27.2.2 相似三角形的性质
27.2相似三角形(教案)

1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
5.培养学生的创新意识:鼓励学生在解决相似三角形问题时,敢于尝试新方法,勇于突破传统思维,培养创新意识。
本节课旨在使学生在学习相似三角形的过程中,全面提升学科核心素养,为未来的学习和生活打下坚实基础。
三、教学难点与重点
1.教学重点
(1)相似三角形的定义及判定方法:理解并掌握相似三角形的定义,以及SSS、SAS、ASA、AAS等判定方法,这是本节课的核心内容。
此外,在小组讨论环节,虽然学生们都能够积极参与,但在成果分享时,部分学生表达能力较弱,不能很好地将讨论成果展示出来。针对这个问题,我计划在接下来的课程中,多给予学生一些表达机会,培养他们的语言组织和表达能力。
还有一个值得注意的地方是,在课堂总结时,我发现部分学生对相似三角形在实际生活中的应用仍然感到困惑。为了让学生更好地理解这一点,我打算在下一节课引入更多生活中的实例,让学生们感受到数学知识在实际生活中的重要性。
在教学方法上,我认识到传统的讲授式教学并不能满足所有学生的需求。今后,我需要尝试更多元化的教学方法,如翻转课堂、小组合作学习等,以提高学生的学习兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指具有相同形状但大小不同的三角形。它们在几何学中具有重要地位,广泛应用于实际问题中。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例,展示相似三角形在实际中的应用,以及如何帮助我们解决问题。
27.2.2相似三角形的性质.ppt

都等于相似比.
角 对应角平分线的比
形 周长的比
相似三角形的性质
问题:两个相似三角形的面积 之间有什么关系呢?
用心观察 当相似比=k时,面积比=k2.
(1)
1
(2)
2
(3)
3
(1)与(2)的相似比=_1_∶___2_, (1)与(2)的面积比=___1_∶__4 (2)与(3)的相似比=___2∶___3, (2)与(3)的面积比=___4_∶__9
其中AD、 AD分别为BC、 BC边上的高,
由ABD ∽ABD能否得到 AD 等于什么?
AD
因为ABD∽ ABD,
所以 AD AB (相似三角形的对应边成比例)
AD AB
k
结论:相似三角形对应高
的比等于相似比.
图 18.3.9
图 18.3
自主思考---类似结论
问题2 : 如图, ABC∽ ABC,相似比为k,
相似三角形面积的比等于相似比的平方.
已知△ABC∽△ A,B且C 相似比为k,
AD、 分A别D是△ABC、△ 对AB应C边 BC、
上的高B,C求 证:
证明:∵△ABC∽△ABC
S ABC k 2
S ABC
A
∴ AD k, BC k
AD BC
B
D
C
∴ SABC
1 AD• BC 2
k2
A'
SABC 1 AD • BC
4.如图,在 ABCD中,若E是AB的中点,
则(1)∆AEF与∆CDF的相似比为__1__: _2_.
(2)若∆AEF的面积为5cm2,
k AE 1 CD 2
则∆CDF的面积为____2_0_c.m2 D
数学:27.2.2相似三角形的应用举例课件(人教新课标九年级下)

步行街 D E
建筑物
光明巷
A
胜利街
P
N
Q
练习
1.在同一时刻物体的高度与它的影长成正比 例.在某一时刻,有人测得一高为1.8米的竹竿 的影长为3米,某一高楼的影长为60米,那么高 楼的高度是多少米?
C
E
请同学们自已解答 并进行交流
D
例3:已知左,右并排的两棵大树的高分 别是AB=8m和CD=12m,两树的根部的距 离BD=5m。一个身高1.6m的人沿着正对 着两棵树的一条水平直路从左向右前进, 当他与左边较低的树的距离小于多少时, 就不能看见右边较高的树的顶端点C?
仰 :视线在水平 线以 角 上的夹角。
A B
D
E
C
4、如图,一条河的两岸有一段是平行的, 在河的南岸边每隔5米有一棵树,在北岸边 每隔50米有一根电线杆.小丽站在离南岸边 15米的点处看北岸,发现北岸相邻的两根电 线杆恰好被南岸的两棵树遮住,并且在这两 棵树之间还有三棵树,则河宽为 米.
5. 小明在打网球时,使球恰好能打过网,而且落 在离网5米的位置上,求球拍击球的高度h.(设网 球是直线运动)
B
D
C
E
BD EC 120 50 解得AB 100(米) DC 60 答: 两岸间的大致距离为100米.
(方法二) 我们在河对岸选定一目标点A,在河的一边选点 D和 E,使DE⊥AD,然后选点B,作BC∥DE,与视线 EA相交于点C。此时,测得DE , BC, BD, 就可以求两岸 间的大致距离AB了。 A 此时如果测得DE=120米, BC=60米,BD=50米,求 两岸间的大致距离AB. B
27.2相似三角形的判定综合

