高考数学(江苏专用理科)专题复习:专题1集合与常用逻辑用语 第2练 Word版含解析
高考数学(理)(苏教版)精练检测:一 集合与常用逻辑用语 Word版含解析

单元滚动检测一集合与常用逻辑用语考生注意:1.本试卷分第Ⅰ卷(填空题)和第Ⅱ卷(解答题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分160分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上) 1.设命题p:∃n∈N,n2>2n,则綈p为______________.2.(2016·全国甲卷改编)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B =____________.3.(2017·苏北四市调研)已知命题p:∃x∈R,e x-mx=0,q:∀x∈R,x2+mx+1≥0,若p∨(綈q)为假命题,则实数m的取值范围是__________.4.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A∩B =________________.5.原命题“设a、b、c∈R,若a>b,则ac2>bc2”以及它的逆命题、否命题、逆否命题中,真命题共有________个.6.(2016·苏州模拟)设集合M={x|-1≤x<2},N={y|y<a},若M∩N≠∅,则实数a 的取值范围是__________.7.已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的________条件.8.已知集合M={x|1≤x≤2},N={x|x>a+3或x<a+1},若M⊆N,则实数a的取值范围是________________.9.(2016·无锡模拟)已知命题p:m∈R,且m+1≤0,命题q:∀x∈R,x2+mx+1>0恒成立,若p∧q为假命题,则m的取值范围是________________.10.已知“(x-m)2>3(x-m)”是“x2+3x-4<0”的必要不充分条件,则实数m的取值范围为____________.11.(2016·天津改编)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n+a2n<0”的____________条件.-112.已知命题p:关于x的不等式a x>1(a>0,a≠1)的解集是{x|x<0},命题q:函数y=lg(ax2-x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围为________________.13.(2016·常州模拟)从集合A={x|1≤x≤10,x∈N}中选出5个数组成A的子集,且这5个数中的任意2个数的和不等于12,则这样的子集个数为________.14.(2016·江苏泰州中学月考)以下关于命题的说法正确的有________.(填写所有正确命题的序号)①“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.第Ⅱ卷二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(14分)已知集合A={x|x2-5x+6=0},B={x|mx+1=0},且A∪B=A,求实数m的值组成的集合.16.(14分)已知集合M={0,1},A={(x,y)|x∈M,y∈M},B={(x,y)|y=-x+1}.(1)请用列举法表示集合A;(2)求A∩B,并写出集合A∩B的所有子集.17.(14分)(2016·江苏天一中学月考)已知集合A={x|1<x<3},B={x|2m<x<1-m}.(1)当m=-1时,求A∪B;(2)若A⊆B,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.18.(16分)已知命题p:关于x的方程x2+mx+1=0有两个不相等的负实数根,命题q:关于x的不等式4x2+4(m-2)x+1>0的解集为R.若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.19.(16分)已知p:实数x满足x2-4ax+3a2<0,其中a>0;q:实数x满足2260,280. x xx x⎧--≤⎪⎨+->⎪⎩(1)若a=1,且“p∧q”为真,求实数x的取值范围;(2)若綈p是綈q的充分不必要条件,求实数a的取值范围.20.(16分)已知集合P={x|x2-8x-20≤0},S={x||x-1|≤m}.(1)若(P∪S)⊆P,求实数m的取值范围;(2)是否存在实数m,使“x∈P”是“x∈S”的充要条件?若存在,求出m的取值范围;若不存在,请说明理由.答案精析1.∀n∈N,n2≤2n解析将命题p的量词“∃”改为“∀”,“n2>2n”改为“n2≤2n”.2.{0,1,2,3}解析由(x+1)(x-2)<0解得集合B={x|-1<x<2},又因为x∈Z,所以B={0,1},因为A={1,2,3},所以A ∪B ={0,1,2,3}.3.0,2]解析若p ∨(綈q )为假命题,则p 假q 真.命题p 为假命题时,有0≤m <e ;命题q 为真命题时,有Δ=m 2-4≤0,即-2≤m ≤2.所以当p ∨(綈q )为假命题时,m 的取值范围是0≤m ≤2.4.{(0,1),(-1,2)}解析A 、B 都表示点集,A ∩B 即是由A 中在直线x +y -1=0上的所有点组成的集合,代入验证即可.5.2解析由题意可知原命题是假命题,所以逆否命题是假命题;逆命题为“设a 、b 、c ∈R ,若ac 2>bc 2,则a >b ”,该命题是真命题,所以否命题也是真命题,故真命题有2个.6.(-1,+∞)解析借助于数轴如图,可知a >-1.7.充要解析对于“a >0且b >0”可以推出“a +b >0且ab >0”,反之也是成立的.8.(-∞,-2)∪(1,+∞)解析由题意,得a +3<1或a +1>2,即a <-2或a >1.9.(-∞,-2]∪(-1,+∞)解析若命题p 是真命题,则m ≤-1;若命题q 是真命题,则m 2-4<0,解得-2<m <2,所以p ∧q 是真命题时,有⎩⎪⎨⎪⎧m ≤-1,-2<m <2,即-2<m ≤-1, 所以p ∧q 为假命题时,m 的取值范围为m ≤-2或m >-1.10.(-∞,-7]∪1,+∞)解析由(x -m )2>3(x -m ),得(x -m )(x -m -3)>0,即x >m +3或x <m .由x 2+3x -4<0,解得-4<x <1.因为“(x -m )2>3(x -m )”是“x 2+3x -4<0”的必要不充分条件,所以m +3≤-4或m ≥1,解得m ≤-7或m ≥1,即实数m 的取值范围为(-∞,-7]∪1,+∞).11.必要不充分解析设数列的首项为a 1,则a 2n -1+a 2n =a 1q 2n -2+a 1q 2n -1=a 1q 2n -2(1+q )<0,即q <-1,故q <0是q <-1的必要不充分条件.12.(0,12]∪(1,+∞)解析由关于x 的不等式a x >1(a >0,a ≠1)的解集是{x |x <0},知0<a <1;由函数y =lg(ax 2-x +a )的定义域为R ,知不等式ax 2-x +a >0的解集为R .则⎩⎪⎨⎪⎧a >0,Δ=1-4a 2<0,解得a >12. 因为p ∨q 为真命题,p ∧q 为假命题,所以p 和q 一真一假,即“p 假q 真”或“p 真q 假”, 故⎩⎨⎧ a >1,a >12或⎩⎨⎧ 0<a <1,a ≤12,解得a >1或0<a ≤12, 故实数a 的取值范围是(0,12]∪(1,+∞).13.64解析由题意知,集合A ={x |1≤x ≤10,x ∈N }={1,2,3,4,5,6,7,8,9,10},其中2+10=3+9=4+8=5+7=12,其余的元素还有1,6,和为12的2个元素不能同时出现,则这样的子集个数为C 22C 34C 12C 12C 12+C 12C 44C 12C 12C 12C 12=64.14.②④解析对于①,若log 2a >0=log 21,则a >1,所以函数f (x )=log a x 在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,原命题的逆命题是“若x +y 是偶数,则x 、y 都是偶数”,是假命题,如1+3=4是偶数,但1和3均为奇数,故③不正确;对于④,不难看出,命题“若a ∈M ,则b ∉M ”与命题“若b ∈M ,则a ∉M ”互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.15.解A ={x |x 2-5x +6=0}={2,3},∵A ∪B =A ,∴B ⊆A .①当m =0时,B =∅,B ⊆A ,符合题意;②当m ≠0时,由mx +1=0,得x =-1m .∵B ⊆A ,∴-1m =2或-1m =3,得m =-12或m =-13.∴实数m 的值组成的集合为{0,-12,-13}.16.解(1)A ={(0,0),(0,1),(1,0),(1,1)}.(2)集合A 中元素(0,0),(1,1)∉B ,且(0,1),(1,0)∈B ,所以A ∩B ={(1,0),(0,1)}.集合A ∩B 的所有子集为∅,{(1,0)},{(0,1)},{(1,0),(0,1)}.17.