长方形与正方形的面积讲义
长方体正方体讲义

长方体与正方体表面积体积计算1.一个长方体的长、宽、高(单位:厘米)都是质数,且它的前面和上面的面积之和为209平方厘米,求这个长方体的体积和表面积各是多少?自我练习:一个长方体的长、宽、高(单位:厘米)都是质数,且它的体积为374立方厘米,求这个长方体的表面积。
2.一个正方体木块的表面积是36平方分米,把它截成体积相等的八个小正方体木块,这时,表面积增加了多少平方厘米?(用两种方法)自我练习:将两个长都是8厘米,宽都是6厘米,高都是5厘米的长方体拼成一个大长方体,那么这个大长方体的表面积最大是多少?3.将一块长方形的铁皮,长30厘米,宽20厘米,在这块铁皮的四角各剪下一个边长为2厘米的小正方形,然后做成一个无盖的长方体盒子。
求这个盒子的容积。
自我练习:把一个长20厘米、宽10厘米、高5厘米的长方体分割成若干个同样大小的小正方体,再把这些小正方体拼成一个大的正方体,所得到的大正方体的表面积是多少平方厘米?4.一个长方体的铁皮水箱,从里面量长6分米,宽5分米。
先倒入82升水,再完全侵入一块棱长为2分米的正方体铁块,这时水面离箱口1分米。
这个水箱的容积是多少?自我练习:一个密合的长方体容器中装着1500立方厘米的水,如果把这个容器的下面作为底面放在水平桌面上,水的高度是4厘米;如果把这个容器的前面作为底面放在水平平面上,水的高度是6厘米;如果把这个容器的右面作为底面放在水平桌面上,水的高度是10厘米。
问:这个容器的表面积是多少?5.一个棱长为6厘米的正方体,分别在它的前面、左右、上下各面的中心挖去一个棱长为2厘米的小正方体。
求这个物体的体积。
自我练习:一个长方体,如果长减少2厘米,宽、高不变,则体积减少48立方厘米;如果宽增加3厘米,长、高不变,则体积增加99立方厘米;如果高增加4厘米,长、宽不变,则体积增加352立方厘米。
问:原来这个长方体的表面积是多少?6.某工人用木板钉成一个长方体邮件包装箱,并用三根长度分别是235厘米、445厘米、515厘米的尼龙带进行加固(如图),若每根尼龙带加固时接头重叠都是5厘米。
六年级上册数学讲义-第一章 长方体和正方体体积和表面积 苏教版

六年级上册数学-第一章长方体和正方体体积和表面积学员编号:*********** 年级:课时数:学员姓名:*** 辅导科目:学科教师:授课目标理解并掌握长方体和正方体的表面积的含义和计算方法授课难点运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
教学重点:掌握组合体体积计算的方法,并且在解题的过程中培养孩子的观察能力和空间想象能力。
1.知识与技能:使学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
2.过程与方法:使学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。
3.情感、态度与价值观:使学生进一步感受立体图形的学习价值,增强学习数学的兴趣。
4.熟练掌握正方体长方体的体积计算方法。
5.掌握组合体体积计算的方法,并且在解题的过程中培养孩子的观察能力和空间想象能力。
例题一、一间长方体仓库的长为8米,宽为6米,高为3.5米。
仓库装有一扇门,门的宽为1米,高为2米。
现在要给仓库地面1米高以下的四壁都贴上瓷砖,贴瓷砖部分的面积是多少?部分侧面积-部分门的面积=所要求的面积(8*1+6*1)*2-1*1=27(m2)答:贴瓷砖部分的面积是27平方米例题二、在一块长为40cm,宽为28cm的长方形铁皮的四个角上剪去边长为4cm的正方形,然后将它焊接成无盖的盒子,这个盒子的表面积和容积各式多少?V=abh4*32*20=2560cm3S=长方形铁皮面积-4个小正方形的面积40*28-4*4*4=1056cm2答:这个盒子的表面积是1056平方厘米,体积是2560立方厘米。
