湖南省长沙县九中2018_2019学年高二数学下学期第一次月考试题(文科班)
湖南省长沙市长沙县第九中学高二数学上学期第一次月考试题

湖南省长沙市长沙县第九中学高二数学上学期第一次月考试题一、选择题(每题5分,共60分)1.椭圆221259x y +=的离心率为( )A .1B .13 C .43D .452.已知命题p :“0a ∃>,有12a a+<成立”,则命题p ⌝为( ) A .0a ∀≤,有12a a +≥成立B .0a ∀>,有12a a+≥成立C .0a ∃>,有12a a+≥成立D .0a ∃>,有12a a+>成立 3.已知椭圆C :2221(0)4x y a a +=>,1F ,2F 分别为椭圆C 的左、右焦点,P 为椭圆C 上任一点,若1242PF PF +=,则12F F =( ) A .4B .23C .2D .34.下列各结论:①“0xy >”是“0x y >”的充要条件;②“1x >”是“11x<”的充要条件;③“a b =” 是“222a b ab +≥”的充分不必要条件;④“二次函数2y ax bx c =++的图象过点(1,0)”是“0a b c ++=” 的充要条件。
其中正确的个数是( ) A .1B .2C .3D .45.设,分别为椭圆的左、右焦点,点在椭圆上,且,则( ) A. B.C. D.6.双曲线的焦距为( )A.B.C.D.7.点为椭圆的一个焦点,若椭圆上存在点使(为坐标原点)为正三角形,则椭圆的离心率为( ) A.B.C.D.8.设椭圆()222210x y a b a b+=>>的两焦点为12,F F ,若椭圆上存在点P ,使012120F PF ∠=,则椭圆的离心率e 的取值范围为( ). A .3(0,]2B .3(0,]4C .3[,1)2D .3[,1)49.下列命题是真命题的是( )A .()2x ∀∈+∞,,22x x >B .设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的既不充分也不必要条件 C .“2560x x +>-”是“2x >”的充分不必要条件 D .a b ⊥的充要条件是0a b ⋅=10.已知12,F F 为双曲线22:1C x y -=的左、右焦点,点P 在C 上,1260F PF ∠=,则12PF PF ⋅=( ) A .2 B .4 C .6 D .811 、 下列结论错误的是A .命题:“若2320x x -+=,则2x =”的逆否命题是“若2x ≠,则2320x x -+≠”B .“a b >”是“22ac bc >”的充分不必要条件C .命题:“x R ∃∈, 20x x ->”的否定是“x R ∀∈, 20x x -≤”D .若“p q ∨”为假命题,则,p q 均为假命题 12.已知椭圆的左右焦点分别为、,过点的直线与椭圆交于两点,若是以为直角顶点的等腰直角三角形,则椭圆的离心率为( ) A .B .C .D .二、填空题(每题5分)13.命题:“x R ∀∈,x e x ≤”的否定是________.14.已知P 是椭圆2214x y +=上的一点,F 1,F 2是椭圆的两个焦点,且∠F 1PF 2=60°,则△F 1PF 2的面积是______. 15.设是双曲线的两个焦点,是该双曲线上一点,且,则的面积等于__________.16.设命题p :函数()()2lg 21f x ax x =-+的定义域为R ;命题q :当122x ⎡⎤∈⎢⎥⎣⎦,时,1x a x+>恒成立,如果命题“p ∧q ”为真命题,则实数a 的取值范围是________.三、解答题 17.(1)求经过点且焦点在坐标轴上的双曲线的标准方程.(2)已知焦点在x 轴上的椭圆的离心率35e =,经过点532A ⎫-⎪⎪⎝⎭,求椭圆的标准方程.18.(12分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知()(sin sin )(sin sin )a b A B c A C +-=-.(1)求角B 的大小;(2)若27a c +=2b =,求ABC ∆的面积.19.(12分)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,E 为1DD 中点.(1)求证:1//BD 平面ACE ; (2)求证:1BD AC ⊥.20.(12分)已知椭圆C :22221x y a b+=(a >b >0)过点31,2⎛⎫ ⎪⎝⎭,且离心率12e =.(1)求椭圆C 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆交于不同的两点M ,N ,且线段MN 的垂直平分线过定点1,05P ⎛⎫⎪⎝⎭,求k 的取值范围.21.(12分)命题p :关于x 的不等式2240x ax ++>对一切x ∈R 恒成立; 命题q :函数()a f x lag x =在(0,)+∞上递增,若p q ∨为真,而p q ∧为假,求实数a 的取值范围。
湖南省长沙县九中2018-2019学年高二(文科班)下学期第一次月考数学试卷(有答案)

长沙县第九中学2019上高二第一次月考数学文科试卷注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.考生必须按照题号在答题卡各题号相对应的答题区域内(黑色线框)作答,写在草稿纸上、超出答题区域或非题号对应的答题区域的答案一律无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。
一、单选题每题5分,共60分1.已知集合,,则()A.B.C.D.2.设,,则a,b,c的大小关系是A.B.C.D.3.下列函数中,既不是奇函数也不是偶函数的是()A.B.C.D.4.设复数(为虚数单位),则的虚部是()A.B.C.-4D.45.2018年,国际权威机构IDC发布的全球手机销售报告显示:华为突破2亿台出货量超越苹果的出货量,首次成为全球第二,华为无愧于中国最强的高科技企业。
华为业务CEO 余承东明确表示,华为的目标,就是在2021年前,成为全球最大的手机厂商.为了解华为手机和苹果手机使用的情况是否和消费者的性别有关,对100名华为手机使用者和苹果手机使用者进行统计,统计结果如下表:根据表格判断是否有95%的把握认为使用哪种品牌手机与性别有关系,则下列结论正确的是( )附:A.没有95%把握认为使用哪款手机与性别有关B.有95%把握认为使用哪款手机与性别有关C.有95%把握认为使用哪款手机与性别无关D.以上都不对6.函数的图像必经过点()A.(0,2)B.(4,3)C.(4,2)D.(2,3)7.下列函数中,值域是的是()A.B.C.D.8.已知是定义域为的偶函数,且时,,则不等式的解集为( ) A.B.C.D.9.已知函数为上的连续函数,且,使用二分法求函数零点,要求近似值的精确度达到0.1,则需对区间至多等分的次数为()A.2B.3C.4D.510.下列函数中,在内单调递减的是()A.B.C.D.11.已知函数,则其零点在的大致区间为()A.B.C.D.12.某研究小组在一项实验中获得一组关于之间的数据,将其整理得到如图所示的散点图,下列函数中最能近似刻画与之间关系的是()A.B.C.D.二、填空题每题5分,共20分13.已知全集,集合,则______.14.已知函数,则_____,_____.15.已知幂函数的图象经过点,则的解析式为______.16.若复数,则z的共轭复数等于______.三、解答题17题10分,其它每题12分,共70分17.计算:(1),(2).18.已知集合,,全集.当时,求;若,求实数a的取值范围.。
长沙县第一中学2018-2019学年下学期高二期中数学模拟题

长沙县第一中学2018-2019学年下学期高二期中数学模拟题一、选择题1. 直线x+y ﹣1=0与2x+2y+3=0的距离是( )A .B .C .D .2. 设x ,y ∈R ,且满足,则x+y=()A .1B .2C .3D .43. 过抛物线焦点的直线与双曲线的一条渐近线平行,并交其抛物线于、22(0)y px p =>F 2218-=y x A 两点,若,且,则抛物线方程为( )B >AF BF ||3AF =A .B .C .D .2y x =22y x =24y x =23y x=【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.4. 已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( )A .πB .C .D .5. 已知全集,,,则( ){}1,2,3,4,5,6,7U ={}2,4,6A ={}1,3,5,7B =()U A B =I ðA . B .C .D .{}2,4,6{}1,3,5{}2,4,5{}2,56. 在中,、、分别为角、、所对的边,若,则此三角形的形状一定是( )A .等腰直角B .等腰或直角C .等腰D .直角7. 垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能8. 某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为( )A .B .C .D .9. 以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定10.设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q 11.抛物线x 2=4y 的焦点坐标是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .