七年级奥数综合训练 2
七年级数学奥数题[五篇模版]
![七年级数学奥数题[五篇模版]](https://img.taocdn.com/s3/m/9af0a847f342336c1eb91a37f111f18582d00c5c.png)
七年级数学奥数题[五篇模版]第一篇:七年级数学奥数题数学奥数1.下列判断正确的是()A.平角是一条直线 B.凡是直角都相等C.两个锐角的和一定是锐角D.角的大小与两条边的长短有关3.下列哪个角不能由一副三角板作出()A.105° B.12° C.175°D.135°4.若∠a=90°-m°,∠B=90°+m°,则∠a与∠B的关系是()A.互补B.互余 C.和为钝角 D.和为周角5.如图所示,∠AOC=90°∠COB=a,0D平分∠AOB则∠CD的度数为()6.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的()A.南偏西50°方向 B.南偏西40°方向 C.北偏东50°方向 D.北偏东40°方向7.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是()A.1/2∠1B.1/2∠2C.1/2(∠1-∠2)D.1/2(∠1+∠2)8.将两块直角三角板的直角顶点重合,如图所示,若∠AOD=128,则∠BOC的度数是9.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是10.把一张长方形纸条按图中那样折叠后,若得到∠AOB=70°则∠BOG= 11.已知线段AB=8cm,延长AB至C,使AC=2AB,D是AB中点,则线段CD= 12.已知线段AB=acm,点A1平分AB,A2平分AA1,A3平分AA2,…,An平分AAn-1则AAn= 14.小明每天下午5:46回家,这时分针与时针所成的角的度数为度15.如果∠a=26°,那么∠a余角的补角等于16.已知∠AOB=30°,又自∠AOB的顶点0引射线0C.若∠AOC:∠AOB=43,那么∠BOC=17.已知线段AB=6cm,在直线AB上画线段AC=2cm,则BC的长是 cm 18.火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票(1)在A,B两站之间最多共有种不同的票价;共有种不同的车票(2)如果共有n(n≥3)个站点,则需要种不同的车票19.若∠A=20°18,∠B=20°1530°,∠C=2025°,则()A.∠A>∠B>∠CB.∠B>∠A>∠CC.∠A>∠C>∠BD.∠C>∠A>∠B 20.如图,直线AB、CD交于0点,且∠BOC=80°°,OE平分∠BOC,OF为OE 的反向延长线(1)求∠2和∠3的度数:(2)0F平分∠AOD吗?为什么?21.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE。
七年级奥数测试卷(七份及答案)

七年级奥数测试卷一 姓名 班别一.选择题1.a --是( )(A )正数 (B )负数 (C )非正数 (D )0 2.在下面的数轴上(图1)表示数(—2)—(—5)的点是 ( )(A )M (B )N . (C )P. (D )Q. 3.49914991+-----的值的负倒数是( )(A )314. (B )133-(C )1. (D )—1 4.)9187()8176()7165()6154()5143(+++++++++)10198(-+ ( ) (A )0. (B )5.65. (C )6.05 (D )5.855.22)34(34⨯--⨯-等于( )(A )0 (B )72 (C )—180 (D )1086.x 的54与31的差是( )(A )x x 3154- (B )3154-x (C ))31(54-x (D )345+x 7.n 是整数,那么被3整除并且商恰为n 的那个数是( )(A )3n (B )3+n (C )n 3 (D )3n8.如果2:3:=y x 并且273=+y x ,则y x ,中较小的是(A )3 (B )6(C )9(D )129.20°角的余角的141等于( )(A )ο)731( (B )ο)7311( (C )ο)767( (D )5°10.7)71()7(71⨯-÷-⨯等于( )(A )1 (B )49 (C )—7 (D )7二、A 组填空题11.绝对值比2大并且比6小的整数共有__________________个。
12.在一次英语考试中,某八位同学的成绩分别是93,99,89,91,87.81,100,95,则他们的平均分数是__________________。
13.||||1992-1993|-1994|-1995|-1996|=__________________。
14.数:-1.1,-1.01,-1.001,-1.0101,-1.00101中最大的一个数与最小的一个数的比值是__________。
2020年基础的七年级奥数训练题3篇

