6.1算术平方根(第一课时)公开课.
算术平方根公开课优质课教学设计一等奖及点评 (2)

《6.1.1算术平方根》教学设计人教版《义务教育教科书·数学》(七年级下册第六章实数)一、内容和内容解析本节内容是《义务教育课程标准实验教科书——数学》(人教版)七年级下册第六章《实数》第一节第一课时的知识,主要介绍算术平方根的概念、表示方法和求法,以及用夹逼法估计2的大致范围。
教材的地位和作用:第一,教科书先介绍算术平方根,让学生看到算术平方根与实际的联系,在学习算术平方根的基础上再学习平方根。
算术平方根与之前学的平方运算存在互逆关系,也是下节课学习平方根的前提,具有承上启下的作用。
第二,2是历史上人们发现的第一个无理数,引发了数学危机,也促使数系从有理数扩充到无理数。
教科书采用夹逼的方法,利用2的一系列不足近似值和过剩近似值来估计它的大小,进而给出2是无限不循环小数的结论,并指3,等也是无限不循环小数,为后面学习无理数概念打下基础。
第三,会用出5根号表示非负数的算术平方根,了解算术平方根的非负性,为以后学习二次根式做出了铺垫,提供知识积累。
对本节课教学有利因素是:七年级学生会做加减乘除以及乘方运算了,但还是会发现一些生活中常见的数学问题(比如知道正方形面积求边长这一类的问题)没办法用这些计算方法解决,内心渴望新的计算方法出现,本节课的学习将实现他们内心的期盼。
本节课教学不利因素是:第一、乘方运算是已知底数和指数,求幂,开方运算是已知幂和指数,求底数。
因为涉及到三个量的关系,与学过的互逆运算(加法和减法、乘法和除法)相比关系更为复杂,造成学生理解的困难。
第二、对一个正数,开平方运算可以得到一正一负两个平方根,正的那个叫算术平方根。
而教科书是从解决实际问题的需要出发,把算术平方根的学习放在平方根前面。
对算术平方根是非负的理解,学生会有些困难。
第三,对于可以表示成有理数的平方的数,由于它们的算术平方根都是有理数,所以学生容易把握这些算术平方根的大小。
但是对于像2这样不能表示成一个有理数的平方的数,它的算术平方根到底有多大,对学生来说是一个新问题。
第1课时 算术平方根

例1 求下列各数的算术平方根:
(1)100
(2)4694
(3)0.0001
解:(1)因为102=100, 所以100的算术平方根是10, 即 100 =10.
例1 求下列各数的算术平方根:
(1)100
(2)4694
(3)0.0001
2解:(2)因为7 8 =第六章 实数
6.1 平方根 第1课时 算术平方根
R·七年级下册
• 学习目标: 知道什么是算术平方根及其符号表示方法,会
求一个数的算术平方根.
情景导入
学校要举行美术 作品比赛,小鸥想裁出一 块面积为25 dm2的正方形 画布,画上自己的得意之 作参加比赛,这块正方形 画布的边长应取多少?
探究新知
课堂小结
a = x a的算术平方根
被开方数 0的算术平方根是0.
5.计算: 32 =__3__, 0.72 =_0_._7_, 02 =__0__,
(6)2
=__6__,
(
3 )2 4
=__43__.
(1)根据计算结果,回答 a2 一定等于a吗?你 发现其中的规律了吗?请你用自己的语言描述出来.
除此以外,将本文件任何内容用于其他用途时,应获 得授权,如发现未经授权用于商业或盈利用途将追加侵权 者的法律责任。
武汉天成贵龙文化传播有限公司 湖北山河律师事务所
练习
1.求下列各数的算术平方根:
(1)0.0025 (2)81 (3)32
解:(1) 0.0025 =0.05 (2) 81 =9 (3) 32 =3
2.求下列各式的值:
(1) 1
(2)
9 25
=1
=3
5
七年级数学下册(人教版)6.1.1算术平方根(第一课时)优秀教学案例