(1,0)B .(0,1)C .()D .()12.已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有()A .3个B .2个C .1个D .无穷多个二、填空题13.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .14.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).15.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .16.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .17.若函数在区间上单调递增,则实数的取值范围是__________.()ln f x a x x =-(1,2)18.已知直线l 的参数方程是(t 为参数),曲线C 的极坐标方程是ρ=8cos θ+6sin θ,则曲线C 上到直线l 的距离为4的点个数有 个. 三、解答题19.记函数f (x )=log 2(2x ﹣3)的定义域为集合M ,函数g (x )=的定义域为集合N .求:(Ⅰ)集合M ,N ;(Ⅱ)集合M ∩N ,∁R (M ∪N ).20.已知函数f (x )=ax 2+blnx 在x=1处有极值.(1)求a ,b 的值;(2)判断函数y=f (x )的单调性并求出单调区间.21.(本小题满分12分)已知向量,,(cos sin ,sin )m x m x x w w w =-a (cos sin ,2cos )x x n x w w w =--b 设函数的图象关于点对称,且.()()2n f x x R =×+Îa b (,1)12p(1,2)w Î(I )若,求函数的最小值;1m =)(x f (II )若对一切实数恒成立,求的单调递增区间.()()4f x f p£)(x f y 【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.22.在△ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB.(1)求B;(2)若b=2,求△ABC面积的最大值.23.已知函数f(x)=2x﹣,且f(2)=.(1)求实数a的值;(2)判断该函数的奇偶性;(3)判断函数f(x)在(1,+∞)上的单调性,并证明.24.(本小题满分12分)111]在如图所示的几何体中,是的中点,.D AC DB EF //(1)已知,,求证:平面; BC AB =CF AF =⊥AC BEF (2)已知分别是和的中点,求证: 平面.H G 、EC FB //GH ABC长沙县第一中学2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1. 【答案】A【解析】解:直线x+y ﹣1=0与2x+2y+3=0的距离,就是直线2x+2y ﹣2=0与2x+2y+3=0的距离是:=.故选:A . 2. 【答案】D【解析】解:∵(x ﹣2)3+2x+sin (x ﹣2)=2,∴(x ﹣2)3+2(x ﹣2)+sin (x ﹣2)=2﹣4=﹣2,∵(y ﹣2)3+2y+sin (y ﹣2)=6,∴(y ﹣2)3+2(y ﹣2)+sin (y ﹣2)=6﹣4=2,设f (t )=t 3+2t+sint ,则f (t )为奇函数,且f'(t )=3t 2+2+cost >0,即函数f (t )单调递增.由题意可知f (x ﹣2)=﹣2,f (y ﹣2)=2,即f (x ﹣2)+f (y ﹣2)=2﹣2=0,即f (x ﹣2)=﹣f (y ﹣2)=f (2﹣y ),∵函数f (t )单调递增∴x ﹣2=2﹣y ,即x+y=4,故选:D .【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f (t )是解决本题的关键,综合考查了函数的性质. 3. 【答案】C【解析】由已知得双曲线的一条渐近线方程为,设,则,所以,=y00(,)A x y 02>p x 0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px 解得或,因为,故,故,所以抛物线方程为.2=p 4=p 322->p p03p <<2=p 24y x 4. 【答案】D【解析】解:由函数f(x)=sin2(ωx)﹣=﹣cos2ωx (ω>0)的周期为=π,可得ω=1,故f(x)=﹣cos2x.若将其图象沿x轴向右平移a个单位(a>0),可得y=﹣cos2(x﹣a)=﹣cos(2x﹣2a)的图象;再根据所得图象关于原点对称,可得2a=kπ+,a=+,k∈Z.则实数a的最小值为.故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos(ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题.5.【答案】A考点:集合交集,并集和补集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.6.【答案】B【解析】因为,所以由余弦定理得,即,所以或,即此三角形为等腰三角形或直角三角形,故选B答案:B7.【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D【点评】本题主要考查在空间内两条直线的位置关系.8.【答案】C【解析】解:设A表示“甲同学收到李老师所发活动信息”,设B表示“甲同学收到张老师所发活动信息”,由题意P(A)==,P(B)=,∴甲冋学收到李老师或张老师所发活动通知信息的概率为:p(A+B)=P(A)+P(B)﹣P(A)P(B)==.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意任意事件概率加法公式的合理运用.9.【答案】C【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D连接AC、BD,设AB的中点为M,作MN⊥l于N根据圆锥曲线的统一定义,可得==e,可得∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,∵以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.10.【答案】C【解析】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.11.【答案】B【解析】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1),故选:B.【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题. 12.【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为M∩N,又由M={x|﹣2≤x﹣1≤2}得﹣1≤x≤3,即M={x|﹣1≤x≤3},在此范围内的奇数有1和3.所以集合M∩N={1,3}共有2个元素,故选B.二、填空题13.【答案】【解析】解:法1:取A1C1的中点D,连接DM,则DM∥C1B1,在在直三棱柱中,∠ACB=90°,∴DM⊥平面AA1C1C,则∠MAD是AM与平面AA1C1C所的成角,则DM=,AD===,则tan∠MAD=.法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则∵AC=BC=1,侧棱AA1=,M为A1B1的中点,∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量设AM与平面AA1C1C所成角为θ,则sinθ=||=则tanθ=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.14.【答案】BC【解析】【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,故C正确;D.如下图,M中的直线所能围成的正三角形有两类,其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确.故答案为:BC.15.【答案】 30° .【解析】解:取AD的中点G,连接EG,GF则EG DC=2,GF AB=1,故∠GEF即为EF与CD所成的角.又∵FE⊥AB∴FE⊥GF∴在Rt△EFG中EG=2,GF=1故∠GEF=30°.故答案为:30°【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.16.【答案】 3+ .【解析】解:本小题考查归纳推理和等差数列求和公式.前n﹣1行共有正整数1+2+…+(n﹣1)个,即个,因此第n行第3个数是全体正整数中第3+个,即为3+.故答案为:3+.17.【答案】2a ≥【解析】试题分析:因为在区间上单调递增,所以时,恒成立,即()ln f x a x x =-(1,2)(1,2)x ∈()'10af x x=-≥恒成立,可得,故答案为.1a x ≥2a ≥2a ≥考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.18.【答案】 2 【解析】解:由,消去t 得:2x ﹣y+5=0,由ρ=8cos θ+6sin θ,得ρ2=8ρcos θ+6ρsin θ,即x 2+y 2=8x+6y ,化为标准式得(x ﹣4)2+(y ﹣3)2=25,即C 是以(4,3)为圆心,5为半径的圆.