A、6米 C、18米
B、8米 D、24米
2、如图,P是RtΔABC的斜边BC上异 于B、C的一点,过点P做直线截ΔABC, 使截得的三角形与ΔABC相似,满足这 样条件的直线共有( ) A、 1条 B、 2条 C、3条 D、 4条
9、如图,四边形ABCD、CDEF、 EFGH都是正方形. (1)⊿ACF与⊿ACG相似吗?说说 你的理由. (2)求∠1+∠2的度数.
9.如图:已知∠ABC=∠CDB=90°,AC=a, BC=b,当BD与a、b之间满足怎样的关系式时,两 三角形相似 解:⑴∵ ∠1=∠D=90°
b2 △ABC∽ △CDB,∴BD a ⑵∵ ∠1=∠D=90°
AC AB a ∴当 时,即当 BC BD b
AC BC a b ∴当 BC BD 时,即当 b BD 时,
0
B
C
18
则AC=
BD=
4 √2 12√2
BC=
随堂训练
1.如图是小明设计用手电来测量某古城墙高度的示意图, 点P处放一水平的平面镜,光线从点A出发经平面镜反 射后刚好射到古城墙CD的顶端C处,已知AB⊥BD, CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是(B )
定理1 两角对应相等的两个三角形相似.
定理2 定理3 定理4
三边对应成比例的两个三角形相似. 两边对应成比例,且夹角相等的两个三角形相似; 斜边直角边对应成比例的两个直角三角形相似.
3.如图,P是AB上一点,补充下列条件: (1) ∠ACP=∠B; A (2)∠APC=∠ACB; AP PC P 3 ; AC BC AP AC C B 4 . AC AB 其中一定能使△ ACP∽ △ABC的是( D )
27.2.2 相似三角形的性质课件(共21张PPT)

∴ AD//BC,AD = BC,AE:BC=2:5.
∵△AEF∽△CBF, ∴ S△AEF:S△CBF = 4:25.
注意:
②当 AE:ED = 3:2时,AE:AD = 3:5,
AE: ED要分两种
同理可得, S△AEF:S△CBF = 9:25.
情况讨论.
27.2.2 相似三角形的性质
D'
C
C'
27.2.2 相似三角形的性质
(2)玻璃样品的角平分线和图纸上的角平分线相对应吗?如图,△ABC
∽△A′B′C′,相似比为 k,求它们对应角平分线的比.
A
解:如图,分别作出 △ABC 和△A' B' C' 的角平分线
AD 和 A'D',则∠BAD =∠B' A' D'
∵△ABC ∽△A′B′C′
∵△CEB的面积为9,∴△FDE的面积为1,∴△ABF的面积为4,
∴▱ABCD的面积=9-1+4=12.
27.2.2 相似三角形的性质
课堂小结
对应角相等
相
似
三
角
形
的
性
质
对应边成比例
对应边的比叫做相似比
对应高的比,对应中线的比、对应角平分线的比都等于
相似比.
周长的比等于相似比
面积的比等于相似比的平方
(5)图纸中图形与三角形玻璃样品面积比也等于相似比吗?为什么?
如图,△ABC ∽△A′B′C′,相似比为 k,它们的面积比是多少?
A
B
A'
C
B'
C'
27.2.2 相似三角形的性质
《相似三角形的性质》教案说明

