第2章 涉及内容(贝叶斯决策方法)
第2章 贝叶斯决策完整版.ppt

最小风险准则
❖ 最小风险贝叶斯决策:考虑各种错误造成损失不
同而提出的一种决策规则。
❖ 条件风险:
精选
最小风险准则
❖ 期望风险:对于x的不同观察值,采取决策αi时,
其条件风险大小是不同的。所以究竟采取哪一种决 策将随x的取值而定。这样,决策α可以看成随机向 量x的函数,记为α(x)。可以定义期望风险Rexp为:
假言:如果鱼的长度 x 大于45cm,则该鱼为 鲈鱼 1,否则该鱼为鲑鱼 2
前提:现在某条鱼 x 38cm
结论:该鱼为鲑鱼 2
❖ 概率推理(不确定性推理)
P i x 精选
最小错误率准则
❖ 例子:
给定
P
y
1
P
y
2
1 2
,类条件概率密度如图。
现有一条鱼 x=38cm, 若采用最小错误率决策,该鱼应该为哪一类?
R2
R1
a p 1 b
❖ 一旦 R1 和 R2 确定,a和b为常数
❖ 一旦 R1 和 R2 确定, R 与 P(ω1) 成线性关系
❖ 选择使 b=0 的R1 和 R2 ,期望风险与P(ω1) 无关!
精选
R* C’ C
最小最大决策准则
D
R1 ,R2不变
A
R*B
D’
B
R1 ,R2改变
b=0
此时最大 风险最小,
P i
x
Px
i P i
Px
则: P1 x P2 x
等价于:
p x 1 P 1 p x 2 P 2
p x 1 p x 2
p 2 p 1
精选
似然比公式
最小错误率准则
❖ 特例1:
第2章_贝叶斯决策

R1
R1
21 p 1 p x 1 dx 22 p 2 p x 2 dx
R2
R2
11 p 1 (1 p x 1 dx) 21 p 1 p x 1 dx 12 (1 p 1 ) p x 2 dx
R2
R2
R1
22(1 p 1 )(1 p x 2 dx)
R1
最小最大决策准则
Neyman-Pearson准则
❖ 对两分类问题,错误率可以写为:
Pe p x R1, x 2 p x R2, x 1
p x | 2 p2 dx p x | 1 p1 dx
R1
R2
p x | 2 dx p2 p x | 1 dx p1
R1
R2
p2 e p2 p1 e p1
策即为最小风险贝叶斯决策
最小风险准则
最小风险准则
❖ 对于贝叶斯最小风险决策,如果损失函数为“01损失”,即取如下的形式:
i wj
0, 1,
for i j ; i, j 1,
for i j
,c
那么,条件风险为:
c
R i x i j P j x P j x 1 P i x
❖ 贝叶斯决策的两个要求
各个类别的总体概率分布 (先验概率和类条件概 率密度) 是已知的
要决策分类的类别数是一定的
引言
❖ 在连续情况下,假设对要识别的物理对象有d种特征
观察量x1,x2,…xd,这些特征的所有可能的取值范围 构成了d维特征空间。
❖ 称向量 x x1, x2, , xd T x Rd 为d维特征向量。
p 2 p 1
似然比公式
最小错误率准则
❖ 特例1:
最小错误率准则
第二章 贝叶斯决策理论—第三次课