解(1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}.(2)由A ⊆B ,知⎩⎪⎨⎪⎧ 1-m >2m ,2m ≤1,1-m ≥3,解得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)①当2m ≥1-m ,即m ≥13时,B =∅,符合题意;②当2m <1-m ,即m <13时,则⎩⎨⎧ m <13,1-m ≤1或⎩⎨⎧ m <13,2m ≥3,解得0≤m <13.综上,实数m 的取值范围为0,+∞). 18.解若p 为真命题,则有⎩⎪⎨⎪⎧Δ=m 2-4>0,-m <0,所以m >2. 若q 为真命题,则有Δ=4(m -2)]2-4×4×1<0,所以1<m <3.由“p ∨q ”为真命题,“p ∧q ”为假命题,知命题p 与q 一真一假.当p 真q 假时,由⎩⎪⎨⎪⎧ m >2,m ≤1或m ≥3,得m ≥3; 当p 假q 真时,由⎩⎪⎨⎪⎧ m ≤2,1<m <3,得1<m ≤2. 综上,m 的取值范围是(1,2]∪3,+∞).19.解对于p :由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0.又a >0,所以a <x <3a .(1)当a =1时,得1<x <3,即实数x 的取值范围是(1,3).对于q :由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0, 解得⎩⎪⎨⎪⎧-2≤x ≤3,x <-4或x >2,即2<x ≤3,所以实数x 的取值范围是(2,3].若“p ∧q ”为真,则p 与q 均为真,即⎩⎪⎨⎪⎧ 1<x <3,2<x ≤3,故2<x <3, 所以实数x 的取值范围是(2,3).(2)因为綈p 是綈q 的充分不必要条件,所以綈p ⇒綈q 且綈qD 綈p .由(1)知p :a <x <3a ,q :2<x ≤3.则綈p :x ≤a 或x ≥3a ,綈q :x ≤2或x >3.由綈p 是綈q 的充分不必要条件,知0<a ≤2且3a >3,解得1<a ≤2.所以实数a 的取值范围为(1,2].20.解由x 2-8x -20≤0,得-2≤x ≤10,所以P =-2,10]. 由|x -1|≤m ,得1-m ≤x ≤1+m ,所以S =1-m,1+m ].(1)要使P ∪S ⊆P ,则S ⊆P .①若S =∅,则m <0;②若S ≠∅,则⎩⎪⎨⎪⎧ m ≥0,1-m ≥-2,1+m ≤10,解得0≤m ≤3.综合①②可知,实数m 的取值范围为(-∞,3].(2)由“x ∈P ”是“x ∈S ”的充要条件,知S =P , 则⎩⎪⎨⎪⎧1-m =-2,1+m =10,此方程组无解,所以这样的实数m不存在.。
2022届高三数学(理)一轮总复习练习-第一章 集合与常用逻辑用语 1-2 Word版含答案

课时规范训练[A级基础演练]1.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3解析:选A.否命题是原命题的条件和结论同时否定,故选A.2.给定两个命题p,q.若﹁p是q的必要而不充分条件,则p是﹁q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由q⇒﹁p且﹁p⇒/q可得p⇒﹁q且﹁q⇒/p,所以p是﹁q的充分而不必要条件.3.命题“若x2>y2,则x>y”的逆否命题是()A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”答案:C4.设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是()A.a.若a≠-b,则|a|≠|b| B.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-b D.若|a|=|b|,则a=-b解析:选D.条件与结论相互交换.即若|a|=|b|则a=-b5.“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B.由ln(x+1)<0得0<x+1<1,∴-1<x<0即(-1,0)(-∞,0)∴“x<0”是“ln(x+1)<0”的必要不充分条件.6.“0≤m≤1”是“函数f(x)=sin x+m-1有零点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.要使函数f(x)=sin x+m-1有零点,则m-1=-sin x∈[-1,1],可知0≤m≤2.当0≤m≤1时,明显能得到0≤m≤2,即函数f(x)=sin x+m-1有零点,但反之不肯定成立,故选A.7.设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选D.依据充要条件的定义,举特例说明.设a=1,b=-2,则有a>b,但a2<b2,故a>b⇒/a2>b2;设a=-2,b=1,明显a2>b2,但a<b,即a2>b2⇒/a>b.故“a>b”是“a2>b2”的既不充分也不必要条件.8.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是__________.解析:否命题既否定题设又否定结论.答案:若f(x)不是奇函数,则f(-x)不是奇函数9.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是__________.解析:①原命题的否命题为“若a≤b则a2≤b2”,假命题.②原命题的逆命题为:“x,y互为相反数,则x+y=0”真命题.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”真命题.答案:②③10.下列命题:①若ac2>bc2,则a>b;②若sin α=sin β,则α=β;③“实数a=0”是“直线x-2ay=1和直线2x-2ay=1平行”的充要条件;④若f(x)=log2x,则f(|x|)是偶函数.其中正确命题的序号是__________.解析:对于①,ac2>bc2,c2>0,则a>b正确;对于②,sin 30°=sin 150°⇒/30°=150°,所以②错误;对于③,l1∥l2⇔A1B2=A2B1,即-2a=-4a⇒a=0且A1C2≠A2C1,所以③正确;④明显正确.答案:①③④[B级力量突破]1.假如x,y是实数,那么“x≠y”是cos x≠cos y的()A.充要条件B.充分不必要条件C.必要不充分条件D.即不充分又不必要条件解析:选C.若cos x=cos y⇒/x=y,反之成立,“cos x=cos y”是“x=y”的必要不充分条件,“x≠y”是“cos x≠cos y”的必要不充分条件.2.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则() A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解析:选C.利用命题和逆命题的真假来推断充要条件,留意推断为假命题时,可以接受反例法.当f′(x0)=0时,x=x0不肯定是f(x)的极值点,比如,y=x3在x=0时,f′(0)=0,但在x=0的左右两侧f′(x)的符号相同,因而x=0不是y=x3的极值点.由极值的定义知,x=x0是f(x)的极值点必有f′(x0)=0.综上知,p是q的必要条件,但不是充分条件.3.已知p:x>1或x<-3,q:x>a,若q是p的充分不必要条件,则a的取值范围是() A.[1,+∞) B.(-∞,1]C.[-3,+∞) D.(-∞,-3]解析:选A.法一:设P={x|x>1或x<-3},Q={x|x>a},由于q是p的充分不必要条件,所以Q P,因此a≥1,故选A.法二:令a=-3,则q:x>-3,则由命题q推不出命题p,此时q不是p的充分条件,排解B,C,D,选A.4.设条件p:实数x满足x2-4ax+3a2<0,其中a<0;条件q:实数x满足x2+2x-8>0,且q是p的必要不充分条件,则实数a的取值范围是________.解析:本题考查必要不充分条件的应用与一元二次不等式的解法.由x2-4ax+3a2<0得3a<x<a,由x2+2x-8>0得x<-4或x>2,由于q是p的必要不充分条件,则⎩⎪⎨⎪⎧a<0,a≤-4,所以a≤-4.答案:(-∞,-4]5.以下关于命题的说法正确的有__________(填写全部正确命题的序号).①“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.解析:对于①,若log2a>0=log21,则a>1,所以函数f(x)=log a x在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,该命题的逆命题是“若x+y是偶数,则x、y都是偶数”,是假命题,如1+3=4是偶数,但3和1均为奇数,故③不正确;对于④,不难看出,命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”是互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.答案:②④。
江苏专用高考数学总复习 第1知识块 集合与常用逻辑用语 第2讲 命题及其关系课件 (文)

充要 条件,记作p⇔q;如果p⇒q,且q ⇒/ p,那么称p是q 必要不充分 , 既不充分又不必要条件.