1、两根同样长的铁丝焊一个长方体和正方体,长方体长7厘米,宽5厘米,高3厘米,正方体的棱长是多少厘米?答案:5厘米2、一个长方体水池,长2米,宽1.2米,深0.8米,现将水池的四壁和底部抹上一层水泥,求抹水泥的部分的面积是多少平方米?答案:7.52平方米3、水泥厂制10根正方体铁皮通讯管道管子,横截面为边长30厘米的正方形,管全长2米,共需多少平方米铁皮?答案:0.3*2*4*10=24平方米3、用两个棱长是1分米的正方体木块拼成一个长方体时,拼成的长方体表面积与原来相比,减少了多少?少了2平方分米想一想:1、正方体和长方体的体积怎么算?2、体积的单位有哪些?他们之间是如何换算的呢?重点:掌握长方体和正方体的表面积及体积计算方法。
六年级下册奥数讲义-奥数方法:简单割补法

我们知道长方形、正方形的面积计算公式为:长方形的面积=长×宽正方形的面积=边长×边长但是这两组计算公式只适用于求解相应的规则图形的面积,如果遇到更为复杂的、不规则的直线形多边形(指多边形的边是直线段)的面积求解问题时,它们就无法直接用于求解了。
那么,如何来解决这一难题呢?实际上,尽管它们无法直接用于求解,但我们可以在适当地转化图形后再求助于它们,也就是它们能够间接地帮助我们,这里所说的“转化”是指对直多边形进行适当的分割与添补,使之转化为标准的长方形或正方形,这种方法我们称之为割补法。
掌握这方法的关键在于根据待求图形的特征,采用适当的割补使之变为长方形或正方形,为保持面积不变,应将多补上的部分的面积减去,未补上的部分的面积应加上。
[例1】有一形如图la的板(图中的每个数字分别表示所对应的线段的长度,单位:厘米),求它的面积等于多少平方厘米?解答☆解法一将图1a分割成长方形,可以有两种较简单的方法(见图1b、lc),图形都被分割成三个长方形。
以第一种分割法为例(图1b),利用长方形的面积公式可计算出图形的面积(我们可以记之为S)。
S=(1+2+3)×(3+4+5)-1×4-(1+2)×5=72-4-15=53(平方厘米)答:所求的面积为53平方厘米。
[例2】有一个长方形,如果宽减少2米,面积就减少24平方米。
如果长增长3米,面积就增加27平方米。
求这个长方形的面积。
思路剖析根据题意,可以画出如下直观图(图3):观察图3a,从宽减少2米面积就减少24平方米这个条件,我们可以求出这个长方形的长是24÷2=12(米)。
=(1+2+3)×3+(2+3)×4+5×3=18+20+15=53(平方厘米)☆解法二上面的方法是将图形分割成若干个长方形,然后求图形的面积,也就是使用了分割法。
实际上,我们还可以将图形添补成一个大的长方形(见图2),然后利用大长方形面积与两个小长方形面积之差,求出图形的面积,亦即采用添补法。
小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
人教版三年级上册期末数学复习《长方形和正方形》专题讲义(知识归纳+典例讲解+同步测试)(含解析)

人教版三年级上册期末数学复习《长方形和正方形》专题讲义(知识概括+典例解说 +同步测试)(含分析)姓名 :________班级:________成绩:________小朋友,带上你一段时间的学习成就,一同来做个自我检测吧,相信你必定是最棒的!一、选择题1 . 一个长方形,长 6 米,宽 3 米,它的周长是多少?正确列式是()。
A.6×3B.( 6+3)×2C.6×3+6×32 . 小强取出自己零花费的捐给舟曲灾区,小斌也取出自己零花费的捐给灾区.两人捐的钱数()A.相同多B.不相同多C.可能相同多,也可能不相同多3 . 将边长是 1 分米的正方形的四个角剪去边长是 1 厘米的正方形,所得图形的周长()A.增添 4 厘米B.减少 4 厘米C.与本来相同4 . 一个长方形框架组成平行四边形后,周长()。
A.不变B.变大C.变小5 . 五星红旗是()。
A.正方形B.长方形C.平行四边形6 . 一张长 8 厘米、宽 5 厘米的长方形纸,从中剪出一个最大的正方形,正方形的边长是()。