又圆心到直线l 的距离是,故曲线C 上到直线l 的距离为4的点有2个,故答案为:2.【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题. 三、解答题19.【答案】【解析】解:(1)由2x ﹣3>0 得 x >,∴M={x|x >}.由(x ﹣3)(x ﹣1)>0 得 x <1 或x >3,∴N={x|x <1,或 x >3}.(2)M ∩N=(3,+∞),M ∪N={x|x <1,或 x >3},∴C R (M ∪N )=.【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题. 20.【答案】【解析】解:(1)因为函数f (x )=ax 2+blnx ,所以.又函数f (x )在x=1处有极值,所以即可得,b=﹣1.(2)由(1)可知,其定义域是(0,+∞),且当x变化时,f′(x),f(x)的变化情况如下表:x(0,1) 1 (1,+∞)f′(x)﹣0+f(x)↘极小值↗所以函数y=f(x)的单调减区间是(0,1),单调增区间是(1,+∞)21.【答案】22.【答案】【解析】(本小题满分12分)解:(1)∵bsinA=,由正弦定理可得:sinBsinA=sinAcosB,即得tanB=,∴B=…(2)△ABC的面积.由已知及余弦定理,得.又a2+c2≥2ac,故ac≤4,当且仅当a=c时,等号成立.因此△ABC面积的最大值为…23.【答案】【解析】解:(1)∵f(x)=2x﹣,且f(2)=,∴4﹣=,∴a=﹣1;(2分)(2)由(1)得函数,定义域为{x|x≠0}关于原点对称…(3分)∵=,∴函数为奇函数.…(6分)(3)函数f(x)在(1,+∞)上是增函数,…(7分)任取x1,x2∈(1,+∞),不妨设x1<x2,则=…(10分)∵x 1,x 2∈(1,+∞)且x 1<x 2∴x 2﹣x 1>0,2x 1x 2﹣1>0,x 1x 2>0∴f (x 2)﹣f (x 1)>0,即f (x 2)>f (x 1),∴f (x )在(1,+∞)上是增函数…(12分)【点评】本题考查函数的单调性与奇偶性,考查学生分析解决问题的能力,属于中档题. 24.【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据,所以平面就是平面,连接DF,AC 是等腰三角形ABC 和ACF 的公DB EF //BEF BDEF 共底边,点D 是AC 的中点,所以,,即证得平面的条件;(2)要证明线面BD AC ⊥DF AC ⊥⊥AC BEF 平行,可先证明面面平行,取的中点为,连接,,根据中位线证明平面平面,即可证FC GI HI //HGI ABC 明结论.试题解析:证明:(1)∵,∴与确定平面.DB EF //EF DB BDEF 如图①,连结. ∵,是的中点,∴.同理可得.DF CF AF =D AC AC DF ⊥AC BD ⊥又,平面,∴平面,即平面.D DF BD =、⊂DF BD 、BDEF ⊥AC BDEF ⊥AC BEF考点:1.线线,线面垂直关系;2.线线,线面,面面平行关系.【方法点睛】本题考查了立体几何中的平行和垂直关系,属于中档题型,重点说说证明平行的方法,当涉及证明线面平行时,一种方法是证明平面外的线与平面内的线平行,一般是构造平行四边形或是构造三角形的中位线,二种方法是证明面面平行,则线面平行,因为直线与直线外一点确定一个平面,所以所以一般是在某条直线上再找一点,一般是中点,连接构成三角形,证明另两条边与平面平行.。
湖南省长沙县九中2018-2019学年高一下学期第一次月考英语试卷

长沙县九中2018级高一二期第一次月考英语试题注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试卷和答题卡一并上交。
第一部分听力(共两节, 满分30分) 请将答案写在答题卡上第二部分阅读理解(共两节, 满分40分)第一节(共15小题; 每小题2分, 满分30分) 请将答案写在答题卡上阅读下面短文, 从每题所给的四个选项(A、B、C和D)中, 选出最佳选项。
AThe following are some of the strangest jobs in the world. Let's have a look at them together.Part-Time Tree ClimberIf you're not afraid of climbing up trees and cutting the branches then this job might be perfect for you. You actually can work according to your own schedule. The part-time tree climber job could end up turning into a real full-time job. This might also be a great way to stay in good shape and work on those muscles.Fake(假的)Office WorkerThis is not an April Fool's Day joke. One company fired several of their employees. However, in order to look good when certain clients(顾客) came into the office they hired fake office workers. All they had to do was just look busy at their desks and act like they knew exactly what they were doing. The amazing thing about this job is that they were paid US $15 an hour for being fake office workers!Mermaid(美人鱼) for a Birthday PartyIf you love mermaids or do not mind dressing up as one for a birthday party then you missed out on a great chance to have some fun with this job. Some women were looking for a mermaid at a July party and they actually paid US $150 for at least three hours. If it was needed, the costume could be provided with this job.Back Scratcher(挠背器/者)If you don't want to buy a cheap back scratcher, you might want to hire someone to do it for you. Having a job as a back scratcher might sound easy enough, but actually it is not. You never know when you might accidentally hit that ache(疼痛)in a person's back and cause him pain.21. According to the text, the job of part-time tree climber___________________.A. is quite dangerousB. is a well-paid jobC. can only be done as a part-time jobD. can help keep you healthy22. What should fake office workers do?A. Communicate with clients all day.B. Train other employees.C. Pretend to be working.D. Help the boss deal with problems.23. What should you pay special attention to if you work as a back scratcher?A. Buy an expensive back scratcher.B. Don’t hurt the person you are serving,C. Don' t scratch the person if he has injuries to his back.D. Put some medicine on the person’s cuts.24. Where can we most probably find this text?A. On a website about jobs.B. In a book about good jobs in the world.C. In an article on how to start a business.D. In a health magazine.