充分不必要 条件;如果p ⇒/ q;且q⇒p,那么称p是q的
条件;如果p⇒/ q,且q ⇒/ p,那么称p是q的
联动思考
想一想:“x>1”是“x2>1”的什么条件?
答案:充分不必要条件.
议一议:如何理解一个命题p与非p真假性相反? 答案:可以从集合的角度进行理解,“非”是否定的意思,即集合中的 “补集”概念.若将命题对应集合P,则命题“綈p”就对应集合P在全集 U中的补集∁UP.
(3)原命题为真命题.
逆命题:若x=0或y=0,则xy=0,是真命题;
否命题:若xy≠0,则x≠0且y≠0,是真命题; 逆否命题:若x≠0且y≠0,则xy≠0,是真命题; 命题的否定:若xy=0,则x≠0且y≠0,是假命题. (4)原命题为真命题. 逆命题:若x、y全为0,则x2+y2=0,为真命题; 否命题:若x2+y2≠0,则x、y不全为0,为真命题; 逆否命题:若x、y不全为0,则x2+y2≠0,为真命题;
f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b),否命题为真命题,
∴它的逆命题也为真命题. (2)逆否命题是:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+ f(b)<f(-a)+f(-b),则a+b<0.若证它为真,可证明原命题为真来证明它. 因为a+b≥0,所以a≥-b,b≥-a;因为f(x)在(-∞,+∞)上是增函数,所以 f(a)≥f(-b),f(b)≥f(-a),所以f(a)+f(b)≥f(-a)+f(-b).所以逆否命题为真.
5.(2010·四川改编)函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件
2024年新高考版数学专题1_1.2 常用逻辑用语(分层集训)

2.(2023届福建龙岩一中月考,3)下列命题中,错误的命题是 ( ) A.函数f(x)=x与g(x)=( x )2不是同一个函数 B.命题“∃x∈[0,1],x2+x≥1”的否定为“∀x∈[0,1],x2+x<1”
C.设函数f(x)=
2x 2x , x
2,
x 0,
0,
则f(x)在R上单调递增
2.(2022福建龙岩一模,1)已知a∈R,若集合M={1,a},N={-1,0,1},则“M ⊆N”是“a=0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 B
3.(2020天津,2,5分)设a∈R,则“a>1”是“a2>a”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 A
A.∀x∈R,∃n∈N*,使得n<x2 B.∀x∈R,∀n∈N*,使得n<x2 C.∃x∈R,∃n∈N*,使得n<x2 D.∃x∈R,∀n∈N*,使得n<x2 答案 D
2.(2015课标Ⅰ,3,5分)设命题p:∃n∈N,n2>2n,则¬p为 ( ) A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 答案 C
4.(2021山东淄博模拟,5)已知a,b∈R,则“ab≠0”的一个必要条件是
()
A.a+b≠0 B.a2+b2≠0
C.a3+b3≠0 答案 B
D. 1 + 1 ≠0
ab
5.(多选)(2021辽宁省实验中学二模,4)下列四个选项中,q是p的充分必要 条件的是 ( )
A.p:
高考数学江苏(理)考前三个月配套文档 专题1 集合与常用逻辑用语 第2练 Word版含解析

第2练 用好逻辑用语,突破充要条件[题型分析·高考展望]逻辑用语是高考常考内容,充分、必要条件是重点考查内容,题型基本都是填空题,题目难度以低、中档为主,在二轮复习中,本部分应该重点掌握四种命题的真假判断、否命题与命题的否定的区别、含有量词的命题的否定的求法、充分必要条件的判定与应用,这些知识被考查的概率都较高,特别是充分、必要条件几乎每年都有考查.体验高考1.(2015·山东改编)若m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是________.答案若方程x 2+x -m =0没有实根,则m ≤0解析原命题为“若p ,则q ”,则其逆否命题为“若綈q ,则綈p ”. ∴所求命题为“若方程x 2+x -m =0没有实根,则m ≤0”.2.(2016·山东改编)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”) 答案充分不必要解析若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交.3.(2015·重庆改编)“x >1”是“12log (2)0x +<”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”) 答案充分不必要解析12log (2)0x +< ⇔x +2>1⇔x >-1.4.(2016·北京改编)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的________________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”) 答案既不充分也不必要解析由|a +b |=|a -b |⇔(a +b )2=(a -b )2⇔a ·b =0⇔a ⊥b ,故是既不充分也不必要条件. 5.(2016·浙江改编)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是________. 答案∃x ∈R ,∀n ∈N *,使得n <x 2解析全称命题的否定是存在性命题,存在性命题的否定是全称命题,n≥x2的否定是n<x2.高考必会题型题型一命题及其真假判断常用结论:(1)原命题与逆否命题等价,同一个命题的逆命题、否命题等价;(2)四个命题中,真命题的个数为偶数;(3)只有p、q都假,p∨q假,否则为真,只有p、q都真,p∧q真,否则为假;(4)全称命题的否定为存在性命题,存在性命题的否定为全称命题,一个命题与其否定不会同真假.例1(1)命题p:“若ac=b,则a、b、c成等比数列”,则命题p的否命题是________(填“真”或“假”)命题.(2)(2016·南师附中一模)有下面四个判断:①命题“设a、b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题;②若“p或q”为真命题,则p、q均为真命题;③命题“∀a、b∈R,a2+b2≥2(a-b-1)”的否定是“∃a、b∈R,a2+b2≤2(a-b-1)”;④若函数f(x)=ln(a+2x+1)的图象关于原点对称,则a=3.其中正确的有________个.答案(1)假(2)0解析(1)命题p的否命题是:若ac≠b,则a、b、c不成等比数列,该命题为假命题,因为若ac=-b且a、b、c都不是0,则a、b、c也是等比数列.(2)对于①:此命题的逆否命题为“设a、b∈R,若a=3且b=3,则a+b=6”,此命题为真命题,所以原命题也是真命题,①错误;“p或q”为真,则p、q至少有一个为真命题,②错误;“∀a、b∈R,a2+b2≥2(a-b-1)”的否定是“∃a、b∈R,a2+b2<2(a-b-1)”,③错误;对于④:若f(x)的图象关于原点对称,则f(x)为奇函数,则f(0)=ln(a+2)=0,解得a=-1,④错误.点评利用等价命题判断命题的真假,是判断命题真假快捷有效的方法.在解答时要有意识地去练习.变式训练1命题“若x<0,则x2>0”及其逆命题、否命题、逆否命题这四个命题中正确命题的个数为________.答案2解析原命题为真,所以逆否命题为真;逆命题为“若x 2>0,则x <0”为假命题,所以否命题为假.题型二充分条件与必要条件例2(1)(2015·北京改编)设α,β是两个不同的平面,m 是直线且m ⊂α.则“m ∥β”是“α∥β”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)答案必要不充分 解析m ⊂α,m ∥βα∥β,但m ⊂α,α∥β⇒m ∥β,所以“m ∥β”是“α∥β”的必要不充分条件.(2)已知(x +1)(2-x )≥0的解为条件p ,关于x 的不等式x 2+mx -2m 2-3m -1<0(m >-23)的解为条件q .①若p 是q 的充分不必要条件时,求实数m 的取值范围; ②若綈p 是綈q 的充分不必要条件时,求实数m 的取值范围. 解①设条件p 的解集为集合A , 则A ={x |-1≤x ≤2}, 设条件q 的解集为集合B , 则B ={x |-2m -1<x <m +1}, 若p 是q 的充分不必要条件, 则A 是B 的真子集⎩⎪⎨⎪⎧ m +1>2,-2m -1<-1,m >-23,解得m >1.②若綈p 是綈q 的充分不必要条件, 则B 是A 的真子集⎩⎪⎨⎪⎧m +1≤2,-2m -1≥-1,m >-23.解得-23<m ≤0.点评判断充分、必要条件时应注意的问题(1)先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .