为x km ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y,统计调查表明:垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为k ,当垃圾处理厂建在
的中点时,对称A 和城B 的总影响度为0.0065.
(1)将y 表示成x 的函数;
(11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理y x
厂对城A 和城B 的总影响度最小?若存在,求出该点到城A 的距离,若不存在,说明理由。
分析:根据题意,利用三角形勾股定理建立函数关系,利用导数求最值
解:(1)如右图,由题意知AC ⊥BC,22400BC x =-,224(020)400k y x x x
=+<<-, 当垃圾处理厂建在弧AB 的中点时,垃圾处理厂到A 、B 的距离都相等,
且为
,所以有0.065=, 解得9k =, ∴2249(020)400y x x x
=+<<-
(2)∵'
'2249()400y x x =+-=322818(400)x x x -+-=423221064001280000(400)x x x x +--, 令'0y >,得426401280000x x +->,解得2160x ≥
,即x ≥,
又因为020x <<,所以函数22
49400y x x =+-
在x ∈上是减函数,
在x ∈
上是增函数,∴当x =时,y 取得最小值,
所以在弧AB 上存在一点,且此点到城市A
的距离为,使建在此处的垃圾 处理厂对城市A 、B 的总影响度最小.
点评:本题以实际应用题为背景,从实际问题中抽象出数学模型,在第(2)问中,求函数取最大值时的x 的值时,又考查了利用导数研究函数的单调性、最值以及运算能力.。