(B)I am just finishing up some maths homework. My dad, who has got off work, sits right beside me, looking over my homework. We are just talking and my dad says,“I will always cherish every moment with you.”I still remember my dad telling me his stories. My dad didn't have a father in his childhood. He was always moving from place to place with my grandma. My father wasn't the easiest kid to handle. He would get into fights with kids at school. He got angry easily and never listened to my grandma.Things got a little easier when he came to Utah. He organized a football team and was doing well in high school. He also had friends to keep him in line. Among one of those friends was my uncle. My father and uncle were friends all throughout his life. Through my uncle is how my mum and dad met, officially.My mum and dad met each other when they were 18. One night when my mum and all her cousins attended a concert, she came across my dad and uncle. She said to my uncle, “Hey, I know that guy, His name's Ben, right?” My uncle then called my dad over and introduced them to each other. They talked for a while and found out that they were going to the same university.They started talking, and from talking to dating, and then dating led up to my birth five years later. My dad felt that becoming a father was an honor and that he would not be absent in my life.I suddenly look up to see my dad smiling at me. I can see in my dad's eyes how he longs for a relationship like this. I hear my dad say, “I love you, always.”25. When the author's father was a child,__________________.A. he was very naughtyB. he lived with his fatherC. he didn't go to schoolD. he lived in Utah until he went to high school26. How did the author's father meet his mother?A. They met in their university by chance.B. The father attended the mother's concertC. The mother joined the father's football team.D. They knew each other through being introduced.27. The author was born when his father was _______________.A. eighteenB. twentyC. twenty-threeD.twenty-five28. What is the best title for this text?A. How to Be a Good FatherB. A Father's Love StoryC. Wonderful Memories with FatherD. Love That Will Never Grow Old(C)We've all done it at one point or another. You're driving along to work or school when that familiar sound reaches your ear. You look down, reach into your pocket and begin to read,your steering wheel(驾驶盘)in one hand, your phone in the other. What can go wrong?What do you think is the number one killer of teens in the U.S.? Drugs? Alcohol? Violence? The answer is ‘distracted driving(分心驾驶)’. According to a study, over 24 percent of all motor vehicle crashes involve cellphone use. Furthermore, drivers who talk on a cellphone are four more times likely to crash.When you're a teenager, the risks of getting into an accident rise. According to the study, more than 3,000 teens die in car accidents each year, with about another 450,000 teens being injured. That means that almost nine teens die each day in car accidents. Additionally, one text message is equal to having a 0.08 alcohol level. In most states, that is considered drunk driving. When you're a teen, it may seem like this weekend's party is the most important thing going on in your life right now, but anyone would agree that being alive is more important.So, how do you protect yourself from the dangers of distracted driving? Put your phone away. Put it on silent or just turn it off completely while driving. If someone is trying to reach you, you can have a better conversation with them when you're not doing 60 mph down the freeway. If you don't trust yourself not to use your phone, put it on the back seat.You may get away with talking on the phone now, but there may be a day whenyou don't. Not using your phone may be an inconvenience, but it's better to be safe while driving.29. What is the author's purpose in writing the first paragraph?A. To tell people about the wide use of cellphones.B. To advise people to answer the phone while driving.C. To introduce the topic of distracted driving.D. To tell people how to be good drivers.30. According to the study, ________________ when driving are four times more likely involved in car accidents.A. people who talk on a cellphoneB. people who quarrel with othersC. people who are drunkD. people who think about things31. How can we protect ourselves from the dangers of distracted driving?