sup曲线拟合与回归分析 ppt课件
合集下载
曲线拟合PPT演示文稿

第四讲 曲线拟合
1
第四讲主要知识点
1、曲线拟合的概念 2、曲线拟和的方法 3、解矛盾方程组
2
函数插值问题回忆
• 设已知某个函数关系y f (x) 在某些离散点上的函数值:
x x0 x1 y y0 y1
x n 1 x n y n 1 y n
• 插值问题:根据这些已知数据来构造函数 y f (x)
合函数形式为 pm (x)a0a1xam xm (mn1) , 求系数 a0*,a1*, ,am * ,使得
n
n
m
( a 0 ,a 1 , ,a m )[ y i p m ( x i) ] 2 [ y ia k x ik ] 2
p m * (x ) i 1 a 0 * a 1 * x a m * x i m 0
15
拟合例题
例2 有一滑轮组,要举起W公斤的重物需要用 F公斤的力,实验所得的数据如下表。
求适合上述关系的近似公式。
16
拟合例题
解 首先,将这些数据画在直角坐标系中,从图形上 看,数据点的分布大致呈一条直线,所以设所求
的拟合直线为 yabx ,
得关于a和b的线性方程组
17
其他类拟合问题
最小二乘法并不只限于多项式,也可用于任 何具体给出的函数形式。特别重要的是有些非线 性最小二乘拟合问题通过适当的变换可以转化为 线性最小二乘问题求解。
确定a和b取何值时,二元函数
的值最小?
N
Q(a,b) [yi (abxi)]2 i1
11
直线拟合
由微积分的知识可知,这一问题的求解, 可归结为求二元函数
Q (a, b) 的极值问题,即 a 和 b
应满足:
12
直线拟合
1
第四讲主要知识点
1、曲线拟合的概念 2、曲线拟和的方法 3、解矛盾方程组
2
函数插值问题回忆
• 设已知某个函数关系y f (x) 在某些离散点上的函数值:
x x0 x1 y y0 y1
x n 1 x n y n 1 y n
• 插值问题:根据这些已知数据来构造函数 y f (x)
合函数形式为 pm (x)a0a1xam xm (mn1) , 求系数 a0*,a1*, ,am * ,使得
n
n
m
( a 0 ,a 1 , ,a m )[ y i p m ( x i) ] 2 [ y ia k x ik ] 2
p m * (x ) i 1 a 0 * a 1 * x a m * x i m 0
15
拟合例题
例2 有一滑轮组,要举起W公斤的重物需要用 F公斤的力,实验所得的数据如下表。
求适合上述关系的近似公式。
16
拟合例题
解 首先,将这些数据画在直角坐标系中,从图形上 看,数据点的分布大致呈一条直线,所以设所求
的拟合直线为 yabx ,
得关于a和b的线性方程组
17
其他类拟合问题
最小二乘法并不只限于多项式,也可用于任 何具体给出的函数形式。特别重要的是有些非线 性最小二乘拟合问题通过适当的变换可以转化为 线性最小二乘问题求解。
确定a和b取何值时,二元函数
的值最小?
N
Q(a,b) [yi (abxi)]2 i1
11
直线拟合
由微积分的知识可知,这一问题的求解, 可归结为求二元函数
Q (a, b) 的极值问题,即 a 和 b
应满足:
12
直线拟合
第八章 曲线拟合、回归和相关讲解

t
( y0 yp ) n 2
sy.x n 1 [n(x0 x)2 / sx2 ]
有n-2个自由度的t分布。由此能求得预报得总体值
得置信限
2 预报的平均值的假设检验
设y0是x=x0时y的预报值,它是从样本回归方程得到 的估计,即y0=a+bx0。设y p记对总体而言对应x=x0的y 的预报平均值,那么统计量
y=+x。下面是与正态分布有关的一些检验:
1 假设=c的检验
为了检验假设:回归系数等于某一特定值c,使
用统计量
t b n2
sy.x / sx
它具有n-2自由度的t分布。此结论也可用于从样本 值求总体回归系数的置信区间
2 预报值的假设检验
设y0是x=x0时y的预报值,它是从样本回归方程得到 的估计,即y0=a+bx0。设yp记对总体而言对应x=x0的y的 预报值,那么统计量
将所有点代入直线方程后相加,我们得到
y=an+bx(或 y a b x)
以及 xy=ax+bx2
这两个方程称为最小二乘的正规方程。由上 面的方程组我们可以达到a,b分别为:
a
yx2 nx2
xxy (x)2
,
b
nxy nx2
xy (x)2
, 其中b也可以写成
最小二乘法
若在近似n个数据点的集合
时,对一给定的曲线族的全
部曲线,其中有一条曲线的
性质:
d12
d
2 2
...