《相似三角形的性质》教案说明鼓山中学高芳霞我讲课的内容是九年义务教育课程标准人教版教科书九年级下册第二十七章27.2“相似三角形的性质”。
下面,我从教材分析、教法、学法、教学程序四个方面对本课的设计进行说明。
一、教材分析1、教材所处的地位及作用“相似三角形的性质”是九年级下册“相似”一章的重点内容之一,是在学完相似三角形的定义及判定的基础上,进一步研究相似三角形的特征,以完成对相似三角形的全面研究,它既是全等三角形性质的拓展,也是研究相似三角形的基础。
这些性质是解决有关实际问题的重要工具,因此,这一节课无论在知识上,还是对学生能力的培养上,都起着十分重要的作用。
2、教学目标的确定1)通过探究相似三角形的对应高、中线与角平分线的比、周长比、面积比与相似比的关系,使学生掌握相似三角形的对应高、中线、角平分线、周长比等于相似比,面积比等于相似比的平方并学会应用。
2)在学习过程中,培养学生独立思考、合作学习、自主评价的能力,渗透数学当中的类比思想、转化思想。
3、教学重点及难点因为相似三角形的对应高、中线、角平分线、周长比、面积比与相似比的关系是解决与相似三角形有关问题的重要依据,也是研究相似多边形性质的基础,因此,它是本节教材的重点。
学生应用数学知识解决实际问题,需要具备一定的综合能力,这对大部分学生有一定的难度,因此,将相似三角形的周长比、面积比与相似比的关系的应用确定为本节课的难点。
通过学生动手操作及合作交流,进行探究相关问题来突出重点,突破难点。
二、教学方法与教学手段的选用为了充分调动学生学习的积极性,使学生变被动学习为主动愉快学习,使空间与图形中的几何问题上得有趣、生动和高效,而且,本课主要是针对于我们之前的课题:基于初中生课堂差异性教学的这一方面进行一种实验,顺便吸纳了一些厦门蔡塘的授课模式,利用学生讨论培养各个学生能力,在一节课中去体现因材施教,达到不同程度的学生根据自己的能力,都有所收获。
第27章《相似三角形的性质》教案2022-2023人教版九年级数学下学期

3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
-根据已知信息,尝试找到相似三角形;
-运用相似三角形的性质,列出比例关系,解决问题。
c)难点三:相似三角形性质在几何证明中的应用。可通过以下步骤进行讲解:
-分析题目要求,确定需要证明的结论;
-利用相似三角形的性质,找到合适的证明方法;
-举例说明,如:证明在相似三角形中,角平分线、中线、高线等成比例。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作两个相似三角形的模型,并测量它们的对应边长,验证成比例的关系。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
第27章《相似三角形的性质》教案2022-2023人教版九年级数学下学期
一、教学内容
第27章《相似三角形的性质》教案2022-2023人教版九年级数学下学期
1.理解相似三角形的定义及判定方法;
2.掌握相似三角形的基本性质:对应角相等、对应边成比例;
3.应用相似三角形的性质解决实际问题;
4.学习相似三角形在生活中的应用,如摄影、建筑设计等领域;
-引导学生观察两个三角形,寻找已知信息;
-根据已知信息,选择合适的相似判定方法(AA、SSS、SAS);
人教版九年级下册27.2.2相似三角形的性质优秀教学案例