①Turn the phone off.②Talk on the phone while driving at over 60 mph on the freeway.③Put the phone on silent.④Put the phone on the back seat.A.①②③B.①③④C.②③④D.①②④32. What is the author 's attitude towards distracted driving?A. Supportive(支持的).B. Cautious(谨慎的).C. Indifferent(中立的).D. Opposed(反对的).(D)We all love chocolate, and most of us probably eat it every day, or at least several times a week. It is one of the most favourite kinds of food in the world, and many would say that they cannot live without it. However, there are many facts about the world of chocolate that most people do not know.Have you ever wondered where your chocolate comes from? Most of it comes from the labor of children. It is said that in Africa alone, there are about 70 million children working on chocolate farms. They lead a very hard life, and many live only on bananas and corn paste(浆糊). One child who was interviewed said that he was tricked into believing he would be earning money to help his family. But the truth is that he is treated like an animal. The child has never even had the chance to taste the chocolate he spends his life producing(生产).The history of chocolate pretty much begins with the Mayans(马雅人)。
长沙县三中2018-2019学年上学期高二数学12月月考试题含解析

长沙县三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分2. 《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A .钱B .钱C .钱D .钱3. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β C .若m ⊥α,n ⊥α,则 m ∥n D .若 m ∥α,m ∥β,则 α∥β4. 在等差数列{a n }中,a 3=5,a 4+a 8=22,则{}的前20项和为( )A .B .C .D .5. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )A .0B .1C .2D .36. 如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )A .﹣2B .﹣1C .1D .27. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .568. 已知全集U R =,{|239}xA x =<≤,{|02}B y y =<≤,则有( )A .A ØB B .AB B =C .()R A B ≠∅ðD .()R A B R =ð9.α是第四象限角,,则sinα=()A.B.C.D.10.已知直线l∥平面α,P∈α,那么过点P且平行于l的直线()A.只有一条,不在平面α内B.只有一条,在平面α内C.有两条,不一定都在平面α内D.有无数条,不一定都在平面α内11.实数x,y满足不等式组,则下列点中不能使u=2x+y取得最大值的是()A.(1,1) B.(0,3) C.(,2) D.(,0)12.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1 B.C.D.二、填空题×的值为_______.13.如图所示,圆C中,弦AB的长度为4,则AB AC【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.14.方程22x﹣1=的解x=.15.已知椭圆中心在原点,一个焦点为F(﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是.16.圆柱形玻璃杯高8cm,杯口周长为12cm,内壁距杯口2cm的点A处有一点蜜糖.A点正对面的外壁(不是A点的外壁)距杯底2cm的点B处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少cm.(不计杯壁厚度与小虫的尺寸)17.递增数列{a n}满足2a n=a n﹣1+a n+1,(n∈N*,n>1),其前n项和为S n,a2+a8=6,a4a6=8,则S10=.18.如果定义在R上的函数f(x),对任意x1≠x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数①f(x)=3x+1 ②f(x)=()x+1③f(x)=x2+1 ④f(x)=其中是“H函数”的有(填序号)三、解答题19.已知三次函数f(x)的导函数f′(x)=3x2﹣3ax,f(0)=b,a、b为实数.(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;(2)若f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a<2,求函数f(x)的解析式.20.已知函数f(x)=alnx+x2+bx+1在点(1,f(1))处的切线方程为4x﹣y﹣12=0.(1)求函数f(x)的解析式;(2)求f(x)的单调区间和极值.21.已知函数xx x f ---=713)(的定义域为集合A ,{x |210}B x =<<,{x |21}C a x a =<<+(1)求A B ,B A C R ⋂)(;(2)若B C B =,求实数a 的取值范围.22.(本小题满分12分)如图, 矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方 程为360x y --=点()1,1T -在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.23.在四棱锥E﹣ABCD中,底面ABCD是边长为1的正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.(Ⅰ)求证:DE∥平面ACF;(Ⅱ)求证:BD⊥AE.24.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA﹣sinC(cosB+sinB)=0.(1)求角C的大小;(2)若c=2,且△ABC的面积为,求a,b的值.长沙县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:x=两边平方,可变为3y2﹣x2=1(x≥0),表示的曲线为双曲线的一部分;故选C.【点评】本题主要考查了曲线与方程.解题的过程中注意x的范围,注意数形结合的思想.2.【答案】B【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,则a﹣2d=a﹣2×=.故选:B.3.【答案】C【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;对于D,若m∥α,m∥β,则α与β可能相交;故D错误;故选C.【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.4.【答案】B【解析】解:在等差数列{a n}中,由a4+a8=22,得2a6=22,a6=11.又a3=5,得d=,∴a1=a3﹣2d=5﹣4=1.{}的前20项和为:==.故选:B.5.【答案】B【解析】111]试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B .考点:几何体的结构特征.6. 【答案】A【解析】解:结合向量数量积的几何意义及点O 在线段AB ,AC 上的射影为相应线段的中点,可得,,则•==16﹣18=﹣2; 故选A .