第2章 贝叶斯决策理论
第2章 贝叶斯决策理论
本章内容
2.1 分类器的描述方法 2.2 最大后验概率判决准则 2.3 最小风险贝叶斯判决准则 2.4 Neyman-Person判决准则 2.5 最小最大风险判决准则 2.6 本章小结
第2章 贝叶斯决策理论
2.2 最大后验概率判决准则 (基于最小错误率的贝叶斯决策准则)
第2章 贝叶斯决策理论
2.5
第2章 贝叶斯决策理论
最小风险贝叶斯判决受三种因素的影响: 类条件概率密度函数p(x|ωi) ; 先验概率P(ωi) ; 损失(代价)函数λ(αj, ωi) 。 在实际应用中遇到的情况: – 各类先验概率不能精确知道; – 在分析过程中发生变动。 这种情况使判决结果不能达到最佳,实际分类器的平均损 失要变大,甚至变得很大。
第2章 贝叶斯决策理论
2.4 Neyman-Person
第2章 贝叶斯决策理论
最小风险贝叶斯判决准则使分类的平均风险最小, 该准则需要什么条件?
最大后验概率判决准则使分类的平均错误率最小, 该准则需要什么条件?
N-P准则在实施时既不需要知道风险函数,也不需 要知道先验概率。
第2章 贝叶斯决策理论
最大后验概率判决准则使分类的平均错误概率最小。 最小风险贝叶斯判决准则使分类的平均风险最小。 可是, 在实际遇到的模式识别问题中有可能出现这样 的问题: 对于两类情形, 不考虑总体的情况, 而只关注某 一类的错误概率, 要求在其中一类错误概率小于给定阈 值的条件下, 使另一类错误概率尽可能小。
因为两类情况下, 先验概率满足:
P(1) P(2 ) 1
第2章 贝叶斯决策理论
R R1 [(1,1)P(1) p(x | 1) (1,2 )P(2 ) p(x | 2 )]dx R2 {(2 ,1)P(1) p(x | 1) (2,2 )P(2 ) p(x | 2 )}dx
第二章 贝叶斯决策理论

第二章 贝叶斯决策理论● 引言♦ 统计模式识别方法以样本特征值的统计概率为基础:(1) 先验概率()i P ω、类(条件)概率密度函数(/)i p ωx 和后验概率(/)i P ωx 。
(2) Bayes 公式体现这三者关系的公式。
♦ 本章讨论的内容在理论上有指导意义,代表了基于统计参数这一类的分类器设计方法,结合正态分布使分类器设计更加具体化。
♦ 模式识别算法的设计都是强调“最优”,即希望所设计的系统在性能上最优。
是指对某一种设计原则讲的,这种原则称为准则。
使这些准则达到最优,如最小错误率准则,基于最小风险准则等,讨论几种常用的决策规则。
设计准则,并使该准则达到最优的条件是设计模式识别系统最基本的方法。
● 思考?♦ 机器自动识别分类,能不能避免错分类,如汉字识别能不能做到百分之百正确?怎样才能减少错误?♦ 错分类往往难以避免,因此就要考虑减小因错分类造成的危害损失,有没有可能对一种错分类严格控制?● 贝叶斯决策理论与方法基本概念给定一个m 模式类(,,....,)m ωωω12的分类任务以及各类在这n 维特征空间的统计分布, 要区分出待识别样本x 属于这m 类样本中的哪一类问题。
假设一个待识别的样本用n 个属性观察值描述,称之为n 个特征,从而组成一个n 维的特征向量,而这n 维征向量所有可能的取值范围则组成了一个n 维的特征空间。
特征空间的统计分布 (1) i ω, i =1,2,…,m 的先验概率:()i P ω(2)类条件概率密度函数:(|)i p ωx (可解释为当类别i ω已知的情况下, 样本x 的概率 分布密度函数)(3)后验概率:生成m 个条件后验概率(|)i P ωx ,i =1,2,…,m 。
也就是对于一个特征 向量x ,每一个条件后验概率(|)iP ωx 都代表未知样本属于某一特定类i ω的概率。
第一节 基于最小错误率的贝叶斯判别方法 (一).两类情况两类情况是多类情况的基础,多类情况往往是用多个两类情况解决的。
第2章贝叶斯决策理论

损 失状态(正常类)(异常类)
决策
ω1
ω2
α1(正常)0
6
α(2 异常)1
0
这意味着: 把异常类血细胞判别为正常类细胞所冒风险太大,所以 宁肯将之判别为异常类血细胞。
2.2.3 基于最小风险的贝叶斯决策应用实例
例:细胞识别
w1类
w2类
x
假设在某个局部地区细胞识别中, 率分别为
则 x wi
w1类 w3 类
w2 类
x
2.2 基于最小风险的贝叶斯决策
2.2.1 为什么要引入基于风险的决策
基于最小错误率的贝叶斯决策
错误率
如果 P w1 | x P w2 | x 则 x w1 如果 P w2 | x P w1 | x 则 x w2
误判为:x w2 误判为:x w1
正常(1)和异常(
2)两类的先验概
正常状态: 异常状态:
P P
((21))
=0.9; =0.1.
现有一待识别的细胞,其观察值为x ,从类条件概率密度分布曲线上
查得
P(x | 1 )=0.2, P(x | 2)=0.4.
且因误判而带来的风险如下页表所表示,试对该细胞x进行分类。
解: (1)利用贝叶斯公式,分别计算出 1及 2的后验概率。
wi
PD | wi Pwi
n
PD | wi Pwi
i 1
2.1.1 预备知识(续)
贝叶斯公式:
Pwi | D
PD | wi Pwi PD
(1763年提出)
贝叶斯公式由于其权威性、一致性和典雅性而被列入最优美的数 学公式之一 ;
由贝叶斯公式衍生出贝叶斯决策、贝叶斯估计、贝叶斯学习等 诸多理论体系,进而形成一个贝叶斯学派;
第二章 贝叶斯决策