d
2 n
达最小值,则称该曲线为给 定曲线族中的最佳拟合曲 线。 有这样性质的一条曲线称为 在最小二乘意义上对数据的 拟合,该曲线称为最小二乘 回归曲线
回归分析曲线拟合通用课件

生物医学研究
研究生物标志物与疾病之间的 关系,预测疾病的发生风险。
金融市场分析
分析股票价格、利率等金融变 量的相关性,进行市场预测和 风险管理。
社会科学研究
研究社会现象之间的相关关系 ,如教育程度与收入的关系、 人口增长与经济发展的线性回归模型
线性回归模型是一种预测模型,用于描 述因变量和自变量之间的线性关系。
SPSS实现
SPSS实现步骤 1. 打开SPSS软件; 2. 导入数据;
SPSS实现
01
3. 选择回归分析命令;
02
4. 设置回归分析的变量和选项;
03
5. 运行回归分析;
04
6. 查看并解释结果。
THANKS
感谢观看
回归分析曲线拟合通用课件
• 回归分析概述 • 线性回归分析 • 非线性回归分析 • 曲线拟合方法 • 回归分析的实践应用 • 回归分析的软件实现
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变异关系, 找出影响因变量的主要因素,并 建立回归方程,用于预测和控制 因变量的取值。
线性回归模型的假设包括:误差项的独立性、误差项的同方差性、误差 项的无偏性和误差项的正态性。
对假设的检验可以通过一些统计量进行,如残差图、Q-Q图、Durbin Watson检验等。如果模型的假设不满足,可能需要重新考虑模型的建立 或对数据进行适当的变换。
03
非线性回归分析
非线性回归模型
线性回归模型的局限性
回归分析的分类
01
02
03
一元线性回归
研究生物标志物与疾病之间的 关系,预测疾病的发生风险。
金融市场分析
分析股票价格、利率等金融变 量的相关性,进行市场预测和 风险管理。
社会科学研究
研究社会现象之间的相关关系 ,如教育程度与收入的关系、 人口增长与经济发展的线性回归模型
线性回归模型是一种预测模型,用于描 述因变量和自变量之间的线性关系。
SPSS实现
SPSS实现步骤 1. 打开SPSS软件; 2. 导入数据;
SPSS实现
01
3. 选择回归分析命令;
02
4. 设置回归分析的变量和选项;
03
5. 运行回归分析;
04
6. 查看并解释结果。
THANKS
感谢观看
回归分析曲线拟合通用课件
• 回归分析概述 • 线性回归分析 • 非线性回归分析 • 曲线拟合方法 • 回归分析的实践应用 • 回归分析的软件实现
01
回归分析概述
回归分析的定义
01
回归分析是一种统计学方法,用 于研究自变量和因变量之间的相 关关系,并建立数学模型来预测 因变量的值。
02
它通过分析数据中的变异关系, 找出影响因变量的主要因素,并 建立回归方程,用于预测和控制 因变量的取值。
线性回归模型的假设包括:误差项的独立性、误差项的同方差性、误差 项的无偏性和误差项的正态性。
对假设的检验可以通过一些统计量进行,如残差图、Q-Q图、Durbin Watson检验等。如果模型的假设不满足,可能需要重新考虑模型的建立 或对数据进行适当的变换。
03
非线性回归分析
非线性回归模型
线性回归模型的局限性
回归分析的分类
01
02
03
一元线性回归
生物统计学课件--17曲线拟合(回归)

一、对数函数曲线的拟合
1、对数方程的一般表达式: yˆ a b lg x
2、对数曲线 yˆ a b lg x 的图象
3、 yˆ a b lg x 直线化方法:
若令 lg x x` ,则有 yˆ a bx`
4、求 a 和 b 的值:
b SSx`y , SSx`
a y b x`
将up= y`= 0 代入 y`= a + bx`, 则有 :0 = a + bx`,
则有:x`= -a/b,
a
因为 x` = lgx,所以 x 10 b
此时的x即为半致死剂量,用LD50表示。
a
LD50 10 b
例题:用不同剂量的 射线照射小麦品种库斑克, 调查死苗率,得到以下结果:
剂量(Kr)x 14
a 10a` 101.6706 0.0214 b 10b` 100.1181 1.3125
yˆ 0.0214 1.3125 x
350
300
250
200
150
100
50
0
15
20
25
30
35
40
回归关系的检验:可以利用 b` 或者 r 进行检验,主要是对线 性关系的检验,线性回归或相关显著,则指数回归关系的拟 合就显著。
答:半致死剂量为18.6(Kr)
五、曲线的检验
有时将同一组数据,我们将其做指数函数或幂函数形式的变 换,都能得到X与Y的拟合曲线,并且可能在做线性回归关 系检验的时候,线性关系都显著,那么,究竟哪一条拟合曲 线是最好的呢?