2.能够运用算术平方根的知识解决实际问题,如计算面积、体积等。
3.了解算术平方根在实际生活中的应用,如测量、建筑设计等。
(二)过程与方法
1.通过复习平方根的概念,引导学生自主探究算术平方根的定义,培养学生的自主学习能力。
2.利用多媒体展示、实物演示等方法,让学生在直观感知的基础上,理解并掌握算术平方根的概念。
3.通过学生之间的互相评价,让学生了解自己的学习情况,发现他人的优点,学会欣赏和尊重他人。
4.教师要根据学生的学习情况,及时调整教学策略,以保证教学目标的实现。同时,要对学生的进步给予肯定和鼓励,增强他们的自信心。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个实际问题:一块土地的面积是36平方米,求它的边长。让学生思考如何解决这个问题。
3.通过小组讨论、数学游戏等形式,激发学生的学习兴趣,培养学生合作探究的能力。
4.设计一系列练习题,巩固所学知识,提高学生的解题能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和好奇心,使他们感受到数学的趣味性和魅力。
2.培养学生的自信心,使他们相信自己能够掌握算术平方根的知识,并能够运用所学知识解决实际问题。
针对这一教学目标,我设计了以下教学案例。首先,通过复习平方根的概念,引导学生回顾已学知识,为新课的学习做好铺垫。然后,通过多媒体展示、实物演示等方法,生动形象地引入算术平方根的概念,让学生在直观感知的基础上,理解并掌握算术平方根的定义。接下来,运用数学游戏、小组讨论等形式,激发一系列练习题,巩固所学知识,提高学生的解题能力。最后,结合生活实际,引导学生运用所学知识解决实际问题,培养学生的应用意识。
整个教学过程中,注重启发式教学,引导学生主动参与,积极思考,提高学生的思维能力。同时,关注学生的个体差异,给予不同程度的学生适当的指导和关爱,使他们在数学学习过程中感受到成功的喜悦。通过本节课的教学,使学生对算术平方根有了更深入的理解,提高了学生的数学素养,为后续学习奠定了基础。
6.1.1算数平方根

1.21 1.44 1.69 1.96 2.25 2.56 2.89 3.24 3.61
1.4 2 1.5
1.4 2 1.5
1.43
2
x 1.41 x 2 1.9881
2
1.42
1.44
1.45
… „
2.0164 2.0449 2.0736 2.1025
1.41 2 1.42
1.41 2 1.42
1.413
2
x x2
1.411
2
1.412
1.414
1.415
…
1.990921 1.993744 1.996569 1.999396 2.00225 „
1.414 2 1.415
1.414 2 1.415
20
2 有多大?
因为
2 ( ) 1 < 2 < 2 2 2
x
2
a (a 0) ( a ) ______
2
3.任何一个数的平方的算术平 方根等于这个数的绝对值.
a
a _____
2
a
4.被开方数越大,对应的算术平方根也越大,这个 结论对所有的正数都成立。
7
例3:求下列各数的算术平 方根 (1) 81 1 (2) 5 (3) 2 4
18
折纸游戏
如下图,是一个面积为4的正方形纸片.
(1)你能否利用此折出面积为1的小正方形? (2)你能折出面积为2的小正方形吗? (3)折出面积为2的小正方形的边长为多少?
19
有多大? 2
1 2 2 1
2 2
22
1.8 1.9
x x2
1.1
1.2
6.1.1算术平方根 优课教学课件

6.1.1 算术平方根回顾旧知复习回顾1、计算32= 9 52=25112= 121 0.12=0.01◆我家买了张新桌子,需要铺一块面积◆为100平方米的正方形桌布,这块◆正方形桌布的边长应取多少米?◆解:设正方形桌布的边长应取x米◆◆ =100◆ X=10或x=-10(舍去)◆答:正方形桌布的边长应取10米思考?当正方形的面积为以下时,求出正方形的边长?正方形的面积/m236正方形的边长/m4119166算术平方根的定义一般地,如果一个正数的平方等于,即,那么这个正数叫做的算术平方根.*规定:0的算术平方根是0! 表示方法:学 习 新 知2根指数可以省略根号被开方数读作:二次根号a 读作:根号aa 的算术平方根思考?1. 被开方数 可以是什么数?2. 可以是什么数?被开方数a是非负数,即是非负数,即也就是说,负数不存在算术平方根,“算术平方根”是非负数,即当 时, 无意义。
算术平方根具有双重非负性下列各式是否有意义,为什么?(1) ;(2) ;(3) ;(4) .解:(1)无意义;(4)有意义.(3)有意义;(2)有意义;思考?当堂练习1、判断下列说法是否正确:(1)所有的有理数都有算术平方根.( ) (2)4的算术平方根是2 .( ) (3)3是 的算术平方根.( ) (4) 的算术平方根是-5.( )(5)若一个数的算术平方根等于它本身,则这个数只 能是0.( ) (6) 的算术平方根是4.( )√╳╳╳╳√例1 求下列各数的算术平方根:(1);(2);(3) .解:(1)因为 , 所以100的算术平方根是10 . 即 .解:(2)因为 , 所以 的算术平方根是 . 即 .例1 求下列各数的算术平方根:(1) ;(2) ;(3) .解:(3)因为 , 所以0.0001的算术平方根是0.01 . 即 .例1 求下列各数的算术平方根:(1) ;(2) ;(3) .被开方数的大小与对应的算术平方根的大小之间有什么关系呢?被开方数越大,对应的算术平方根也越大当堂练习2.求下列各数的算术平方根:(1)0.0025;(2)81;(3) ;(4) 解:(1)∵ ,.∴0.0025的算术平方根是0.05,即 ;(2)∵ ,∴81的算术平方根是9,即 ;(3) ∵ ,∴ 的算术平方根是3,即 ;(4) = 。
人教初中数学七下 6.1 平方根(第1课时)算术平方根课件 【经典初中数学课件】