(2)举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.(3)准确转化:若綈p 是綈q 的必要不充分条件,则p 是q 的充分不必要条件;若綈p 是綈q 的充要条件,那么p 是q 的充要条件.变式训练2对于数列{a n },“a n +1>|a n |(n ∈N *)”是“数列{a n }为递增数列”的______________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”) 答案充分不必要解析因为a n +1>|a n |(n ∈N *),所以当n ≥2时,a n >0,即当n ≥2时,a n +1>a n . 若a 1≥0,有a 2>|a 1|=a 1;若a 1<0,a 2>a 1显然成立,充分性得证. 当数列{a n }为递增数列时,设a n =-(12)n ,则a 2>|a 1|不成立.题型三与命题有关的综合问题 例3给出以下四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若q ≤-1,则x 2+x +q =0有实数根”的逆否命题; ④若a +b 是偶数,则整数a ,b 都是偶数. 其中真命题是________.(填序号) 答案①③解析①显然正确;②不全等的三角形的面积不相等,故②不正确;③原命题正确,所以它的逆否命题也正确;④若a +b 是偶数,则整数a ,b 都是偶数或都是奇数,故④不正确. 点评解决此类问题需要对每一个命题逐一作出判断,需要有扎实的基础知识,这是破解此类问题的前提条件.若需证明某命题为真,需要根据有关知识作出逻辑证明,但若需要证明某命题为假,只要举出一个反例即可,因此,“找反例”是破解此类问题的重要方法之一. 变式训练3下列命题: ①若ac 2>bc 2,则a >b ; ②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件;④若f (x )=log 2x ,则f (|x |)是偶函数.其中正确命题的序号是________. 答案①③④解析对于①,ac 2>bc 2,c 2>0,∴a >b 正确; 对于②,sin30°=sin150°D30°=150°,∴②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1,∴③正确; ④显然正确.高考题型精练1.已知复数z =a +3i i (a ∈R ,i 为虚数单位),则“a >0”是“z 在复平面内对应的点位于第四象限”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”) 答案充要解析z =a +3ii =-(a +3i)i =3-a i ,若z 位于第四象限,则a >0,反之也成立,所以“a >0”是“z 在复平面内对应的点位于第四象限”的充要条件.2.已知条件p :x +y ≠-2,条件q :x ,y 不都是-1,则p 是q 的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”) 答案充分不必要解析因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以綈p :x +y =-2,綈q :x =-1且y =-1, 因为綈q ⇒綈p 但綈p綈q ,所以綈q 是綈p 的充分不必要条件, 即p 是q 的充分不必要条件.3.(2016·天津改编)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”) 答案必要不充分解析由题意得,a 2n -1+a 2n <0⇔a 1(q 2n -2+q 2n -1)<0⇔q 2(n -1)(q +1)<0⇔q ∈(-∞,-1),故是必要不充分条件.4.设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”) 答案充分不必要解析当四边形ABCD 为菱形时,必有对角线互相垂直,即AC ⊥BD ;当四边形ABCD 中AC ⊥BD 时,四边形ABCD 不一定是菱形,还需要AC 与BD 互相平分.综上知,“四边形ABCD 为菱形”是“AC ⊥BD ”的充分不必要条件.5.(2016·四川改编)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)答案必要不充分解析画出可行域(如图所示),可知命题q 中不等式组表示的平面区域△ABC 在命题p 中不等式表示的圆盘内,故为必要而不充分条件.6.下列5个命题中正确命题的个数是________.①“若log 2a >0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数”是真命题; ②m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充要条件; ③若实数x ,y ∈[-1,1],则满足x 2+y 2≥1的概率为π4;④命题“若a ∈M ,则b ∉M ”与命题“若b ∈M ,则a ∉M ”等价. 答案1解析①错,若log 2a >0=log 21,则a >1,所以函数f (x )=log a x 在其定义域内是增函数;②错,当m =0时,两直线也垂直,所以m =3是两直线垂直的充分不必要条件;③错,实数x ,y ∈[-1,1]表示的平面区域为边长为2的正方形,其面积为4,而x 2+y 2<1所表示的平面区域的面积为π,所以满足x 2+y 2≥1的概率为4-π4;④正确,不难看出,命题“若a ∈M ,则b ∉M ”与命题“若b ∈M ,则a ∉M ”是互为逆否命题,因此二者等价,所以正确. 7.已知下列命题:①命题“∃x 0∈R ,x 20+1>x 0+1”的否定是“∀x ∈R ,x 2+1<x +1”;②已知p ,q 为两个命题,若“p ∨q ”为假命题,则“(綈p )∧(綈q )”为真命题; ③“a >2”是“a >5”的充分不必要条件;④“若xy =0,则x =0且y =0”的逆否命题为真命题. 其中所有真命题的序号是__________. 答案②解析命题“∃x 0∈R ,x 20+1>x 0+1”的否定是“∀x ∈R ,x 2+1≤x +1”,故①错;“p ∨q ”为假命题说明p 假q 假,则“(綈p )∧(綈q )”为真命题,故②对;a >5⇒a >2,但a >2a >5,故“a >2”是“a >5”的必要不充分条件,故③错;因为“若xy =0,则x =0或y =0”,所以原命题为假命题,故其逆否命题也为假命题,故④错.8.在直角坐标系中,点(2m +3-m 2,2m -32-m )在第四象限的充要条件是____________________.答案-1<m <32或2<m <3解析点(2m +3-m 2,2m -32-m )在第四象限⇔⎩⎪⎨⎪⎧2m +3-m 2>0,2m -32-m<0⇔-1<m <32或2<m <3.9.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程x 2m -1+y 22-m =1表示焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,则a 的取值范围为________. 答案⎣⎡⎦⎤13,38解析由a >0,m 2-7am +12a 2<0,得3a <m <4a , 即命题p :3a <m <4a ,a >0. 由x 2m -1+y 22-m =1表示焦点在y 轴上的椭圆, 可得2-m >m -1>0,解得1<m <32,即命题q :1<m <32.因为p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧ 3a >1,4a ≤32或⎩⎪⎨⎪⎧3a ≥1,4a <32,解得13≤a ≤38, 所以实数a 的取值范围是⎣⎡⎦⎤13,38.10.已知函数f (x )=4|a |x -2a +1.若命题:“∃x 0∈(0,1),使f (x 0)=0”是真命题,则实数a 的取值范围为________. 答案⎝⎛⎭⎫12,+∞解析由于f (x )是单调函数,在(0,1)上存在零点, 应有f (0)·f (1)<0,解不等式求出实数a 的取值范围.由f (0)·f (1)<0⇒(1-2a )(4|a |-2a +1)<0⇔⎩⎪⎨⎪⎧ a ≥0,(2a +1)(2a -1)>0或⎩⎪⎨⎪⎧a <0,(6a -1)(2a -1)<0⇒a>12. 11.下列结论:①若命题p :∃x 0∈R ,tan x 0=2;命题q :∀x ∈R ,x 2-x +12>0.则命题“p ∧(綈q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3;③“设a ,b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a ,b ∈R ,若ab <2,则a 2+b 2≤4”.其中正确结论的序号为__________.