一、案例背景
本节内容是“人教版九年级下册27.2.2相似三角形的性质”,是学生在掌握了相似三角形的概念后,进一步探究相似三角形的性质。通过学习,学生能理解和掌握相似三角形的性质,提高他们的几何思维能力,为解决实际问题打下基础。
在教学过程中,我以生活中常见的几何图形为切入点,引导学生发现相似三角形的性质,并通过丰富的教学活动,让学生在实践中体验和感悟这些性质。同时,我注重培养学生的合作交流能力,让他们在讨论中加深对知识的理解。
2.培养学生运用类比、归纳等数学方法,发现和总结数学规律的能力。引导学生从特殊到一般,再从一般到特殊的思考方式,形成良好的数学思维习惯。
3.使学生掌握相似三角形的判定方法,能运用判定方法判断两个三角形是否相似。通过对比、分析,让学生理解判定方法的本质,提高他们的数学分析能力。
(二)过程与方法
1.培养学生主动探究、合作交流的能力。鼓励学生在课堂上积极提问、发表见解,与他人分享自己的思考和发现。通过小组讨论、合作探究等形式,让学生在互动中学习,提高他们的沟通与合作能力。
2.利用多媒体技术,如图片、视频等,展示相似三角形的实际案例,让学生直观地感受相似三角形的性质,提高他们的空间想象力。
3.设计具有启发性的问题,引导学生主动探究相似三角形的性质。如通过提出“为什么相似三角形的性质是这样的?”等问题,激发学生的好奇心,培养他们的思考能力。
(二)问题导向
1.引导学生发现和提出问题。鼓励学生在学习过程中主动发现问题,并大胆提出来,与他人共同探讨。如在学习相似三角形的性质时,学生可以提出“如何判断两个三角形是否相似?”等问题。
2.教师可提出一些与相似三角形相关的问题,如“你们知道相似三角形的性质吗?它们有哪些实际应用?”等,引发学生的思考,为导入新课做好铺垫。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.2.2 相似三角形的性质
1. 若△ABC ∽△A`B`C`,则相似比k 等于( )
A .A`B`:A
B B .∠A: ∠A`
C .S △ABC :S △A`B`C`
D .△ABC 周长:△A`B`C`周长
2. 把一个三角形改成和它相似的三角形,如果面积扩大到原来的100倍,那么边长扩大到
原来的( )
A .10000倍
B .10倍
C .100倍
D .1000倍
3. 两个相似三角形,其周长之比为3:2,则其面积比为( )
A .2:3
B .3:2
C .9:4
D .不能确定
4. 把一个五边形改成和它相似的五边形,如果面积扩大到原来的49倍,那么对应的对角
线扩大到原来的( )
A .49倍
B .7倍
C .50倍
D .8倍
5. 两个相似多边形的一组对应边分别为3cm 和4.5cm ,如果它们的面积和为78cm 2,那么较
大多边形的面积为( )
A .46.8 cm 2
B .42 cm 2
C .52 cm 2
D .54 cm 2
6. 两个多边形的面积之比为5,周长之比为m ,则m
5为( ) A .1 B .5
5 C .5 D .5 7. 在一张1:10000的地图上,一块多边形地区的面积为6cm 2,则这块多边形地区的实际
面积为( )
A .6m 2
B .60000m 2
C .600m 2
D .6000m 2
8. 已知△ABC ∽△A`B`C`,且BC :B`C`=3:2,△ABC 的周长为24,则△A`B`C`的周长为
_______.
9. 两个相似三角形面积之比为2:7,较大三角形一边上的高为2,则较小三角形的对应
边上的高为_______.
10. 两个相似多边形最长的的边分为10cm 和25cm ,它们的周长之差为60cm ,则这两个
多边形的周长分别为_______.
11. 四边形ABCD ∽四边形A`B`C`D`,他们的面积之比为36:25,他们的相似比_____,
若四边形A`B`C`D`的周长为15cm ,则四边形ABCD 的周长为________.
12. 如图,矩形ABCD 中,E ,F 分别在BC ,AD 上,矩形ABCD ∽矩形ECDF ,且AB =2,S
矩形ABCD =3S 矩形ECDF 。
试求S 矩形ABCD 。
13. 如图,在△ABC 中,DE ∥BC ,且S △ADE :S 四边形BCED ,=1:2,BC =62,求DE 的长。
14. 如图,在△ABC 中,∠C =90 o
,D 是AC 上一点,DE ⊥AB 于E ,若AB =10,BC =6,
DE =2,求四边形DEBC 的面积。
15. △ABC ∽△A`B`C`,
21`` B A AB ,边上的中线CD =4cm ,△ABC 的周长为20c m ,△A`B`C`的面积是64 cm 2,求:
(1)A`B`边上的中线C`D`的长;
(2)△A`B`C `的周长
(3)△ABC 的面积
参考答案: 1.D 2.B 3.C 4.B 5.D 6.C 7.B 8.16 9.7 10.40cm 和100cm 11.6:5 18cm
12.设DF =a ,由S 矩形ABCD =3S 矩形ECD F 知AD=3DF=3a ,又AD AB =CD
DF ,所以3a 2=4,a =332。
故AD =3a =23,所以S 矩形ABCD =2×23=43
13.由S △ADE:S 四边形BCED=1:2知,S △ADE :S △ABC=1:3又DE ‖BC,故△ADE ∽△ABC ,所以(BC DE )2=31,即(6
2DE )2=31,所以DE =22 14.由∠A=∠A , ∠AED=∠ACB=900,故△ADE ∽△ABC.又AB =10,BC=6, ∠C=900,由勾股定理
可得AC =8,从而
S △ABC =
21BC ×AC=24,又BC DE =62=31,有ABC S ADE S ∆∆=(31)2=91=24ADE S ∆,故S △ADE =38。
从而S 四边形DEBC=24-38=364 15。
(1)C ´D ´=8cm ;(2)△A ´B ´C ´的周长为80cm ;(3)△ABC 的面积为16cm 2。