A.8 厘米B.5 厘米C.6 厘米7 . 一个正方形和一个长方形的周长相等,长方形的周长是32 分米,正方形的边长是()分米。
A. 4 B. 16 C. 88 . 一个长方形的长是 5 厘米,宽是 4 厘米,它的周长是()厘米.第1页共8页9 .从长是4厘米,宽是3 厘米的长方形中截出一个最大的正方形,正方形的周长是()厘米. A. 12B. 14C. 1610 . 长方形和正方形的周长都是30 米,()的面积大.A.长方形B.正方形C.相同大11 . 下面各图形中,正确画出图形的高的是()。
A.B.C.D.12 . 把一个正方形对折二次后,每一份是它的()。
A.B.C.13 .一个周长是20 厘米的长方形,它的长不行能是()A.10 厘米B.6 厘米C.8 厘米二、填空题14 .下面各组直线中, 在相互平行的下面画“∥”, 在相互垂直的下面画“⊥”。
长方形、正方形的面积讲义

宁波龙文教育个性化辅导讲义(新天地校区)例1 已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?练习一1,有一块长方形草地,长20米,宽15米。
在它的四周向外筑一条宽2米的小路,求小路的面积。
2,正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。
原正方形的面积是多少平方厘米?3,把一个长方形的长增加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形。
求这个正方形的边长是多少分米?例2 一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。
分析 因为A E ×CE=6,DE ×EB=35,把两个式子相乘A E ×CE ×DE ×EB=35×6,而CE ×EB=14,所以AE ×DE=35×6÷14=15。
练 习 二1,下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。
2,下面一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A 和B 的面积。
B 1224A45153,下图中阴影部分是边长5厘米的正方形,四块完全一样的长方形的宽是8厘米,求整个图形的面积。
例3 把20分米长的线段分成两段,并且在每一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?分析我们可以把小正方形移至大正方形里面进行分析。
两个正方形的面积差40平方分米就是图中的A和B两部分,如图。
如果把B移到原来小正方形的上面,不难看出,A和B正好组成一个长方形,此长方形的面积是40平方分米,长20分米,宽是40÷20=2(分米),即大、小两个正方形的边长相差2分米。
(沪教版)三年级数学上册讲义--第20讲-期末复习(二)(含答案)

1.能熟练运用面积计算公式计算长方形和正方形的面积;2.能运用分割、添补等方法解决简单的组合图形面积计算;3. 能通过圈关键字、画线段图等解题策略解决两步应用题.(此环节设计时间在10—15分钟)➢计算面积问题1:长方形和正方形的面积公式是什么?公式:长方形面积=长×宽;长方形的长=面积÷宽;长方形的宽=面积÷长正方形面积=边长×边长面积单位:平方米(m2),平方厘米(cm2),平方分米(dm2)问题2:组合面积的计算方法有哪些?分割法,添补法等。
画出辅助线,写上数据。
问题3:解决两步应用题等方法有哪些?圈关键字,画线段图等。
本学期我们主要研究几类应用题:几倍多几(几倍少几)问题,和倍(差倍)问题,份总问题,工作问题,植树问题和周期问题。
练习:左图的每个小正方形边长1cm,面积是4cm2的正方形有()个。