(把你认为正确结论的序号都填上) 答案①③解析在①中,命题p 是真命题,命题q 也是真命题,故“p ∧(綈q )”是假命题是正确的.在②中,由l 1⊥l 2,得a +3b =0,所以②不正确.在③中,“设a ,b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a ,b ∈R ,若ab <2,则a 2+b 2≤4”正确.12.已知条件p :4x -1≤-1,条件q :x 2-x <a 2-a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是________. 答案[0,1]解析由4x -1≤-1,得-3≤x <1.由x 2-x <a 2-a ,得(x -a )[x +(a -1)]<0,当a >1-a ,即a >12时,不等式的解为1-a <x <a ;当a =1-a ,即a =12时,不等式的解为∅;当a <1-a ,即a <12时,不等式的解为a <x <1-a .由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,即p 为q 的一个必要不充分条件,即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集.当a >12时,由{x |1-a <x <a }{x |-3≤x <1},得⎩⎪⎨⎪⎧-3≤1-a ,1≥a ,解得12<a ≤1;当a =12时,因为空集是任意一个非空集合的真子集,所以满足条件;当a <12时,由{x |a <x <1-a }{x |-3≤x <1},得⎩⎪⎨⎪⎧-3≤a ,1≥1-a ,解得0≤a <12.综上,a 的取值范围是[0,1].。
高考理科数学专题一集合与常用逻辑用语第二讲常用逻辑用语答案.pdf

也可能平行,不能推出 ∥ ,反过来若 ∥ , m ì ,则有 m∥ ,则“ m∥ ”是“ ∥ ”
的必要而不充分条件.
19.A【解析】因为 cos2 cos2 sin 2 0 ,所以 sin cos 或 sin
cos ,因为“ sin cos ”
“ cos2 0”,但“ sin cos ” “ cos2 0 ”,所以“ sin cos ”是“ cos2 0”
d 0 .所以“ d 0 ”是“ S4+S6 2 S5 ” 充分必要条件,选 C.
7. A 【解析】由 |
ππ | ,得 0
12 12
,所以 sin 6
1
,反之令
2
0 ,有 sin
1
成立,不满足
2
|
π|
π
,所以“
|
π|
π
”是“
sin
12 12
12 12
1
”的充分而不必要条件.选 A .
2
8.B【解析】 x 0 ,x 1 1,所以 ln( x 1) 0 ,所以 p 为真命题; 若 a b 0 ,则 a2 b2 ,若 b a 0,
所以 | a b | |a b | ,故由 | a | | b |推不出 |a b | | a b |.由 | a b | | a b |,
得 |a
2
b | |a
2
b | ,整理得
a
b
0 ,所以 a
b ,不一定能得出 | a | |b |,
故由 | a b | |a b | 推不出 | a | | b |,故“ |a | | b | ”是“ |a b | |a b |”的既不充分也不必要条件,
a2 b 2 R ,得 b 0 ,所以 z R , p1 正确;
高考数学复习考点知识与题型专题讲解训练01 集合与常用逻辑用语(含解析)

高考数学复习考点知识与题型专题讲解训练专题01集合与常用逻辑用语考点1 集合的含义与表示1.(2021·江苏高三模拟)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( ) A .9 B .10C .12D .13【答案】D【解析】由题意可知,集合A 中的元素有:()2,0-、()1,1--、()1,0-、()1,1-、()0,2-、()0,1-、()0,0、()0,1、()0,2、()1,1-、()1,0、()1,1、()2,0,共13个.故选:D.2.(2021·江西高三模拟)已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( ) A .{1} B .{0} C .{0,1,1}- D .{0,1}【答案】D【解析】①当0a =时,1{}2A =-,此时满足条件;②当0a ≠时,A 中只有一个元素的话,440a ∆=-=,解得1a =,综上,a 的取值集合为{0,1}.故选:D . 考点2 集合间的基本关系3.(2021·西安市经开第一中学高三模拟)集合{1A x x =<-或3}x ≥,{}10B x ax =+≤若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎡⎤-⎢⎥⎣⎦C .()[),10,-∞-⋃+∞D .()1,00,13⎡⎫-⋃⎪⎢⎣⎭【答案】A 【解析】B A ⊆,∴①当B =∅时,即10ax +无解,此时0a =,满足题意.②当B ≠∅时,即10ax +有解,当0a >时,可得1xa-, 要使B A ⊆,则需要011a a>⎧⎪⎨-<-⎪⎩,解得01a <<.当0a <时,可得1xa-, 要使B A ⊆,则需要013a a <⎧⎪⎨-⎪⎩,解得103a -<,综上,实数a 的取值范围是1,13⎡⎫-⎪⎢⎣⎭.故选:A .4.(2021·四川石室中学高三一模)已知集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,则M 的子集个数是( ) A .2 B .3 C .4 D .8【答案】D【解析】因为集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,所以当,,x y z 都是正数时,4m =;当,,x y z 都是负数时,4m =-;当,,x y z 中有一个是正数,另两个是负数时,0m =, 当,,x y z 中有两个是正数,另一个是负数时,0m =,所以集合M 中的元素是3个,所以M 的子集个数是8,故选D. 考点3 集合的基本运算 角度1:交集运算5.(2021·四川高三三模(文))设集合A ={x |1≤x ≤3},B ={x |24x x --<0},则A ∩B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】A【解析】∵A ={x |1≤x ≤3},B ={x |2<x <4},∴A ∩B ={x |2<x ≤3}.故选:A .6.(2021·浙江瑞安中学高三模拟)已知集合{}31A x Z x =∈-<<,{}2,B y y x x A ==∈,则A B 的元素个数为( )A .1B .2C .3D .4【答案】B【解析】因为{}{}2,1,031A x Z x =-∈--=<<所以{}{}4,2,02,=B y y x x A =--=∈, 所以{}=2,0A B -,所以A B 的元素个数为2个.故选B. 角度2:并集运算7.(2021·陕西高三模拟)已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( )A .{}62,x x k k Z =+∈B .{}42,x x k k Z =+∈C .{}21,x x k k Z =+∈D .∅【答案】C【解析】因为集合{}21,M x x k k ==+∈Z ,集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立,所以{}21,M N x x k k ⋃==+∈Z .故选:C.8.(2021·天津高三二模)已知集合{|42}M x x =-<<,2{|60}N x x x =--=,则M N ⋂=___________.【答案】{}2-【解析】因为集合{|42}M x x =-<<,{}2{|60}2,3N x x x =--==-,所以M N ⋂= {}2-角度3:补集运算9.(2021·四川高三零模(文))设全集{}*|9U x x =∈<N ,集合{}3,4,5,6A =,则U A ( )A .{}1,2,3,8B .{}1,2,7,8C .{}0,1,2,7D .{}0,1,2,7,8【答案】B【解析】因为{}{}*91,2,3,4|,5,6,7,8U x x =∈<=N ,{}3,4,5,6A =,所以{}1,2,7,8U A =.故选:B .10.(2021·江苏省江浦高级中学高三月考)已知集合{}1U x x =>,{}2A x x =>,则UA________.【答案】{}12x x <≤【解析】{}1U x x =>,{}2A x x =>,∴12U A x x ,角度4:交、并、补混合运算11.(2021·辽宁高三二模)已知U =R ,{}2M x x =≤,{}11N x x =-≤≤,则UM N =( )A .{1x x <-或}12x <≤B .{}12x x <≤C .{1x x ≤-或}12x ≤≤D .{}12x x ≤≤【答案】A【解析】因为{1U N x x =<-或1}x >,所以{1U M C N x x ⋂=<-或12}x <≤.故选:A.12.