【点评】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题7. 【答案】C 【解析】解:∵函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.∴函数f (x )关于直线x=1对称, ∵数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),∴a 6+a 23=2.则{a n }的前28项之和S 28==14(a 6+a 23)=28.故选:C . 【点评】本题考查了等差数列的通项公式性质及其前n 项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.8. 【答案】A 【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A .9. 【答案】B【解析】解:∵α是第四象限角,∴sin α=,故选B .【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.10.【答案】B【解析】解:假设过点P且平行于l的直线有两条m与n∴m∥l且n∥l由平行公理4得m∥n这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.11.【答案】D【解析】解:由题意作出其平面区域,将u=2x+y化为y=﹣2x+u,u相当于直线y=﹣2x+u的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x上但不在阴影区域内,故不成立;故选D.【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.12.【答案】D【解析】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.二、填空题13.【答案】814.【答案】﹣.【解析】解:22x﹣1==2﹣2,∴2x﹣1=﹣2,解得x=﹣,故答案为:﹣【点评】本题考查了指数方程的解法,属于基础题.15.【答案】.【解析】解:已知∴∴为所求;故答案为:【点评】本题主要考查椭圆的标准方程.属基础题.16.【答案】10cm【解析】解:作出圆柱的侧面展开图如图所示,设A关于茶杯口的对称点为A′,则A′A=4cm,BC=6cm,∴A′C=8cm,∴A′B==10cm.故答案为:10.【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决.17.【答案】35.【解析】解:∵2a n=a n﹣1+a n+1,(n∈N*,n>1),∴数列{a n}为等差数列,又a2+a8=6,∴2a5=6,解得:a5=3,又a4a6=(a5﹣d)(a5+d)=9﹣d2=8,∴d2=1,解得:d=1或d=﹣1(舍去)∴a n=a5+(n﹣5)×1=3+(n﹣5)=n﹣2.∴a1=﹣1,∴S10=10a1+=35.故答案为:35.【点评】本题考查数列的求和,判断出数列{a n}为等差数列,并求得a n=2n﹣1是关键,考查理解与运算能力,属于中档题.18.【答案】①④【解析】解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1)恒成立,∴不等式等价为(x1﹣x2)[f(x1)﹣f(x2)]≥0恒成立,即函数f(x)是定义在R上的不减函数(即无递减区间);①f(x)在R递增,符合题意;②f(x)在R递减,不合题意;③f(x)在(﹣∞,0)递减,在(0,+∞)递增,不合题意;④f(x)在R递增,符合题意;故答案为:①④.三、解答题19.【答案】【解析】解:(1)由导数的几何意义f′(a+1)=12∴3(a+1)2﹣3a(a+1)=12∴3a=9∴a=3(2)∵f′(x)=3x2﹣3ax,f(0)=b∴由f′(x)=3x(x﹣a)=0得x1=0,x2=a∵x∈[﹣1,1],1<a<2∴当x∈[﹣1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减.∴f(x)在区间[﹣1,1]上的最大值为f(0)∵f(0)=b,∴b=1∵,∴f(﹣1)<f(1)∴f(﹣1)是函数f(x)的最小值,∴∴∴f (x )=x 3﹣2x 2+1【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系.20.【答案】【解析】解:(1)求导f ′(x )=+2x+b ,由题意得: f ′(1)=4,f (1)=﹣8,则,解得,所以f (x )=12lnx+x 2﹣10x+1;(2)f (x )定义域为(0,+∞), f ′(x )=,令f ′(x )>0,解得:x <2或x >3,所以f (x )在(0,2)递增,在(2,3)递减,在(3,+∞)递增, 故f (x )极大值=f (2)=12ln2﹣15, f (x )极小值=f (3)=12ln3﹣20.21.【答案】(1){}210A B x =<<U ,(){}2310R C A B x x x =<<≤<I 或7;(2)1a ≤-或922a ≤≤。
长沙县高级中学2018-2019学年高二上学期第一次月考试卷数学

长沙县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )A .12+ B .12+23π C .12+24π D .12+π2.=( )A .﹣iB .iC .1+iD .1﹣i3. 若,[]0,1b ∈,则不等式221a b +≤成立的概率为( )A .16π B .12π C .8π D .4π 4. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=5. 设变量x ,y满足约束条件,则目标函数z=4x+2y 的最大值为( )A .12B .10C .8D .26. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)7. 下列哪组中的两个函数是相等函数( )A .()()4f x x =g B .()()24=,22x f x g x x x -=-+C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g 8. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( ) A .[﹣6,2] B .[﹣6,0)∪( 0,2] C .[﹣2,0)∪( 0,6] D .(0,2]9. 已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,若双曲线右支上存在一点P ,使得F 2关于直线PF 1的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( )A .1<e <B .e >C .e >D .1<e <10.已知α∈(0,π),且sin α+cos α=,则tan α=( )A .B .C .D .11.若直线L :047)1()12(=--+++m y m x m 圆C :25)2()1(22=-+-y x 交于B A ,两点,则弦长||AB 的最小值为( )A .58B .54C .52D .512.已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定二、填空题13.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>x x e x f e (其 中为自然对数的底数)的解集为 .14.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .15.设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=,则f ()= .16.如图,是一回形图,其回形通道的宽和OB 1的长均为1,回形线与射线OA 交于A 1,A 2,A 3,…,若从点O 到点A 3的回形线为第1圈(长为7),从点A 3到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…依此类推,第8圈的长为 .17.已知1sin cos3αα+=,(0,)απ∈,则sin cos7sin12ααπ-的值为.18x和所支出的维修费用y(万元)的统计资料如表:根据上表数据可得y与x之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为万元.三、解答题19.过抛物线y2=2px(p>0)的焦点F作倾斜角为45°的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程.20.已知函数f(x)=|x﹣a|.(1)若不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.21.若点(p,q),在|p|≤3,|q|≤3中按均匀分布出现.(1)点M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?(2)试求方程x2+2px﹣q2+1=0有两个实数根的概率.22.如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.(Ⅰ)求证AB•PC=PA•AC(Ⅱ)求AD•AE的值.23.设a,b互为共轭复数,且(a+b)2﹣3abi=4﹣12i.求a,b 的值.24.