分类器设计
2. 决策面方程:g ( x) 0 代入判别函数得 p( x | 1 ) p(1 ) p( x | 2 ) p(2 ) 0
分类器设计
(3)分类器设计
x1 x2
g
判别计算 阈值单元 两类分类器的构成
1 1 1 2
决策
…
xd
分类器设计
举例: 对例2.1和例2.2分别写出其判别函数和决策面方程
在例2.1条件的基础上,利用右侧决策表, 按最小风险贝叶斯决策进行分类。
w1
w2
a1 a2
0
1
6 0
解:已知条件为:
p(1 ) 0.9, p( x | 1 ) 0.2,
p(2 ) 0.1 p( x | 2 ) 0.4
再计算条件风险
R(a1 | x) 1 j p( j | x) 12 p(2 | x) 1.092
更一般地gi ( x)可以取f ( p (i | x)) h( x)其中 f ( )为任一单调增函数
分类器设计
(2)决策面方程
如果i和 j是相邻的,则分割它们的决策面方程应满足: gi ( x) gj ( x)
分类器设计
(3)分类器设计
分类器设计
2.两类情况
1. 定义判别函数:g ( x) g1 ( x) g 2 ( x) 决策规则可表示为:g( x) 0则决策1; g( x) 0则决策2。 显然可以定义如下判别函数: 1.g(x)=p(1|x)-p(2|x) 2.g(x)=p(x|1 )p(1 )-p(x|2 )p(2 ) p(x|1 ) p(1 ) 3.g(x)=ln ln p(x|2 ) p(2 )
p( x | 1 )是正常状态下细胞特征观察值x的类条件概率密度 p( x | 2 )是异常状态下细胞特征观察值x的类条件概率密度
模式识别课件 第二章 贝叶斯决策论

• 2.3 最小误差率分类
• 当损失函数简化到所谓的“对称损失”或“0-1损失” 函数
i, j 1,2,c
0 ( i | j ) 1
i j i j
• 这个损失函数将0损失赋给一个正确的判决,而将一 个单位损失赋给任何一种错误判决,因此所有误判都是 等价的。与这个损失函数对应的风险就是平均误差概率。
i ;
b
左图说明,如果 引入一个0-1损失 或分类损失,那么 判别边界将由阈值 a 决定;而如果 损失函数将模式 2 判为 1 的惩罚大于 反过来情况,将得 到较大的阈值 使 b 得R1变小
2.3.1 极小极大化准则(先验概率未知情形) • 有时我们需要设计在整个先验概率范围内都能很好操作的 分类器。一种合理的设计方法就是使先验概率取任何一种
2
?
通常: (2,1 1,1 ) 0 (1,2 2,2 ) 0
结合贝叶斯公式,用先验概率与条件密度来表示 后验概率,等价规则为 如果 (2,1 1,1 ) P( x | 1 ) P(1 ) (1, 2 2,2 ) P( x | 2 ) P(2 )
p( x | i ) P(i ) p( x | j ) P( j )
j
g i ( x) P(i | x)
gi ( x) ln p( x | i ) ln P(i )
• 尽管判别函数可写成各种不同的形式,但是判决规则是相同的。 每种判决规则都是将特征空间划分c个判决区域, R1 , Rc 如果对于所有的 j i ,有 gi ( x) g j ( x) 那么x属于 Ri 。 要求我 们将x分给 i 。此区域由判决边界来分割,其判决边界即判决
注 : 假定的类条件概率密度函数图,显示了模式处于类别 i 时观察某 个特定特征值 x 的概率密度.如果 x 代表了鱼的长度,那么这两条曲线可 描述两种鱼的长度区别.概率函数已归一化,因此每条曲线下的面积为1
第2章 贝叶斯决策理论 - 西安电子科技大学