一般情况下,以剩余平方和或称之为误差平方和的大小来判
断,即SSe最小时的拟合曲线为最好的曲线。
第五节 曲线拟合(非线性回归分析)
回归分析法PPT课件

线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。
《曲线拟合》PPT课件

曲线拟合
Curve fitting
医学研究中X和Y的数量关系常常不是线性的,如毒 物剂量与动物死亡率,人的生长曲线,药物动力学等, 都不是线性的。如果用线性描述将丢失大量信息,甚至 得出错误结论。
此时可以用曲线直线化估计(Curve estimation) 或非线性回归(Nonlinear regression) 方法分析。
散点图辨析
预后指数Y
60 50 40 30 20 10
0 0
对数曲线 指数曲线
10 20 30 40 50 60 70 病人住院天数X
如果条件允许最好采用非线性回 归(Nonlinear Regression)拟合幂 函数曲线与指数函数曲线
注意绘制散点图,并结合专业知 识解释
采用SAS进行曲线拟合
①幂函数: Yˆ ea X b 或 ln(Yˆ) a bln(X )
②对数:
Yˆ a bln(X )
③指数函数: Yˆ eabX
或 ln(Yˆ) a bX
④多项式: Yˆ a b1X b2 X 2 bn X n
⑤logistic:
Yˆ
1/(1
eabX
)
或
ln[
Yˆ
/(1
Yˆ)]
-8.0196 -4.0604 0.0000 3.9012 7.6049 11.1860 -12.8898
Yˆ
7.23 12.62 15.77 18.01 19.75 21.16 22.36
23.40
残差平方
0.1380 0.1017 0.0053 0.0361 1.0921 0.0563 0.0566 0.1597
(lnX)2 Y2
2.5902 57.76 0.8396 151.29 0.2609 246.49 0.0498 331.24 0.0000 349.69 0.0332 457.96 0.1132 510.76 0.2209 566.44 4.1078 2671.63
Curve fitting
医学研究中X和Y的数量关系常常不是线性的,如毒 物剂量与动物死亡率,人的生长曲线,药物动力学等, 都不是线性的。如果用线性描述将丢失大量信息,甚至 得出错误结论。
此时可以用曲线直线化估计(Curve estimation) 或非线性回归(Nonlinear regression) 方法分析。
散点图辨析
预后指数Y
60 50 40 30 20 10
0 0
对数曲线 指数曲线
10 20 30 40 50 60 70 病人住院天数X
如果条件允许最好采用非线性回 归(Nonlinear Regression)拟合幂 函数曲线与指数函数曲线
注意绘制散点图,并结合专业知 识解释
采用SAS进行曲线拟合
①幂函数: Yˆ ea X b 或 ln(Yˆ) a bln(X )
②对数:
Yˆ a bln(X )
③指数函数: Yˆ eabX
或 ln(Yˆ) a bX
④多项式: Yˆ a b1X b2 X 2 bn X n
⑤logistic:
Yˆ
1/(1
eabX
)
或
ln[
Yˆ
/(1
Yˆ)]
-8.0196 -4.0604 0.0000 3.9012 7.6049 11.1860 -12.8898
Yˆ
7.23 12.62 15.77 18.01 19.75 21.16 22.36
23.40
残差平方
0.1380 0.1017 0.0053 0.0361 1.0921 0.0563 0.0566 0.1597
(lnX)2 Y2
2.5902 57.76 0.8396 151.29 0.2609 246.49 0.0498 331.24 0.0000 349.69 0.0332 457.96 0.1132 510.76 0.2209 566.44 4.1078 2671.63
回归分析学习课件PPT课件

03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
sup曲线拟合与回归分析 ppt课件

sup曲线拟合与回归分析
10
提示
左除的概念,可記憶如下:原先的方程式是 A*theta = y,我們可將 A移項至等號右邊, 而得到 theta = A\y。必須小心的是:原先 A 在乘式的第一項,所以移到等號右邊後,A 仍 然必須是除式的第一項。