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C 过点P ⎛ ⎝⎭,直线1PF 交y 轴于Q ,且22,PF QO O =为坐标原点.(1)求椭圆C 的方程;(2)设M 是椭圆C 上的顶点,过点M 分别作出直线,MA MB 交椭圆于,A B 两点,设这两条直线的斜率 分别为12,k k ,且122k k +=,证明:直线AB 过定点.长沙县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:根据几何体的三视图,得; 该几何体是一半圆台中间被挖掉一半圆柱, 其表面积为S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]=12+24π. 故选:C .【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.2. 【答案】 B【解析】解: ===i .故选:B .【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.3. 【答案】D 【解析】考点:几何概型. 4. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .5. 【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z 取得最大值10.6. 【答案】D【解析】解:∵方程x 2+ky 2=2,即表示焦点在y 轴上的椭圆∴故0<k <1故选D .【点评】本题主要考查了椭圆的定义,属基础题.7. 【答案】D111] 【解析】考点:相等函数的概念. 8. 【答案】B【解析】解:设此等比数列的公比为q,∵a+b+c=6,∴=6,∴b=.当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).∴b的取值范围是[﹣6,0)∪(0,2].故选:B.【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.9.【答案】B【解析】解:设点F2(c,0),由于F2关于直线PF1的对称点恰在y轴上,不妨设M在正半轴上,由对称性可得,MF1=F1F2=2c,则MO==c,∠MFF2=60°,∠PF1F2=30°,1设直线PF1:y=(x+c),代入双曲线方程,可得,(3b2﹣a2)x2﹣2ca2x﹣a2c2﹣3a2b2=0,则方程有两个异号实数根,则有3b2﹣a2>0,即有3b2=3c2﹣3a2>a2,即c>a,则有e=>.故选:B.10.【答案】D【解析】解:将sinα+cosα=①两边平方得:(sinα+cosα)2=1+2sinαcosα=,即2sinαcosα=﹣<0,∵0<α<π,∴<α<π,∴sin α﹣cos α>0,∴(sin α﹣cos α)2=1﹣2sin αcos α=,即sin α﹣cos α=②,联立①②解得:sin α=,cos α=﹣,则tan α=﹣. 故选:D .11.【答案】B 【解析】试题分析:直线:L ()()0472=-++-+y x y x m ,直线过定点⎩⎨⎧=-+=-+04072y x y x ,解得定点()1,3,当点(3,1)是弦中点时,此时弦长AB 最小,圆心与定点的距离()()5123122=-+-=d ,弦长545252=-=AB ,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离. 1111]12.【答案】C【解析】解:由点P (x 0,y 0)在圆C :x 2+y 2=4外,可得x 02+y 02>4,求得圆心C (0,0)到直线l :x 0x+y 0y=4的距离d=<=2,故直线和圆C 相交, 故选:C .【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.二、填空题13.【答案】),0(+∞ 【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得()()01>-'+x f x f ,结合要求的不等式可知在不等式两边同时乘以xe ,即()()0>-'+x x x e x f e x f e ,因此构造函数()()x x e x f e x g -=,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令()4=x f 也可以求解.114.【答案】 .【解析】解:因为全称命题的否定是特称命题所以,命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是:.故答案为:.15.【答案】 1 .【解析】解:∵f (x )是定义在R 上的周期为2的函数,∴=1.故答案为:1.【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.16.【答案】 63 .【解析】解:∵第一圈长为:1+1+2+2+1=7 第二圈长为:2+3+4+4+2=15第三圈长为:3+5+6+6+3=23 …第n 圈长为:n+(2n ﹣1)+2n+2n+n=8n ﹣1故n=8时,第8圈的长为63, 故答案为:63.【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,…圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形.17.【解析】7sinsin sin cos cos sin 12434343πππππππ⎛⎫=+=+ ⎪⎝⎭=,sin cos 73sin 12ααπ-∴==,故答案为3.考点:1、同角三角函数之间的关系;2、两角和的正弦公式.18.【答案】7.5【解析】解:∵由表格可知=9,=4, ∴这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,∴4=0.7×9+,∴=﹣2.3,∴这组数据对应的线性回归方程是=0.7x ﹣2.3,∵x=14, ∴=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.三、解答题19.【答案】【解析】解:由题意可知过焦点的直线方程为y=x﹣,联立,得,设A(x1,y1),B(x2,y2)根据抛物线的定义,得|AB|=x1+x2+p=4p=8,解得p=2.∴抛物线的方程为y2=4x.【点评】本题给出直线与抛物线相交,在已知被截得弦长的情况下求焦参数p的值.着重考查了抛物线的标准方程和直线与圆锥曲线位置关系等知识,属于中档题.20.【答案】【解析】解:(1)由f(x)≤3得|x﹣a|≤3,解得a﹣3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|﹣1≤x≤5},所以解得a=2.(2)当a=2时,f(x)=|x﹣2|.设g(x)=f(x)+f(x+5),于是所以当x<﹣3时,g(x)>5;当﹣3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m即g(x)≥m对一切实数x恒成立,则m的取值范围为(﹣∞,5].【点评】本题考查函数恒成立问题,绝对值不等式的解法,考查转化思想,是中档题,21.【答案】【解析】解:(1)根据题意,点(p,q),在|p|≤3,|q|≤3中,即在如图的正方形区域,其中p、q都是整数的点有6×6=36个,点M(x,y)横、纵坐标分别由掷骰子确定,即x、y都是整数,且1≤x≤3,1≤y≤3,点M(x,y)落在上述区域有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),有9个点,所以点M(x,y)落在上述区域的概率P1=;(2)|p|≤3,|q|≤3表示如图的正方形区域,易得其面积为36;若方程x2+2px﹣q2+1=0有两个实数根,则有△=(2p)2﹣4(﹣q2+1)>0,解可得p2+q2≥1,为如图所示正方形中圆以外的区域,其面积为36﹣π,即方程x2+2px﹣q2+1=0有两个实数根的概率,P2=.【点评】本题考查几何概型、古典概型的计算,解题时注意区分两种概率的异同点.22.【答案】【解析】(1)证明:∵PA为圆O的切线,∴∠PAB=∠ACP,又∠P为公共角,∴△PAB∽△PCA,∴,∴AB•PC=PA•AC.…(2)解:∵PA为圆O的切线,BC是过点O的割线,∴PA2=PB•PC,∴PC=40,BC=30,又∵∠CAB=90°,∴AC2+AB2=BC2=900,又由(1)知,∴AC=12,AB=6,连接EC,则∠CAE=∠EAB,∴△ACE∽△ADB,∴,∴.【点评】本题考查三角形相似的证明和应用,考查线段乘积的求法,是中档题,解题时要注意切割线定理的合理运用.23.【答案】【解析】解:因为a,b互为共轭复数,所以设a=x+yi,则b=x﹣yi,a+b=2x,ab=x2+y2,所以4x2﹣3(x2+y2)i=4﹣12i,所以,解得,所以a=1+i,b=1﹣i;或a=1﹣i,b=1+i;或a=﹣1+i,b=﹣1﹣i;或a=﹣1﹣i,b=﹣1+i.【点评】本题考查了共轭复数以及复数相等;正确设出a,b 是解答的关键.24.【答案】(1)2212xy+=;(2)证明见解析.【解析】试题解析:(1)22PF QO =,∴212PF F F ⊥,∴1c =, 2222221121,1a b c b a b+==+=+, ∴221,2b a ==,即2212x y +=; (2)设AB 方程为y kx b =+代入椭圆方程22212102k x kbx b ⎛⎫+++-= ⎪⎝⎭,22221,1122A B A B kb b x x x x k k --+==++,11,A B MA MB A B y y k k x x --==,∴()112A B A B A B A B MA MB A BA By x x y x x y y k k x x x x +-+--+=+==,∴1k b =+代入y kx b =+得:1y kx k =+-所以, 直线必过()1,1--.1 考点:直线与圆锥曲线位置关系.【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.。