第2章 贝叶斯决策理论
其中, L(x)称为似然比, lnL(x)称为对数似然比。
在最大后验概率判决准则中, x∈ωj的决策区域Rj为
p (x | j ) P (i ) R j x | , i 1, 2, , m, i p (x | i ) P( j )
0
由Bayes公式可知
第2章 贝叶斯决策理论
P i | X ( x , x ) P X ( x , x ) | i P(i ) P X (x , x )
x
P (i )
=
x x
p( y | )dy
i
x
p( y )dy
P(i ) p( y1 | i )2 = p( y2 )2
P(i ) p( y1 | i ) = p ( y2 )
第2章 贝叶斯决策理论
其中, y1, y2∈(x-ε, x+ε)。 当ε趋近于0时, Fra bibliotek1与y2趋近于x,
从而有
P(i | x) p( x | i ) P(i ) p( x)
第2章 贝叶斯决策理论
如果不考虑拒识, 此时,
R R
i i 1
m
d
, 那么, 正确分类包
括m种情形, 样本x来自类ωi, 特征向量x∈Ri(i=1, 2, …, m); 错
误分类包括m(m-1)种情形, 样本x来自类ωi, 但特征向量 x∈Rj(i=1, 2, …, m; j=1, 2, …, m; j≠i)。 因此, 平均正确概 率Pc为
概率达到最小。 因此, 最大后验概率判决准则又称为最小错
误概率判决准则。 这里以二分类情况为例进行分析。 此时, m=2, 任意一个 判决准则对应于特征空间Rd的一个划分: R=R1∪R2, R1∩R2= Ф。 错误分类为两种情况: ① 真实类别为ω1时, 而特征值x落
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
后验概率,利用后验概率可对未知细胞x进行识别 。
图1 类条件概率密度
图2 后验概率
1. 基于最小错误率的贝叶斯决策(续)
贝叶斯决策规则:
P(i | x) max{P( j | x)}
j 1, 2
贝叶斯规则的等价形式:
(1) (2) (3) 若
Bayes最小错误率决策例解
两类细胞识别问题:正常(ω1)和异常(ω2),根据已 有知识和经验,两类的先验概率为:
在判断时,除了能做出正确判断,还要考虑做出错 误判断带来什么后果。
1. 基于最小错误率的贝叶斯决策
• 贝叶斯分类器
例如:细胞识别问题 正常细胞ω1,异常细胞 ω2 ,某地区经大量统计获得 先验概率P(ω1) 和 P(ω2) 。若取该地区某人的细胞 x,则它 属何种细胞 ?只能由 先验概率决定。 此种分类器无意义
1. 基于最小错误率的贝叶斯决策(续)
通过对细胞的再观察,就可以把先验概率转化为
P(1 ) p(x | 1 )
P( ) p(x | )
j 1 2 j j
2
0.9 0.2 0.818 0.9 0.2 0.1 0.4 0.4 0.1 0.182 0.2 0.9 0.4 0.1
P(2 ) p(x | 2 )
j j P(Leabharlann ) p(x | )j 1
j argmax P(i | x) 1
i
x 1
决策结果
2. 基于最小风险的贝叶斯决策
假定要判断某人是正常(ω1)还是肺病患者(ω2),在 判断中可能出现以下情况:
第一类,判对(正常→正常) λ11 ; 第二类,判错(正常→肺病) λ21 ; 第三类,判对(肺病→肺病) λ22; 第四类,判错(肺病→正常) λ12 。
正常(ω1): P(ω1)=0.9 异常(ω2): P(ω2)=0.1 对某一样本观察值x,通过计算或查表得到: p(x|ω1)=0.2, p(x|ω2)=0.4
如何对细胞x进行分类?
Bayes最小错误率决策例解(续)
利用贝叶斯公式计算两类的后验概率:
P(1 | x) P(2 | x)
贝叶斯决策理论方法
模式识别的分类问题:根据识别对象特征的观察值 将其分到某个类别中区。
贝叶斯(Bayes)决策的基本要求
①已知各类别总体的概率分布;
②决策分类的类别数一定。
假 设 分 类 问 题 有 c 个 类 别 , 各 类 别 状 态 用 ωi
(i=1,2,…,c)表示;先验概率P(ωi ) 和类条件概率密度函数 p(x|ωi ) 已知;将x分到哪一类最合理呢?