2020年基础的七年级奥数训练题3篇2020年基础的七年级奥数训练题篇11、两名运动员在湖周围环形道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇?2、一队自行车运动员以每小时24千米的速度骑车从甲地到乙地,两小时后一辆摩托车以每小时56千米的速度也从甲地到乙地,在甲地到乙地距离的二分之一处追上了自行车运动员.问:甲乙两地相距多少千米?3、小爱和小清同时从A、B两城相向而行,在离A城35千米处相遇,到达对方城市后立即以原速沿原路返回,又在离A城15千米处相遇,两城相距多少千米?4、A、B、C三辆车同时从甲出发到乙地去,A、B两车速度分别为每小时50km和38km,有一辆迎面开来的卡车分别在他们出发后4小时、5小时、6小时先后与A、B、C三车相遇。
求C车的速度。
5、甲乙两地相距258千米。
一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇。
已知汽车的速度是拖拉机速度的2倍。
相遇时,汽车比拖拉机多行多少千米?2020年基础的七年级奥数训练题篇21.甲、乙两个工程队修路,最终按工作量分配8400元工资.按两队原计划的工作效率,乙队应获5040元.实际从第5天开始,甲队的工作效率提升了1倍,这样甲队最终可比原计划多获得960元.那么两队原计划完成修路任务要多少天?2.规定两人轮流做一个工程,要求第一个人先做1个小时,第二个人接着做一个小时,然后再由第一个人做1个小时,然后又由第二个人做1个小时,如此反复,做完为止.如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的程只需要9.6小时,那乙单独做这个工程需要多少小时?3.某工程先由甲单独做63天,再由乙单独做28天即可完成.如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么还需做多少天?4.有一条公路,甲队独修需10天,乙队独修需12天,丙队独修需15天.现在让3个队合修,但中间甲队撤出去到另外工地,结果用了6天才把这条公路修完.当甲队撤出后,乙、丙两队又共同合修了多少天才完成?5.一件工程,甲队独做12天能够完成,甲队做3天后乙队做2天恰好完成一半.现在甲、乙两队合做若干天后,由乙队单独完成,做完后发现两段所用时间相等,则共用了多少天?2020年基础的七年级奥数训练题篇31、甲厂有原料120吨,乙厂有原料96吨。
七年级奥数经典的练习题

七年级奥数经典的练习题七年级奥数经典的练习题篇一1、某种表在7月29日零点比标准时间慢4分半,它一直走到8月5号上午7时,比标准时间快3分。
那么,这只钟所指的准确的时刻是几月几日几时?2、3时以后的某一时刻,时针与分针的位置,恰好与6时以后(不超过7时)的某一时针的位置相互交换。
这6时后的某一时刻是多少?3、现在是3时整,再过多少时间,分针第一次在时针和“12”字之间并与它们等距离?4、小芳和小明一起在外做游戏。
下午5时多,小芳的妈妈喊小芳回家,小芳发现手表上两针的夹角刚好是900(两人回家时间都没有超过6时)。
算一算,小明比小芳晚回家多长时间?5、下午放学回家,小明做作业,开始时看见钟面上分针略超过时针,完成作业时发现分针和时针恰好互换了位置,小明做作业用了多少分钟?七年级奥数经典的练习题篇二1、甲乙两车分别从相距306千米的两地同时开出,相向而行,4.5小时后相遇,甲乙两车的速度比为8:9,甲乙两车每小时各行多少千米?2、甲乙从同一地点向相反的方向行驶,甲下午6时出发每小时行40000米,乙第二天上午4时出发,经过10小时后两车相距1080千米。
乙车的时速是多少千米?3、客车由甲城开往乙城要10小时,货车由乙城开往甲城要15小时,两车同时从两城相向开出,相遇时客车比货车多行96千米,甲乙两城之间的公路长多少千米?4、甲乙两地相距1800千米,一架飞机从甲地飞往乙地,每小时飞行360千米,返回时顺风,比去时少用1小时.往返平均每小时飞行多少千米?5、一列火车每小时行68千米,另一列火车每小时行76千米,这两列火车分别从甲乙两站同时相对开出,行了5/6小时后还相距两站之间的铁路长的1/4,甲乙两站之间的铁路长多少千米?七年级奥数经典的练习题篇三1.有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍。
果园里共有多少棵果树?2.小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地。
七年级数学奥数题八套(附答案)

七年级数学奥数试题(一)一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内) 1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( ). (A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )(A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2(c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)23.若a 是负数,则a+|-a|( ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数 4.如果n 是正整数,那么表示“任意负奇数”的代数式是( ). (A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ). (A)A 、B 两点的距离 (B)A 、C 两点的距离 (C)A 、B 两点到原点的距离之和 (D)A 、C 两点到原点的距离之和6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ). (A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a≠b,则化简a b(a+1)+ba (b+1)得( ). (A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn 二、填空题(每小题?分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)= 10.分解因式=ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是 12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是 13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是14.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 .16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x = 17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元.19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中a 1=6×2+l;a 2=6×3+2;a 3=6×4+3;a 4=6×5+4; 则第n 个数a n = ;当a n =2001时,n = .20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是七年级奥数试题(一)答案 一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D 二、9.一6a+1 06,10.一43.6, 11.男生比女生多的人数,1 2.90, 13.1 6,14.0.1 2 5,15.-151,16.1,17.1988;1. 18.1022.5;101 8,,19.7n+6;2 8 520.2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).七年级奥数试题(二)一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( ) (A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c =2001,且a+b+c=2001k ,那么k 的值为( )。
2019基础的七年级奥数训练题