若我們要解的方程式是 theta*A = y,則同樣 的概念可得到最小平方解 theta = A/ y。
範例10-2: census01.m
load census.mat
% 載入人口資料
plot(cdate, pop, 'o');
% cdate 代表年度,pop 代表人口總數
A = [ones(size(cdate)), cdate, cdate.^2];
y = pop;
theta = A\y;
% 利用「左除」,找出最佳的 theta 值
迴歸分析與所使用的數學模型有很大的關係
模型是線性模型,則此類問題稱為線性迴歸 (Linear Regression)
模型是非線性模型,則稱為非線性迴歸
(Nonlinear Regsurp曲es线s拟i合o与n回)归。分析
2
線性迴歸:曲線擬合
觀察資料是美國自 1790 至 1990 年(以 10 年為一單位)的總人口,此資料可由載入檔案 census.mat 得到
通常不存在一組解來滿足這 21 個方程式。
在一般情況下,只能找到一組 ,使得等號兩邊的
差異為最小,此差異可寫成
yA 2(yA )T(yA )
此即為前述的總平方誤差 E
MATLAB 提供一個簡單方便的「左除」(\)指
令,來解出最佳的
sup曲线拟合与回归分析
8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通常不存在一組解來滿足這 21 個方程式。
在一般情況下,只能找到一組 ,使得等號兩邊的
差異為最小,此差異可寫成
yA 2(yA )T(yA )
此即為前述的總平方誤差 E
MATLAB 提供一個簡單方便的「左除」(\)指
令,來解出最佳的
2020/12/27
10
線性迴歸:曲線擬合
利用「左除」來算出最佳的 值,並同時畫出 具有最小平方誤差的二次曲線
、
0
a
1、a
的一次式
2
令上述導式為零之後,我們可以得到一組三元一次
線性聯立方程式,就可以解出參數 佳值。
a
0、
a
1、a
的最
2
2020/12/27
8
線性迴歸:曲線擬合
假設 21 個觀察點均通過此拋物線,將這 21 個點帶入拋物線方程式,得到下列21個等式:
a0 a1 x1 a2 x12 y1 a0 a1 x2 a2 x2 2 y2
範例10-2: census01.m
load census.mat plot(cdate, pop, 'o');
% 載入人口資料 % cdate 代表年度,pop 代表人口總數
A = [ones(size(cdate)), cdate, cdate.^2];
y = pop; theta = A\y;
a0 a1 x21 a2 x212 y21
亦可寫成
1 1
x1
x2
x12 x22
1
2
y1
y2
1
x 21
x
212
3
y21
A
y
其中 2020/12/27
A、 y為已知,
為未知向量。
9
線性迴歸:曲線擬合
上述21個方程式
21 個方程式,只有 3 個未知數(1,2,3T,所以
2020/12/27
12
提示
左除的概念,可記憶如下:原先的方程式是 A*theta = y,我們可將 A移項至等號右邊, 而得到 theta = A\y。必須小心的是:原先 A 在乘式的第一項,所以移到等號右邊後,A 仍 然必須是除式的第一項。
若我們要解的方程式是 theta*A = y,則同樣 的概念可得到最小平方解 theta = A/ y。
1~21。當輸入為 x i
yi
模型的預測值為 f(x i;a 0 ,a 1 ,a 2 ) a 0 a 1 x i a 2 x i2
平方誤差: yi f(xi)2
總平方誤差 示如下:
E是參數
a 0 、a 1 、a 2 的函數則可表
E ( a 0 ,a 1 ,a 2 ) 2y 1 i f( x i) 2 2y 1 i a 0 a 1 x i a 2 x i22
50 0 1750
1800
1850
1900
年度
1950
5
2000
線性迴歸:曲線擬合
上圖資料點走勢,通過這些點的曲線可能是二 次拋物線,假設為 y f( x ;Байду номын сангаас 0 ,a 1 ,a 2 ) a 0 a 1 x a 2 x 2
其中y為輸出,x為輸入, a 0、 a 1 及 a 2 則為此模型
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
2020/12/27
4
線性迴歸:曲線擬合