(2021·山东烟台市·烟台二中高三三模)已知集合{}13A x x =<<,{}2B x x =<,则RAB =( )A .{}12x x <<B .{}23x x <<C .{}23x x ≤<D .{}3x x >【答案】C 【解析】{}13A x x =<<,{}2B x x =<,{}R 2B x x ∴=≥,{}R 23A B x x ∴⋂=≤<.故选:C.13.【多选】(2021·重庆高三三模)已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .A B =∅ B .A B B = C .A B U ⋃= D .()U B A A =【答案】CD【解析】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =,但A B ⋂≠∅,A B B ≠,故A ,B 均不正确; 由()U A B B =,知UA B ⊆,∴()()UU AA AB =⊆,∴A B U ⋃=,由UA B ⊆,知UB A ⊆,∴()U B A A =,故C ,D 均正确.故选CD.14.(2021·江苏高三模拟)某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是________. 【答案】6【解析】如图所示,(a +b +c +x )表示周一开车上班的人数,(b +d +e +x )表示周二开车上班人数,(c +e +f +x )表示周三开车上班人数,x 表示三天都开车上班的人数,则有:1410820a b c x b d e x c e f x a b c d e f x +++=⎧⎪+++=⎪⎨+++=⎪⎪++++++=⎩,即22233220a b c d e f x a b c d e f x ++++++=⎧⎨++++++=⎩,即212b c e x +++=,当0b c e ===时,x 的最大值为6, 即三天都开车上班的职工人数至多是6. 角度5:利用集合的运算求参数15.(2021·江西高三模拟)已知集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B φ⋂≠,则实数m 的取值范围是_______. 【答案】{|113}m m -<<【解析】由题意,集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B ⋂=∅时,则有92m +≤-或3m ≥,解得11m ≤-或3m ≥,所以当A B ⋂≠∅时,实数m 的取值范围为{|113}m m -<<.16.(2021·山东高三模拟)集合{}{}240,1,,2,.A a B a =-=-若{}2,1,0,4,16A B ⋃=--,则a =( ) A .±1 B .2± C .3± D .4±【答案】B【解析】由{}2,1,0,4,16A B ⋃=--知,24416a a ⎧=⎨=⎩,解得2a =±故选:B考点4 集合中的新定义17.(2021·黑龙江哈师大附中高三三模(理))设全集{}1,2,3,4,5,6U =,且U 的子集可表示由0,1组成的6位字符串,如:{}2,4表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算{A B x x A -=∈且}x B ∉,()()A B A B B A *=-⋃-.若{}2,3,4,5A =,{}3,5,6B =,则A B *表示的6位字符串是( ) A .101010 B .011001C .010101D .000111【答案】C【解析】由题意可得若{}2,3,4,5A =,{}3,5,6B =,则{}2,4,6A B *=, 所以此集合的第2个字符为1,第4个字符为1,第6个字符为1, 其余字符均为0,即A B *表示的6位字符串是010101.故选C18.【多选】(2021·开原市第二高级中学高三三模)满足{}1234,,,M a a a a ⊆,且{}{}12312,,,Ma a a a a =的集合M 可能是( )A .{}12,a aB .{}123,,a a aC .{}124,,a a aD .{}1234,,,a a a a【答案】AC 【解析】∵{}{}12312,,,Ma a a a a =,∴集合M 一定含有元素12,a a ,一定不含有3a ,∴12{,}M a a =或124{,,}M a a a =.故选AC .19.(2021·江苏省宜兴中学高三模拟)设A 是整数集的一个非空子集,对于k A ∈,若1k A -∉且1k A +∉,则k 是A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8,9S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个. 【答案】7【解析】由集合的新定义知,没有与之相邻的元素是“孤立元”,集合S 不含“孤立元”, 则集合S 中的三个数必须连在一起,所以符合题意的集合是{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,{}7,8,9,共7个.考点5 全称量词与特称量词20.“0[2,)x ∃∈+∞,20log 1x <”的否定是( ) A .[2,)x ∀∈+∞,2log 1x ≥ B .(,2)x ∀∈-∞,2log 1x > C .0(,2)x ∃∈-∞,20log 1x ≥ D .[2,)x ∃∈+∞,2log 1x ≤【答案】A【解析】“0[2,)x ∃∈+∞,20log 1x <”是特称命题,特称命题的否定是全称命题, 所以“0[2,)x ∃∈+∞,20log 1x <”的否定是“[2,)x ∀∈+∞,2log 1x ≥”.故选:A21.(2021·黑龙江大庆中学高三期末)命题“0x ∀>,总有()11xx e +>”的否定是( )A .0x ∀>,总有()11xx e +≤ B .0x ∀≤,总有()11xx e +≤C .00x ∃≤,使得()0011xx e +≤D .00x ∃>,使得()0011xx e +≤【答案】D【解析】由全称命题的否定可知,命题“0x ∀>,总有()11xx e +>”的否定是“00x ∃>,使得()0011xx e +≤”.故选D.考点6 充分条件、必要条件的判断22.(2021·南京师范大学附属扬子中学高三模拟)设乙的充分不必要条件是甲,乙是丙的充要条件,丁是丙的必要不充分条件,那么甲是丁的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分又不必要【答案】A【解析】甲是乙的充分不必要条件,即甲⇒乙,乙⇒甲, 乙是丙的充要条件,即乙⇔丙,丁是丙的必要非充分条件,即丙⇒丁,丁⇒丙,所以甲⇒丁,丁⇒甲,即甲是丁的充分不必要条件,故选:A .23.(2021·宁波中学高三模拟)△ABC 中,“△ABC 是钝角三角形”是“AB AC BC +<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】在△ABC 中,若∠A 为锐角,如图画出平行四边形ABCD ∴AB AC AD +=易知AD BC >∴“△ABC 是钝角三角形”不一定能推出“AB AC BC +<”; 在△ABC 中,A B C ,,三点不共线, ∵AB AC BC +<∴AB AC AC AB +<-∴22AB AC AC AB +<-∴0AB AC ⋅<∴∠A 为钝角∴△ABC 为钝角三角形 ∴“AB AC BC +<”能推出“△ABC 是钝角三角形”故“△ABC 是钝角三角”是“AB AC BC +<”的必要不充分条件,故选:B. 考点7 充分条件、必要条件的应用24.(2021·内蒙古高三二模(理))设计如下图的四个电路图,则能表示“开关A 闭合”是“灯泡B 亮”的必要不充分条件的一个电路图是( )A .B .C .D .【答案】C【解析】选项A :“开关A 闭合”是“灯泡B 亮”的充分不必要条件; 选项B :“开关A 闭合”是“灯泡B 亮”的充要条件; 选项C :“开关A 闭合”是“灯泡B 亮”的必要不充分条件;选项D :“开关A 闭合”是“灯泡B 亮”的既不充分也不必要条件.故选:C.25.(2021·山东高三其他模拟)已知p :x a ≥,q :23x a +<,且p 是q 的必要不充分条件,则实数a 的取值范围是( )A .(]1-∞-,B .()1-∞-,C .[)1+∞,D .()1+∞,【答案】A【解析】因为q :23x a +<,所以:2323q a x a --<<-+, 记{}|2323A x a x a =--<<-+;:p x a ≥,记为{}|B x x a =≥.因为p 是q 的必要不充分条件,所以A B ,所以23a a ≤--,解得1a ≤-.故选:A .26.(2021·河北衡水中学高三模拟)若不等式()21x a -<成立的充分不必要条件是12x <<,则实数a 的取值范围是________. 【答案】[]1,2【解析】由()21x a -<得11a x a -<<+,因为12x <<是不等式()21x a -<成立的充分不必要条件, ∴满足1112a a -≤⎧⎨+≥⎩且等号不能同时取得,即21a a ≤⎧⎨≥⎩,解得12a ≤≤. 考点8 根据命题的真假求参数的取值范围11 / 11 27.(2021·涡阳县育萃高级中学高三月考(文))若命题“0x R ∃∈,200220x mx m +++<”为假命题,则m 的取值范围是( )A .12m -≤≤B .12m -<<C .1m ≤-或2m ≥D .1m <-或2m >【答案】A【解析】若命题“0x R ∃∈,200220x mx m +++<”为假命题, 则命题“x R ∀∈,2220x mx m +++≥”为真命题,即判别式()2=4420m m ∆-+≤,即()()210m m -+≤,解得12m -≤≤.故选:A.28.(2021·广东石门中学高三其他模拟)若“2[4,6],10x x ax ∃∈-->”为假命题,则实数a 的取值范围为___________. 【答案】356a ≥ 【解析】因为“2[4,6],10x x ax ∃∈-->”为假命题,所以[]24,6,10x x ax ∀∈--≤恒成立, 即1x a x -≤在[]4,6恒成立,所以max 1a x x ⎛⎫≥- ⎪⎝⎭且[]4,6x ∈, 又因为()1f x x x=-在[]4,6上是增函数,所以()()max 1356666f x f ==-=,所以356a ≥.。