A.2 B.3 C.4答案:C➢应用题1.几倍多几(几倍少几)应用题求几倍多几,几倍少几的应用题中的数量关系式:一倍数×倍数+多的=几倍数或一倍数×倍数—少的=几倍数。
练习:植树节学校组织学生种树,三(1)班种了34棵,三(2)班种的棵数比三(1)班的2倍少5棵,三(2)班种了多少棵?(独立圈出倍数、一倍数和几倍数)2.和倍、差倍应用题根据题目中的条件、分析问题、所需的条件,画出线段图。
加法数量关系是:几倍数+一倍数=总和,乘法数量关系是:一倍数×倍数和=总和。
练习:小胖每分钟能打45个字。
小巧的打字速度是小胖打字速度的2倍,他们一分钟一共能打多少个字?3.份总应用题已知什么,求什么?缺什么?怎样求?在乘除应用题中,一定要弄清楚求得是总数,还是份数,求总数用乘,求份数用除。
4.工效问题工作问题的数量关系是:工作效率×工作时间=工作量。
比两个人的速度快慢时,应统一工作问题中的一个量,可以是工作效率,谁的工作效率大,谁快;也可以统一相同时间内的工作量,谁的工作量大,谁就快。
三20长方、正方面积

4分米图34名师导航学校三年级奥数辅导讲义长方形、正方形面积思路点拨:1、对于不规则图形的面积,或所求图形面积的必要条件不充分一般采取 大面积 - 小面积2、对于求几个图形的面积和,可以切割,拼接。
例1、一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是草坪,草坪的面积是多项式少平方米?例2、右图是由6个相等的三角形拼成的图形,求这个图形的面积。
例3、已知图3中大正方形比小正方形的边长多4厘米,大正方形面积比 小正方形多96平方厘米。
大正方形和小正方形的面积各是多少?例4、正方形中套着一个长方形,正方形的边长是15厘米,长方形的四个角的顶点, 恰好分别把正方形四条边都公成两段,其中长的一段是短的2倍。
这个长方形的面积是多少平方米?例4、已知正方形ABCD的边长为6分米,长方形BCEF和长方形AGHD的面积分别为24平方分米和20平方分米,求阴影部分和面积。
例5、一个边长是7厘米的正方形纸片,最多能裁出多少个长是4厘米,宽是1厘米的纸条,请画图说明。
练习与思考1.用长36厘米长的一根铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多少?2.有一个长方形的市民广场,长100米,宽80米。
广场中间留了宽4米的人行道,把广场平均分成四块(如图6),每一块的面积是多少?3.下图是由12个相等的三角形拼成的,这个图形的面积是多少?4.已知大正方形的面积比小正方形多52平方分米,大正方形比小正方形的边长多2分米。
小正方形的面积是多少?大正方形的面积是多少?5.是由9个小长方形组成的,面积分别是1平方米,2平方米,3平方米,4平方米,5平方米,那么,A 号长方形和面积是多少呢?6.一个正方形中套着一个长方形,已知正方形的边长 是16分米,长方形的四个角的顶点恰好把正方形四条边 都分成两段,其中长的一段是短的3倍。
阴影部分的面积 是多少?7.图中阴影部分的面积是多少?8.把一块长6分米,宽5分米的长方形钢板,截成长3分米,宽2分米的小长方形钢板,最多能截几块?请画图说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方形与正方形的面积
知识点总结:
1、基本定义:物体的表面或封闭图形的大小,就是它们的面积。
2、基本公式:
长方形的面积=长×宽正方形的面积=边长×边长
3、演变公式:
已知面积求长:长=长方形面积÷宽
已知面积求宽:宽=长方形面积÷长
已知面积求边长:边长=正方形面积÷边长
4、面积单位之间的进率:
1平方厘米=100平方毫米 1平方分米=100平方厘米 1平方米=100平方分米
1公顷=10000平方米 1平方千米=100公顷
注意:除1公顷=10000平方米之外,其余面积单位进率为100
面积单位测量面的大小。
5、什么样的问题是求面积?或与面积有关?