觀察資料是美國自 1790 至 1990 年(以 10 年為一單位)的總人口,此資料可由載入檔案 census.mat 得到
的參數。
參數相對於y呈線性關係,所以此模型稱為「具有 線性參數(Linear-in-the-parameters)」的模型。
找出最好的參數值,使得模型輸出與實際資料 越接近越好,此過程即稱為線性迴歸(Linear Regression)
2020/12/27
6
線性迴歸:曲線擬合
線性迴歸
假設觀察資料可寫成 (xi , yi ),i= 時,實際輸出為 y i 。
200
預測人口數
美國人口總數
150
100
50
0 1750
1800
1850
1900
1950
2000
年度
由上述範例,我們可以找出最佳的
a 0 ,a 1 ,a 2 21 , 2 1 .5 3 ,0 3 .0 10 0 654
因此具有最小平方誤差的拋物線可以寫成:
y f(x ) a 0 a 1 x a 2 x 2 21 2 1 .5 3 x 3 1 0 .0 00 x 2654
範例10-1: censusPlot01.m
load census.mat plot(cdate, pop, 'o'); xlabel('年度'); ylabel('美國人口總數');
% 載入人口資料 % cdate 代表年度,pop 代表人口總數
250
200
美國人口總數
150
100
2020/12/27
迴歸分析與所使用的數學模型有很大的關係
模型是線性模型,則此類問題稱為線性迴歸 (Linear Regression)
模型是非線性模型,則稱為非線性迴歸
2020/12/2(7 Nonlinear Regression)。
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
% 利用「左除」,找出最佳的 theta 值
plot(cdate, pop, 'o', cdate, A*theta, '-'); legend('實際人口數', '預測人口數'); xlabel('年度'); ylabel('美國人口總數');
2020/12/27
11
線性迴歸:曲線擬合
250
實際人口數
i 1
i 1
2020/12/27
7
線性迴歸:曲線擬合
求得參數 a 0、a、1 a 2 的最佳值
求出E 對 a 0、a 1 、a 2 的導式,令其為零,即可解 出 a 0、 a 1、a 2 的最佳值。
平方誤差 E 為 a 0、a 1 、a 2 的二次式
導式
E 、E
a0 a1
及 E
a2
為
a
MATLAB 程式設計 曲線擬合與迴歸分析
2020/12/27
1
線性迴歸:曲線擬合
曲線擬合(Curve Fitting)
建立的數學模型是「單輸入、單輸出」(Singleinput Single-output,簡稱SISO)
其特性可用一條曲線來表示
在資料分析上都稱為迴歸分析(Regression Analysis),或稱為資料擬合(Data Fitting)
在一般情況下,只能找到一組 ,使得等號兩邊的
差異為最小,此差異可寫成
yA 2(yA )T(yA )
此即為前述的總平方誤差 E
MATLAB 提供一個簡單方便的「左除」(\)指
令,來解出最佳的
2020/12/27
10
線性迴歸:曲線擬合
利用「左除」來算出最佳的 值,並同時畫出 具有最小平方誤差的二次曲線
、
0
a
1、a
的一次式
2
令上述導式為零之後,我們可以得到一組三元一次
線性聯立方程式,就可以解出參數 佳值。
a
0、
a
1、a
的最
2
2020/12/27
8
線性迴歸:曲線擬合
假設 21 個觀察點均通過此拋物線,將這 21 個點帶入拋物線方程式,得到下列21個等式:
a0 a1 x1 a2 x12 y1 a0 a1 x2 a2 x2 2 y2
範例10-2: census01.m
load census.mat plot(cdate, pop, 'o');
% 載入人口資料 % cdate 代表年度,pop 代表人口總數
A = [ones(size(cdate)), cdate, cdate.^2];
y = pop; theta = A\y;
a0 a1 x21 a2 x212 y21
亦可寫成
1 1
x1
x2
x12 x22
1
2
y1
y2
1
x 21
x
212
3
y21
A
y
其中 2020/12/27
A、 y為已知,
為未知向量。
9
線性迴歸:曲線擬合
上述21個方程式