选择身高在哪个范围内的学生参加呢?
为了使选取的参赛选手身高比较整齐, 需要知道数据的分布情况,即在哪些身高范 围的学生比较多,哪些身高范围内的学生人 数比较少.为此可以通过对这些数据适当分 组来进行整理.
1.计算最大值和最小值的差
在上面的数据中,最小值是149, 最大值是172,它们的差是23,说明身 高的变化范围是23 cm.
身高/㎝
2.易于显示各组之间频数之间的差别
等距分组的频数分布直方图
小长方形面积= 组 频组距 数距 =频数
频数 (学生人数)
20
15
身高/㎝
2.易于显示各组之间频数之间的差别
等距分组的频数分布直方图
小长方形面积= 组 频组距 数距 =频数
频数 (学生人数)
20
15
10
5
0 149 152 155 158 161 164 167 170 173 身高/㎝
等距分组的频数分布直方图 如上
•
频数分布直方图是以小长方形的面
积来反映数据落在各个小组内的频数的大
计,
评估数学考试情况,经过整
理得到如下频数分布直方图, 60 学生人数
60
请回答下列问题:
50
(1)此次抽样调查 的样本容量是_____
40
30
28
28
20
15 10 10
14
5
0
分
0~35 36~47 48~59 60~71 72~83 84~95 96~107 108~120
小结
通过本节学习,我们了解了频数分布的意义及 获得一组数据的频数分布的一般步骤: (1)计算极差; (2) 决定组距和组数; (3) 决定分点; (4) 列出频数分布表; (5)画出频数分布直方图和频数折线图。
人教版初一数学下册6.1算术平方根(第1课时)

6.1平方根(第1课吋)平方根是初中数学中的重要概念,与之对应的开平方运算是学生在学习了加、减、乘、除、乘方等五种运算的基础上引入的一种新的运算.它们为引入无理数作铺垫,是学习实数的准备知识,同时也是今后学习二次根式、一元二次方程等知识的基础.平方根是偶次方根的特例.学习目标:(1)了解算术平方根的概念.(2)会求一些数的算术平方根,并用算术平方根符号表示.学习重点:算术平方根的概念和求法.1 •情境导入学校要举行美术作品比赛,小鸥想裁出一块面积为25 dm?的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?请你说一说解决问题的思路.1 •情境导入(1)若正方形的面积如下,请填表:一般地,如果^正数X的平方等于2 7a,即H =a,那么这个叫做a的算术平方根。
a的算术平方根记为誦~, 读作“根号a”,a叫做被开方数。
即:x2 =a (x>0),x叫做a的算术平方根记作:x = Va特殊:0的算术平方根是0。
1 己作0=0归纳算术平方根的表示方法:如果宀偽那么r =V7.八读做:根号。
0的算术平方根根号 ------ ► ---- 被开方数例1求下列各数的算术平方根:(1)100 ; (2) —; (3) 0,0001.0 1解:(1)因为102=100,所以100的算术平方根是10 .即7100=10例1求下列各数的算术平方根:(1)100 ; (2) — ; (3) 0,0001.0 1解: 所以一的算术平方根是.. I I | (2)因为 4964即圧L\64 83.例题解析例1求下列各数的算术平方根:(1)100 ; (2) —; (3) 0.0001 ・J I解:(3)因为oof=oc®i,所以0.000啲算术平方根是0.01・即VCKJODL^OOl4.练习求下列各式的值:⑴/ ;⑵石;解:(1) JT 二1;(3)-4;(4)也二0-(3)&;(4)『课本41页练习1・25.提出问题被开方数的大小与对应的算术平方根的大小之间有什么关系呢?G ____________________________________被开方数越大,对应的算术平方根也越大, 这个结论对所有正数都成立。
6.1.1 算术平方根(第一课时)(课件)七年级数学下册(人教版)

−0.3 2 =0.3.
迁移应用
1.计算:(1) 9 =_____;
(4) (−6)2 =_____;
(2) 0.25=_____;
.
(3)﹣
64
=______;
−
49
(5) 36+ 16- 25=_____.
2.已知 + 4=3,则x=______.
3.若单项式2xmy3与3xym+n是同类项,则 2 + 的值为______.
解:因为(x-2)2+ + 1+|z-3|=0,
(x-2)2≥0, + 1≥0,|z-3|≥0,
所以(x-2)2=0, + 1=0,|z-3|=0.
所以x-2=0,y+1=0,z-3=0.
所以x=2,y=-1,z=3.
所以(x+3y)z=[2+3×(-1)]3=(-1)3=-1.
迁移应用
所以|3x-3|=0, − 2 =0.
所以3x-3=0,y-2=0,即x=1,y=2.
所以x+4y=1+4×2=9.
因为 9=3,所以x+4y的算术平方根为+ + 3=0,求a(b+c)的值.
解:因为(a+1)2+|b-2|+ + 3=0,
所以a+1=0,b-2=0,c+3=0,
4.若4是3x-2的算术平方根,则x的值是______.
迁移应用
5.求下列各数的算术平方根:
121
(2) ;
100
(1)0.64;