湖南省长沙县九中2018_2019学年高一数学下学期第一次月考试题

湖南省长沙县九中2018-2019学年高一数学下学期第一次月考试题一、选择题(每题5分,共60分) 1、 = 330cosA 、23 B 、21 C 、23- D 、21- 2、 与6100角终边相同的角表示为( )A 、Z k k ∈+⋅,2303600B 、Z k k ∈+⋅,2503600C 、Z k k ∈+⋅,703600D 、Z k k ∈+⋅,27036003、函数12sin()24y x π=-的周期、振幅、初相分别是( )A.,2,44ππB. 4,2,4ππ-C. 4,2,4ππ D. 2,2,4ππ4、已知角α的终边上一点P 的坐标是(3,-4),则 A 、53sin =α B 、53cos -=α C 、 43tan -=α D 、34tan -=α 5、已知角α为第四象限角,则2α的终边在( )象限 A .第二或第一 B .第二或第三C .第二或第四D .第三或第四6、下列说法不正确的是( )A. cos y α=的周期为2πB. 一条弦的长等于半径,这条弦所对的圆心角大于1弧度C. tan y α=在整个定义域上为增函数D. 诱导公式中的角α可以是钝角 7、 函数)22cos()(π-=x x f 的奇偶性为 ( )A 、 奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 8、要得到函数2sin 2y x =,只要把函数2sin(2)3y x π=+的图象 ( )A 、向左平移3π个单位 B 、向右平移3π个单位 C 、向左平移6π个单位 D 、向右平移6π个单位9、下列命题中,正确的是( ) A. =- B.0AB BA -=C.0=+++AD CD BC ABD.0=-+-AB CD BD AC10、函数)32sin()(π+=x x f 的图象( )A .关于点)0,3(π对称 B .关于点)0,4(π对称 C .关于直线4π=x 对称 D .关于直线3π=x 对称 11、已知α为第二象限角,则ααααcos sin 1cos 1sin 222-+-的值是( ) A. -1 B. 1 C. -3 D. 312、如图,某大风车的半径为2m ,每6 s 旋转一周,它的最低点O 离地面0.5m .风车圆周上一点A 从最低点O 开始,运动t (s )后与地面的距离为h (m),则函数()h f t =的关 系式( ) AC 二、填空题(每题5分,共20分)13、函数x y 3tan =的定义域为_______________________。
湖南省长沙县九中2018-2019学年高二(理科班)下学期第一次月考英语试卷(有答案)

长沙县第九中学2019上高二第一次月考英语科试卷注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.考生必须按照题号在答题卡各题号相对应的答题区域内(黑色线框)作答,写在草稿纸上、超出答题区域或非题号对应的答题区域的答案一律无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。
第I卷第一部分:听力(共两节,每小题1.5分,满分30分)第一节:(共5小题;每小题1.5分,满分7.5分)请听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.Who was absent from the party?A. BettyB. MaryC. Jack2. What does the woman offer to do?A. Help the man with his work.B. Find out the man’s calculator.C. Lend her calculator to the man.3. How will the speakers go to the Bund?A. By taxiB. By undergroundC. By bus4. When did the man get up yesterday?A. At 6:10B. At 7: 10C. At 6: 405. Where is the woman?A. At a supermarket.B. At a hotel.C.At a restaurant.第二节:(共15小题;每小题1.5分,满分22.5分)请听下面5段对话或独白。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长沙县第九中学2019上高二第一次月考数学文科试卷
时量:120分钟满分:150分
姓名:___________班级:___________考号:___________
一、单选题每题5分,共60分
1.已知集合,,则()
A. B. C. D.
2.设,,则a,b,c的大小关系是
A. B. C. D.
3.下列函数中,既不是奇函数也不是偶函数的是()
A. B. C. D.
4.设复数(为虚数单位),则的虚部是()
A. B. C.-4 D.4
5.2018年,国际权威机构IDC发布的全球手机销售报告显示:华为突破2亿台出货量超越苹果的出货量,首次成为全球第二,华为无愧于中国最强的高科技企业。
华为业务CEO余承东明确表示,华为的目标,就是在2021年前,成为全球最大的手机厂商.为了解华为手机和苹果手机使用的情况是否和消费者的性别有关,对100名华为手机使用者和苹果手机使用者进行统计,统计结果如下表:
根据表格判断是否有95%的把握认为使用哪种品牌
手机与性别有关系,则下列结论正确的是( )
附:
A.没有95%把握认为使用哪款手机与性别有关
B.有95%把握认为使用哪款手机与性别有关
C.有95%把握认为使用哪款手机与性别无关
D.以上都不对
6.函数的图像必经过点()
A.(0,2) B.(4,3) C.(4,2) D.(2,3)
7.下列函数中,值域是的是()
A. B. C. D.
8.已知是定义域为的偶函数,且时,,则不等式的解集为( ) A. B. C. D.
9.已知函数为上的连续函数,且,使用二分法求函数零点,要求近似值的精确度达到0.1,则需对区间至多等分的次数为()
A.2 B.3 C.4 D.5
10.下列函数中,在内单调递减的是()
A. B. C. D.
11.已知函数,则其零点在的大致区间为()
A. B. C. D.
12.某研究小组在一项实验中获得一组关于之间的数据,将其
整理得到如图所示的散点图,下列函数中最能近似刻画与之间
关系的是()
A. B. C. D.
二、填空题每题5分,共20分
13.已知全集,集合,则______.
14.已知函数,则_____,_____.
15.已知幂函数的图象经过点,则的解析式为______.
16.若复数,则z的共轭复数等于______.
三、解答题17题10分,其它每题12分,共70分
17.计算:(1),
(2).
18.已知集合,,全集.
当时,求;
若,求实数a的取值范围.
19.复数,,为虚数单位.
(I)实数为何值时该复数是实数;
(Ⅱ)实数为何值时该复数是纯虚数.
20.已知函数f(x)=x+2ax+2, x.
(1)当a=-1时,求函数的最大值和最小值;
(2) 若y=f(x)在区间上是单调函数,求实数 a的取值范围.
21.已知函数,.
在答题卡中的平面直角坐标系里作出的图象;
求满足的x的取值范围.
22.已知函数。
(1)求函数的定义域;
(2)判断函数的奇偶性,并证明;
(3)解不等式。
参考答案
1.B 2.D 3.D 4.C 5.A 6.B 7.D 8.D 9.C 10.A 11.C 12.C 13. 14. 15. 16.
17.(1)210;(2)
(1)原式=2(×)6+−4×−×+1
=2×22×33+2-7-2+1
=210.
(2)原式=2-2++log24
=+2
=
18.(1);(2)或.
解:(1)当a=2时,A=,
所以A∪B=,
(2)因为A∩B=A,所以A⊆B,
①当A=∅,即a-1≥2a+3即a≤-4时满足题意,
②当A≠∅时,由A⊆B,有,
解得-1,
综合①②得:
实数a的取值范围为:或-1,
19.(Ⅰ)或时为实数;(Ⅱ)时为纯虚数.
解析:
(Ⅰ)当,即或时为实数.
(Ⅱ)当,即,则时为纯虚数.
20.(1)最大值37, 最小值1 ; (2)a或a
【解析】
(1)因为对称轴为x=1,所以当x=-5时,f(x)取最大值;当x=1时,f(x)取最小值. (2)因为二次函数对称轴一侧的区间为单调区间,因而可得可得a的取值范围. 21.(1)详见解析;(2)详见解析.
【详解】
解:(1)f(x)=|x+1|+|x-2|,,
则对应的图象如图:
,
作出和的图象如图:
若,
则由图象知在A点左侧,B点右侧满足条件.
此时对应的x满足或,
即不等式的解集为.
22.(1);(2)详见解析;(3)或.
【解析】
(1)易知函数,.
所以定义域为.
(2)由,从而知为偶函数;(3)由条件得,得,解得或. 所以不等式的解集为:或.。