21 個方程式,只有 3 個未知數(1,2,3T,所以
2020/12/27
12
提示
左除的概念,可記憶如下:原先的方程式是 A*theta = y,我們可將 A移項至等號右邊, 而得到 theta = A\y。必須小心的是:原先 A 在乘式的第一項,所以移到等號右邊後,A 仍 然必須是除式的第一項。
若我們要解的方程式是 theta*A = y,則同樣 的概念可得到最小平方解 theta = A/ y。
1~21。當輸入為 x i
yi
模型的預測值為 f(x i;a 0 ,a 1 ,a 2 ) a 0 a 1 x i a 2 x i2
平方誤差: yi f(xi)2
總平方誤差 示如下:
E是參數
a 0 、a 1 、a 2 的函數則可表
E ( a 0 ,a 1 ,a 2 ) 2y 1 i f( x i) 2 2y 1 i a 0 a 1 x i a 2 x i22
50 0 1750
1800
1850
1900
年度
1950
5
2000
線性迴歸:曲線擬合
上圖資料點走勢,通過這些點的曲線可能是二 次拋物線,假設為 y f( x ;Байду номын сангаас 0 ,a 1 ,a 2 ) a 0 a 1 x a 2 x 2
其中y為輸出,x為輸入, a 0、 a 1 及 a 2 則為此模型
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
2020/12/27
4
線性迴歸:曲線擬合
觀察資料是美國自 1790 至 1990 年(以 10 年為一單位)的總人口,此資料可由載入檔案 census.mat 得到
的參數。
參數相對於y呈線性關係,所以此模型稱為「具有 線性參數(Linear-in-the-parameters)」的模型。
找出最好的參數值,使得模型輸出與實際資料 越接近越好,此過程即稱為線性迴歸(Linear Regression)
2020/12/27
6
線性迴歸:曲線擬合
線性迴歸
假設觀察資料可寫成 (xi , yi ),i= 時,實際輸出為 y i 。
200
預測人口數
美國人口總數
150
100
50
0 1750
1800
1850
1900
1950
2000
年度
由上述範例,我們可以找出最佳的
a 0 ,a 1 ,a 2 21 , 2 1 .5 3 ,0 3 .0 10 0 654
因此具有最小平方誤差的拋物線可以寫成:
y f(x ) a 0 a 1 x a 2 x 2 21 2 1 .5 3 x 3 1 0 .0 00 x 2654
範例10-1: censusPlot01.m
load census.mat plot(cdate, pop, 'o'); xlabel('年度'); ylabel('美國人口總數');
% 載入人口資料 % cdate 代表年度,pop 代表人口總數
250
200
美國人口總數
150
100
2020/12/27
迴歸分析與所使用的數學模型有很大的關係
模型是線性模型,則此類問題稱為線性迴歸 (Linear Regression)
模型是非線性模型,則稱為非線性迴歸
2020/12/2(7 Nonlinear Regression)。
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
% 利用「左除」,找出最佳的 theta 值
plot(cdate, pop, 'o', cdate, A*theta, '-'); legend('實際人口數', '預測人口數'); xlabel('年度'); ylabel('美國人口總數');
2020/12/27
11
線性迴歸:曲線擬合
250
實際人口數
i 1
i 1
2020/12/27
7
線性迴歸:曲線擬合
求得參數 a 0、a、1 a 2 的最佳值
求出E 對 a 0、a 1 、a 2 的導式,令其為零,即可解 出 a 0、 a 1、a 2 的最佳值。
平方誤差 E 為 a 0、a 1 、a 2 的二次式
導式
E 、E
a0 a1
及 E
a2
為
a
MATLAB 程式設計 曲線擬合與迴歸分析
2020/12/27
1
線性迴歸:曲線擬合
曲線擬合(Curve Fitting)
建立的數學模型是「單輸入、單輸出」(Singleinput Single-output,簡稱SISO)
其特性可用一條曲線來表示
在資料分析上都稱為迴歸分析(Regression Analysis),或稱為資料擬合(Data Fitting)