2019基础的七年级奥数训练题2019基础的七年级奥数训练题篇一1.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样两件共获利157元,则甲、乙两件服装的成本各是多少元?2.一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或者不盈不亏?3.某商场将某种DVD产品按进价提升35%,然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD仍获利208元,则每台DVD的进价是多少元?4.某商店因换季销售打折商品,若按定价的6折出售,将赔20元,若按定价的8折出售,将赚15元,则该商品应定价多少元?成本为多少元?5.某玩具店两款进价不同的智力拼图都卖了80元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家玩具店是赔了还是赚了?赔了或赚了多少元?6.某商品的进价为800元,出售时标价为1200元,后来因为该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折?2019基础的七年级奥数训练题篇二(1)在一幅地图上,用3厘米的线段表示实际距离600千米。
在这幅地图上,量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米?(2)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?(3)在一幅比例尺是1:30000的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?(4)在比例尺是15000000的地图上,量得甲、乙两地的距离是9.6厘米。
甲、乙两地的实际距离是多少千米?(5)甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?(6)一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?(7)在一幅比例尺是14000的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?2019基础的七年级奥数训练题篇三1、甲乙两辆车同时从A、B两地相向而行,甲车每小时走5km,乙车每小时走6km,已知A、B两地相距110千米,问甲车和乙车几小时后相遇?2、小明和小东比赛骑自行车,他们约好同时从学校出发,看谁先到达终点的邮局,谁就赢。
七年级奥赛综合训练题(2)(含解答)-

七年级奥赛综合训练题(2)一、选择题1.如果a ,b ,c 都是大于-3的负数,那么,在下列四个关系式中正确的是( )。
A .a + b + c > -3;B .3)(2>abc ; C .a – b – ab > 0; D.abc > -272.计算:-1 + 3 – 5 + 7 – 9 + 11 - …… - 1989 + 1991 – 1993 = ( )A .997;B .-996;C .996;D .-9973.a 为有理数,下列说法中正确的是( )。
A. 2)21(+a 是正数; B .212+a 是正数; C .-2)21(-a 是负数 D .-212+a 的值不小于21 4.如果实数x 满足方程:|2 - x| = 2+ | x |,那么|2 - x| 等于( )。
A .±(x - 2); B. 1; C. 2 – x; D. x – 25.若每个人的工作效率相同,如果a 个人b 天做了c 件零件,那么b 个人作a 个零件所需的天数应为( )A .2a c ;B .c a 2;C .a c 2;D .2ca 6.一个四位数,减去它各位上数字之和,其差还是一个四位数603*,这个*是( )A .0或9;B .1或2;C .5或7;D .8或37.19951949被7除所得余数是( )A .0;B .2;C .4;D .68.三个连续奇数的和比其中最小的一个大128,则第一个奇数是( )A .65;B .63;C .61;D .59二、填空题1.如图,ABCG 和CDEF 分别是边长为10cm 、12cm 的正方形,则图中阴影部分的面积是__________。
2.令ba ab b a +=*,则)4*4(*4等于___________。
3.小明上学步行,下学回家乘车,往返共需1.5小时;若他上、下学都乘车,则只需0.5小时;若他上、下学都步行,则往返需用___________小时。
数学初一奥数题及答案