(课本等封面大小、刷墙、花坛周围小路面积、给餐桌配玻璃、给课桌配桌
布、洒水车洒到的地面、某物品占地面积、买玻璃、买镜子、买布、买地毯、
铺地、裁手帕的等等)
6、注意:
(1)面积相等的两个图形,周长不一定相等。
周长相等的两个图形,面积不一定相等。
(2)大单位换算小单位(乘它们之间的进率)
小单位换算大单位(除以它们之间的进率)
(3)长度单位和面积单位的单位不同,无法比较。
(4)常用的土地面积单位有公顷和平方千米。
测量土地时常常用到较大的面积单位有:(公顷)、(平方千米)。
“公顷”→测量菜地面积、果园面积
“平方千米”→测量城市土地面积
典型例题讲解:
类型题一长和宽,边长扩大的问题
1,一个长方形的长是5厘米,宽是4厘米,周长是多少?面积是多少?如果长和宽都扩大2厘米,周长变为多少?面积变为多少?
2,一个长方形的宽是4厘米,长是宽的2倍,如果长和宽都扩大两倍,周长扩大了多少倍?面积扩大了多少倍?
3,一个正方形的边长是13厘米,如果边长扩大2倍,周长扩大了()倍,
面积扩大了()倍。
4,有一个边长为 8 厘米的小正方形,把它的边长分别增加 6 厘米,做成一个
大正方形,大正方形的面积比小正方形的面积多多少?
5,围成一个正方形苗圃的篱笆总长是20米,现在要扩大苗圃范围,每条边都增加2米,那还需要增加多少米的篱笆?扩大后的苗圃面积是多少?
方法小结:按照题目意思,长和宽或边长各自增加,再根据公式求出增加后的周长和面积,进行比较。
规律:长方形的长和宽(正方形的边长)同时增加N倍,那这个长方形(或长方形)的周长就增加了N倍,面积增加了N×N 倍。
类型题二跑圈问题
1,学校的花圃是个正方形,小明沿着花圃边跑了一圈,一共400米,那这个花圃面积是多少?
2,小红每天坚持锻炼,她绕着小区里的正方形荷花池跑了一圈,正好是240米,那这个正方形荷花池面积是多少?
3,小强围着正方形花坛跑了四圈,正好是400米,这个花坛的面积是多少?
4,一个长方形操场长是100米,小芳沿着操场边跑了一圈是260米,那这个草场面积是多少?
5,一个正方形花坛的面积是400平方米,小明第一天跑了3圈,一共跑了多少米?第二天他跑了160米,共跑了多少圈?
方法小结:跑一圈正好是长方形或正方形的周长,只要知道他们的长宽,边长就可以求面积;如果知道了正方形面积,就用:面积=边长×边长,然后用公式:边长×4=周长,求出跑一圈的长度,就可以求出跑多少圈的长度了。
(如5题)
类型题三铺地砖,种树,种庄稼问题
1,一间教室,长9米,宽6米,现在要用边长是1分米的地砖铺地板,需要这样的地砖多少块?(提示先分别求出教室面积和地砖的面积,再用铺地总面积÷一个地砖的面积=地砖个数)
2,小青家用9分米的地砖铺客厅地板,正好用了96块,那小青家客厅占地面积多大?
3,一个长方形苗圃,长100米,宽50米,如果每平方分米种一棵小树苗,那这个苗圃可以种多少棵小树苗?(提示:总面积÷一棵小树苗的占地面积=棵树)
4,从一块长30厘米,宽7厘米的长方形卡纸上剪出边长是2厘米的小正方形纸块,最多能剪多少个?
5,一个长方形菜地,长98米,宽65米。
如果每平方米产蔬菜2千克,一共可以长多少千克蔬菜?(提示:总面积×每平方米的产量=总产量)
6,一个长方形西瓜地面积是8000平方米,如果每公顷生产西瓜100公斤,这个西瓜地一共收获多少公斤西瓜?