江苏专用2019版高考数学专题复习专题1集合与常用逻辑用语第2练命题及充要条件练习

江苏专用2019版高考数学专题复习专题1集合与常用逻辑用语第2练命题及充要条件练习2.下列结论错误的是________.①命题“若x 2-3x -4=0,则x =4”的逆否命题是“若x ≠4,则x 2-3x -4≠0”; ②命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题;③“x =4”是“x 2-3x -4=0”的充分条件;④命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”. 3.(2016·镇江一模)“a =1”是“直线ax -y +2a =0与直线(2a -1)x +ay +a =0互相垂直”的________________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)4.(2016·南京、盐城一模)若函数f (x )=cos(2x +φ),则“f (x )为奇函数”是“φ=π2”的________________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)5.(2016·益阳模拟)命题p :“若a ≥b ,则a +b >2 015且a >-b ”的逆否命题是________________________________________________________________________.6.(2016·南京三模)已知m ,n 是两条不同的直线,α,β是两个不重合的平面.给出下列四个命题:①若α⊥β,m ⊥α,则m ∥β;②若m ⊥α,m ⊥β,则α∥β;③若m ∥α,m ⊥n ,则n ⊥α;④若m ∥α,m ⊂β,则α∥β.其中为真命题的是________.(填序号)7.设集合A ={x |x >-1},B ={x ||x |≥1},则x ∈A 且x ∉B 成立的充要条件是____________.8.(2017·扬州中学月考)函数f (x )=13x -1+a (x ≠0),则“f (1)=1”是“函数f (x )为奇函数”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)9.(2016·金陵中学期末)设函数f (x )=|x -a |-ax ,其中a 为常数,则函数f (x )存在最小值的充要条件是a ∈________.10.(2016·大庆期中)给出下列命题:①若等比数列{a n }的公比为q ,则“q >1”是“a n +1>a n (n ∈N *)”的既不充分也不必要条件; ②“x ≠1”是“x 2≠1”的必要不充分条件;③若函数y =lg(x 2+ax +1)的值域为R ,则实数a 的取值范围是-2<a <2;④“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的充要条件.其中真命题的个数是________.11.给出以下四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q ≤-1,则x 2+x +q =0有实根”的逆否命题;④若ab 是正整数,则a ,b 都是正整数.其中真命题是________.(写出所有真命题的序号)12.(2016·阳东广雅中学期中)设p :f (x )=x 3-2x 2+mx +1在(-∞,+∞)上单调递增;q :m >43,则p 是q 的________________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)13.若方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是________.14.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0成立”的必要不充分条件,则实数m 的取值范围为________________.答案精析1.若x ≥2ab ,则x ≥a 2+b 22.②3.充分不必要 4.必要不充分5.若a +b ≤2 015或a ≤-b ,则a <b 6.②7.-1<x <1解析 由题意可知,x ∈A ⇔x >-1,x ∉B ⇔-1<x <1,所以“x ∈A 且x ∉B 成立”的充要条件是-1<x <1.8.充要解析 f (x )=13x -1+a (x ≠0)为奇函数,则f (-x )+f (x )=0,即13-x -1+a +13x -1+a =0,所以a =12,此时f (1)=13-1+12=1,反之也成立,因此填“充要”. 9.[-1,1]解析 当x ≥a 时,f (x )=(1-a )x -a ;当x <a 时,f (x )=a -(1+a )x .要使f (x )有最小值,需同时满足1-a ≥0,-(1+a )≤0,即-1≤a ≤1.10.2解析 若首项为负,则公比q >1时,数列为递减数列,a n +1<a n (n ∈N *),当a n +1>a n (n ∈N *)时,包含首项为正,公比q >1和首项为负,公比0<q <1两种情况,故①正确;“x ≠1”时,“x 2≠1”在x =-1时不成立,“x 2≠1”时,“x ≠1”一定成立,故②正确;函数y =lg(x 2+ax +1)的值域为R ,则x 2+ax +1=0的Δ=a 2-4≥0,解得a ≥2或a ≤-2,故③错误;“a =1”时,“函数y =cos 2x -sin 2x =cos 2x 的最小正周期为π”,但“函数y =cos 2ax -sin 2ax 的最小正周期为π”时,“a =±1”,故“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的充分不必要条件,故④错误.11.①③解析 ①命题“若x +y =0,则x ,y 互为相反数”的逆命题为“若x ,y 互为相反数,则x +y =0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab 是正整数,则a ,b 不一定都是正整数,例如a =-1,b =-3,故④为假命题.12.必要不充分解析 ∵f (x )=x 3-2x 2+mx +1在(-∞,+∞)上单调递增,∴f ′(x )=3x 2-4x +m ,即3x 2-4x +m ≥0在R 上恒成立,∴Δ=16-12m ≤0,即m ≥43. ∵p :f (x )=x 3-2x 2+mx +1在(-∞,+∞)上单调递增,q :m >43,∴根据充分必要条件的定义可判断:p 是q 的必要不充分条件.13.m >9解析 方程x 2-mx +2m =0对应二次函数f (x )=x 2-mx +2m ,若方程x 2-mx +2m =0有两根,其中一根大于3一根小于3,则f (3)<0,解得m >9,即方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是m >9.14.{m |m ≥1或m ≤-7}解析 由命题p 中的不等式(x -m )2>3(x -m )变形,得(x -m )(x -m -3)>0,解得x >m +3或x <m ;由命题q 中的不等式x 2+3x -4<0变形,得(x -1)(x +4)<0,解得-4<x <1,因为命题p 是命题q 的必要不充分条件,所以m +3≤-4或m ≥1,解得m ≤-7或m ≥1.所以实数m 的取值范围为{m |m ≥1或m ≤-7}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2017·湖南衡阳上学期五校联考)命题“若x≥a2+b2,则x≥2ab”的逆命题是________________________.