数学初一奥数题及答案题目一:数列问题题目描述:有一个数列:2, 4, 7, 11, ... 这个数列的第10项是多少?解题思路:观察数列可以发现,每一项与前一项的差值依次为2, 3, 4, 5, ... 这是一个等差数列,差值的公差为1。
因此,第n项与第1项的差值是1+2+3+...+(n-1)。
答案:首先计算第10项与第1项的差值,即1+2+3+...+9,这是一个等差数列求和问题,公式为\( S = \frac{n(n+1)}{2} \),代入n=9得到\( S = \frac{9 \times 10}{2} = 45 \)。
所以第10项是2 + 45 = 47。
题目二:几何问题题目描述:在一个直角三角形ABC中,∠C是直角,AC=6,BC=8,求斜边AB的长度。
解题思路:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
答案:根据勾股定理,\( AB^2 = AC^2 + BC^2 \),代入AC=6,BC=8,得到\( AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \),所以AB = √100 = 10。
题目三:逻辑推理问题题目描述:有5个盒子,每个盒子里装有不同数量的球,分别是1, 2, 3, 4, 5个。
现在将这5个盒子重新排列,使得每个盒子里的球数都比前一个盒子多1个。
问:重新排列后的盒子里球的数量分别是多少?解题思路:由于每个盒子里的球数都比前一个盒子多1个,我们可以从最小的数开始排列,即5, 4, 3, 2, 1。
答案:重新排列后的盒子里球的数量分别是5, 4, 3, 2, 1。
题目四:组合问题题目描述:有红、黄、蓝三种颜色的球各10个,现在要从中选出5个球,求有多少种不同的选法?解题思路:这是一个组合问题,可以使用组合公式\( C(n, k) =\frac{n!}{k!(n-k)!} \)来计算,其中n是总数,k是选出的数量。
答案:首先考虑不考虑颜色的情况下,从30个球中选出5个球的组合数为\( C(30, 5) \)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级奥数复习五——综合训练
一、填空题
1.若043=++-n m ,则m n = .
2.9点45分时,钟面上时针与分针所成的角度是 .
3.直线上有六个点,以这六个点为端点的线段有 条,射线有 条.
4.光年是天文学中使用的距离单位,1光年是指光在真空中经历1年所走的距离.真空
中的光速约为3×108米/秒. 1年按365天计算,则用科学计数法表示1光年≈
米(结果保留3个有效数字).
5.观察下列各式:
21112⨯=+,32222⨯=+, 43332⨯=+,…,
请将你猜想到的规律用自然数n 表示出来: .
6. 小明训练1000米长跑,如果速度提高5%,那么时间比原来的要缩短_________%(保留一位小数)
7. 已知代数式m 2+m -1=0,那么代数式m 3+2m 2+2013=___________
8.如图,以AB 为直径画一个大半圆。
BC =2AC ,分别以AC ,CB 为直径在大半圆内部画
两个小半圆,那么阴影部分的面积与大半圆面积之比等于__ ___。
7
B
A
9.加油站A 和商店B 在马路MN 的同一侧,A 到MN 的距离大于B 到MN 的距离,AB =7米,一
个行人P 在马路MN 上行走,问:当P 到A 的距离与P 到B 的距离之差最大时,这个差等于___ ___米。
10.列车提速后,某次列车21:00从A 市出发,次日7:00正点到达B 市,运行时
间较提速前缩短了2小时,而车速比提速前平均快了20千米/小时,则提速前的速度平均为 千米/小时,两市相距 .
二、选择题:
11.已知:x =3,y =2,且x>y ,则x+y 的值为( )
A 、5
B 、1
C 、5或1
D 、—5或—1
12.若a>1a
,那么a 的取值范围是( ) A 、a>0 B 、a<0 C 、a>1或-1<a<0 D 、a>1
13.在自然数中,前50个奇数的和减去前50个偶数的和的差是( )
A 、100
B 、-100
C 、50
D 、-50
7.已知a 、b 、c 、d 是互不相等的整数,且abcd=9,则a+b+c+d 的值等于( ) A 、0 B 、4 C 、8 D 、不能求出
14.当0<x<1时,x 2,x ,1x
的大小关系是( ) A 、x 2<x <1x B 、1x <x 2<x C 、x <1x < x 2 D 、x <x 2<1x
三、解答题
15. 当b 为何值时,10-12 b 有最大值,最大值是多少?
16.非负数a 、b 、c 满足a+b -c=2,a -b+2c=1,求s=a+b+c 的最大值和最小值
17. 如果4a-3b=7,并且3a+2b=19,求14a-2b 的值.
18. 计算: (2+1)(22+1)(24+1)(28+1)(216+1)(232+1).
19.化简:|x+5|+|x-7|+|x+10|.
20.时钟里,时针从5点整的位置起,再过多少分钟时,分钟与时针第一次重合?
21.用小立方块塔一个几何体,使得它的主视图和俯视图如图所示.这样的几何体只有
一种吗?它最少需要多少个小立方块?最多需要多少个小立方块?
22. 某商品的进价是500元,标价为725元,商店要求以利润不低于16%的的售价打
折出售,则售货员最低可以打几折出售此商品?
23.“中国竹乡”安吉县有着丰富的毛竹资源,某企业已收购毛竹52.5t,根据市场信
息,将毛竹直接销售,每吨可获利100元;如果将毛竹进行粗加工,每天可加工8t,每吨可以获利1000元,如果将毛竹进行精加工,每天可加工0.5t,每吨可以获利5000元,由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30)天内将这批毛竹全部销售,为此研究了两种方案。
1)方案1:将毛竹全部粗加工后销售,则可获利多少元?
2)方案2:30天时间都进行精加工,未来得及加工的毛竹,在市场上直销售,则可获利多少元?
3)是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由。