方法小结:求数目——总面积÷单个的占地面积=所求数目;求产量或重量——总面积×每个小面积的产量=总产量
类型四靠墙围篱笆问题
1,如图,小红家后院需要靠墙围一个长方形篱笆,总共围了130米,已知长是70米,这个篱笆围成的面积是多少?(提示:靠墙的一边不用围篱笆,所以两条宽的长度+一条长的长度=130米)
2,如图,小红家的后院要靠墙围一个正方形篱笆,总共围了81米,这个篱笆围成的面积是多少?
类型五在长方形中剪出一个最大正方形
1,一个长方形,长是38分米,宽是25分米,要在这个长方形中剪掉一个最大的正方形,这个正方形面积是多少?余下的那部分面积是多少?(凡是在长方形中剪掉一个最大的正方形,这个正方形的边长肯定是这个长方形的宽)
2,在一个长 16 厘米,宽 9 厘米的长方形中剪下一个最大的正方形,这个正方形的面积是多少?剩下的面积是多少?
类型六挖空问题
1,教室南面的墙壁,长8米,宽3米。
墙上有3个3平方米的窗户。
现在要粉刷这面墙壁:1)要粉刷的面积是多少平方米? (2)如果粉刷每平米的费用要 160 元,那粉刷这面墙壁共花费多少钱?(提示:粉刷的面积应该是除了窗户之外的面积)
2,学校要粉刷一个长20 米,宽3米的围墙,墙上有一块面积 12 平方米的宣传橱窗,请你算一算,粉刷的面积有多大?
3,如图,一个正方形水池的边长是4米,要水池周围铺2米宽的石子路,需要铺多少面积?
4,王师傅先在一面长8米、宽5米的墙壁米的正方形, 上挖出2个边长1米的正方形,然后给墙面部分刷漆,需要刷漆的部分有多大?
方法小结:在长方形或正方形中挖去中间一部分图形,求剩下图形的面积,往往用大面积—小面积=所求面积。
类型七围铁丝变形问题
1,一根长 16 米的铁丝,假如围成长是 5 米的长方形,长方形的宽是多少?长方形的面积又是多少?如果把这根铁丝围成一个正方形,正方形的面积是多少?正方形的面积是多少?
2,用一根长12厘米的铁丝围成一个长方形,有几种围法?围成的最大的长方形的面积是多少平方厘米?如果围成一个正方形,面积是多少?
3,一个长方形铁丝,周长是16米,把这根铁丝围成一个正方形,正方形的面积是多少?
4,一个正方形铁丝,总长16米,如果这根铁丝围成一个长是 5米的长方形,面积是多少?
5,一根铁丝能够围成一个长 16 厘米,宽 12 厘米的长方形,如果用这跟铁丝围成一个正方形,这个正方形的周长和面积各是多少?
方法小结:变形问题,记住周长不变,即长方形周长=正方形周长。
类型八拼接问题
1,一个长方形书桌,长24分米,宽12分米,两个这样的书桌拼成一个大长方形,周长是多少?面积是多少?如果拼成一个正方形,周长是多少?面积又是多少?
2, 已知乒乓球台是由两块边长为12分米的正方形桌子拼成的,乒乓球台的面积是多少厘米?周长是多少?
方法小结:拼接问题时,最重要是画图,拼在一起的两条边不用计算在内。
类型九 看图计算面积(不完整图形)
1,如图,计算图形面积。
(提示:用补全法,再用大面积—所补的小面积=所求面积)
2,如图,计算面积。
(补全法)
3,如图,计算面积。
李虹家准备在客厅地面上铺上方砖,选择哪种方砖便宜?需要这种方砖多少块
?大方砖每块18元,小方砖每块
4元。
大方砖
小区前面有一块60米边长的正方形空坪,现要在空坪的中间做一个长32米、宽2
8米的长方形花圃,其余的植上草皮.(如下图)
①花圃的面积是多少平方米?
②草皮的面积是多少平方米?
6m 4dm 2dm。