2.下列结论错误的是________.
①命题“若x2-3x-4=0,则x=4”的逆否命题是“若x≠4,则x2-3x-4≠0”;
②命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题;
③“x=4”是“x2-3x-4=0”的充分条件;
④命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”.
3.(2016·镇江一模)“a=1”是“直线ax-y+2a=0与直线(2a-1)x+ay+a=0互相垂直”的________________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)
4.(2016·南京、盐城一模)若函数f(x)=cos(2x+φ),则“f(x)为奇函数”是“φ=π
2”的________________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)
5.(2016·益阳模拟)命题p:“若a≥b,则a+b>2015且a>-b”的逆否命题是
_______________________________________________________________________ _.
6.(2016·南京三模)已知m,n是两条不同的直线,α,β是两个不重合的平面.给出下列四个命题:
①若α⊥β,m⊥α,则m∥β;②若m⊥α,m⊥β,则α∥β;
③若m∥α,m⊥n,则n⊥α;④若m∥α,m⊂β,则α∥β.
其中为真命题的是________.(填序号)
7.设命题p:|4x-3|≤1,命题q:x2-(2a+1)x+a(a+1)≤0,若綈p是綈q的必要不充分条件,则实数a的取值范围是________.
8.(2017·扬州中学月考)函数f(x)=
1
3x-1
+a(x≠0),则“f(1)=1”是“函数f(x)为奇
函数”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)
9.(2016·金陵中学期末)设函数f(x)=|x-a|-ax,其中a为常数,则函数f(x)存在最小值的充要条件是a∈________.
10.(2016·大庆期中)给出下列命题:
①若等比数列{a n}的公比为q,则“q>1”是“a n+1>a n(n∈N*)”的既不充分也不必要条件;
②“x≠1”是“x2≠1”的必要不充分条件;
③若函数y=lg(x2+ax+1)的值域为R,则实数a的取值范围是-2<a<2;
④“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充要条件.
其中真命题的个数是________.
11.给出以下四个命题:
①“若x+y=0,则x,y互为相反数”的逆命题;
②“全等三角形的面积相等”的否命题;
③“若q≤-1,则x2+x+q=0有实根”的逆否命题;
④若ab是正整数,则a,b都是正整数.
其中真命题是________.(写出所有真命题的序号)
12.(2016·阳东广雅中学期中)设p:f(x)=x3-2x2+mx+1在(-∞,+∞)上单调递
增;q:m>4
3,则p是q的________________条件.(填“充分不必要”“必要不充
分”“充要”或“既不充分也不必要”)
13.若方程x2-mx+2m=0有两根,其中一根大于3一根小于3的充要条件是
________.
14.已知“命题p:(x-m)2>3(x-m)”是“命题q:x2+3x-4<0成立”的必要不充分条件,则实数m的取值范围为________________.
答案精析
1.若x ≥2ab ,则x ≥a 2+b 22.②
3.充分不必要4.必要不充分
5.若a +b ≤2015或a ≤-b ,则a <b 6.②
7.0,12]
解析设A ={x ||4x -3|≤1},
B ={x |x 2-(2a +1)x +a (a +1)≤0}.
解|4x -3|≤1,得12≤x ≤1,
故A ={x |12≤x ≤1};
解x 2-(2a +1)x +a (a +1)≤0,
得a ≤x ≤a +1,
故B ={x |a ≤x ≤a +1}.
由綈p 是綈q 的必要不充分条件可知,
∴A B .
∴⎩⎨⎧ a ≤12,
a +1≥1,
(两等号不能同时取得) ∴0≤a ≤12.
8.充要
解析f (x )=1
3x -1+a (x ≠0)为奇函数,则f (-x )+f (x )=0,即13-x -1+a +1
3x -1+a =0,所以a =12,此时f (1)=13-1
+12=1,反之也成立,因此填“充要”. 9.-1,1]
解析当x ≥a 时,f (x )=(1-a )x -a ;当x <a 时,f (x )=a -(1+a )x .要使f (x )有最小值,需同时满足1-a ≥0,-(1+a )≤0,即-1≤a ≤1.
10.2
解析若首项为负,则公比q>1时,数列为递减数列,a n+1<a n(n∈N*),当a n+1>a n(n ∈N*)时,包含首项为正,公比q>1和首项为负,公比0<q<1两种情况,故①正确;“x≠1”时,“x2≠1”在x=-1时不成立,“x2≠1”时,“x≠1”一定成立,故②正确;函数y=lg(x2+ax+1)的值域为R,则x2+ax+1=0的Δ=a2-4≥0,解得a≥2或a≤-2,故③错误;“a=1”时,“函数y=cos2x-sin2x=cos2x的最小正周期为π”,但“函数y=cos2ax-sin2ax的最小正周期为π”时,“a=±1”,故“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充分不必要条件,故④错误.
11.①③
解析①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab是正整数,则a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.
12.必要不充分
解析∵f(x)=x3-2x2+mx+1在(-∞,+∞)上单调递增,∴f′(x)=3x2-4x+m,即3x2
-4x+m≥0在R上恒成立,∴Δ=16-12m≤0,即m≥4 3.
∵p:f(x)=x3-2x2+mx+1在(-∞,+∞)上单调递增,q:m>4
3,∴根据充分必要条
件的定义可判断:p是q的必要不充分条件.
13.m>9
解析方程x2-mx+2m=0对应二次函数f(x)=x2-mx+2m,若方程x2-mx+2m=0有两根,其中一根大于3一根小于3,则f(3)<0,解得m>9,即方程x2-mx+2m =0有两根,其中一根大于3一根小于3的充要条件是m>9.
14.{m|m≥1或m≤-7}
解析由命题p中的不等式(x-m)2>3(x-m)变形,得(x-m)(x-m-3)>0,解得x>m+3或x<m;由命题q中的不等式x2+3x-4<0变形,得(x-1)(x+4)<0,解得
-4<x<1,因为命题p是命题q的必要不充分条件,所以m+3≤-4或m≥1,解得m≤-7或m≥1.所以实数m的取值范围为{m|m≥1或m≤-7}.。