贵州省贵阳市2018年高三适应性考试(二)(数学(理))含解析
贵州省2018年普通高等学校招生适应性考试理科数学(复印版)

贵州省2018年普通高等学校招生适应性考试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{})2)(5(,55+-==<≤-=x x y x B x x A ,则=B A ( )A .]2,5[--B .[)5,5-C .[]5,5-D .[)2,5-- 2.在复平面内,复数iiz +=1的共轭复数z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.阅读如下框图,运行相应的程序,若输入n 的值为8,则输出n 的值为()A .0B .1C .2D .3 4.已知函数(),0()21,0g x x f x x x >⎧=⎨+≤⎩是R 上的偶函数,则(3)g =( )A .5B .-5C .7D .-75.0y -=与抛物线212y x =的一个交点为A (不与原点重合),则直线到抛物线焦点的距离为( ) A .6 B .7 C .9 D .126.为了提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设原信息为123a a a ,传输信息为11232h a a a h ,其中112h a a =⊕,213h h a =⊕,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=.例如:原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息出错的是( ) A .01100 B .11010 C .10110 D .110007.将函数x x f 2cos )(=的图像向右平移()0>ϕϕ个单位,得到的图像恰好关于原点对称,则ϕ的一个可能取值为 A .6π B .4π C.3π D .2π8.在平行四边形ABCD 中,3,1,2π=∠==BAD AD AB ,点E 满足2=,则⋅的值为( )A .29B .23 C.234+ D .231+9.在正方体1111ABCD A BC D -中,过对角线1AC 的一个平面交1BB 于E ,交1DD 于F 得四边形1AEC F ,则下列结论正确的是( )A .四边形1AEC F 一定为菱形B .四边形1AEC F 在底面ABCD 内的投影不一定是正方形C .四边形1AEC F 所在平面不可能垂直于平面11ACC AD .四边形1AEC F 不可能为梯形 10.甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率均为53.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响.现已知前两句双方站成平手,则甲队获得这场比赛胜利的概率为( ) A .259 B .12563 C.12581 D .12510111.已知双曲线()0,01:2222>>=-b a by a x E 的左、右焦点分别为21,F F ,半焦距为4,P 是E 左支上的一点,2PF 与y 轴交于点A ,1PAF ∆的内切圆与边1AF 切于点Q ,若2=AQ ,则E 的离心率是( ) A .2 B .3 C. D .512.设函数()(12)x f x e x ax =-+,其中1a <,若存在唯一负整数0x ,使得0()f x a >,则实数a 的取值范围是( ) A .253(,)32e e B .3(,1)2e C .3[,1)2e D .253[,)32e e二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若x ,y 满足约束条件001x y x y y -≤⎧⎪+≥⎨⎪≤⎩,则21z x y =-+的最大值为 .14.二项式()6211⎪⎭⎫ ⎝⎛++x x x 展开式中的常数项为 .15.如图,网格纸上正方形小格的边长为1,图中粗线画出的是一个几何体的三视图,则这个几何体外接球的表面积为 .16.平面四边形ABCD 中,3==AD AB ,602=∠=∠DBC BCD ,当BAD ∠变化时,对角线AC 的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知{}n a 是等比数列,16,252==a a .数列{}n b 满足5,221==b b ,且{}n n a b -是等差数列. (1)分别求{}n a ,{}n b 的通项公式; (2)记数列()⎭⎬⎫⎩⎨⎧-++n n n a a b 2211log 1的前n 项和为nS ,求证:21<n S .18.共享单车是指企业在校园、地铁站点、公共站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是一种分时租赁模式,是共享经济的一种新形态.某共享单车企业在A 城市就“一天中一辆单车的平均成本与租用单车数量之间的关系”进行了调查,并将相关数据统计如下表:根据以上数据,研究人员设计了两种不同的回归分析模型,得到两个拟合函数: 模型甲:()1 4.80.8yx =+,模型乙:()226.41.6y x=+. (1)为了评价两种模型的拟合效果,完成以下任务:①完成下表(计算结果精确到0.1元)(备注:i i i e y y =-,i e 称为相应于点(,)i i x y 的残差);i e ie②分别计算模型甲与模型乙的残差平方和1Q 及2Q ,并通过比较1Q ,2Q 的大小,判断哪个模型拟合效果更好.(2)这家企业在A 城市投放共享单车后,受到广大市民的热烈欢迎并供不应求,于是该企业决定增加单车投放量.根据市场调查,市场投放量达到1万辆时,平均每辆单车一天能收入8元;6元的概率分别为0.6,0.4;市场投放量达到1.2万辆时,平均每辆单车一天能收入8元,6元的概率分别为0.4,0.6.若按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,问该企业投放量选择1万辆还是1.2万辆能获得更多利润?请说明理由.(利润=收入-成本)19.在三棱锥S ABC -中,60SAB SAC ∠=∠=,SB AB ⊥,SC AC ⊥.(1)求证:BC SA ⊥;(2)如果2SA =,BC ,AC 的中点为D ,求二面角C BD S --的余弦值.20.在圆4:221=+y x C 上任取一点P ,过点P 作x PQ ⊥轴,垂足为Q .当点P 在圆1C 上运动时,线段PQ 的中点M 的轨迹为曲线C .(1)求曲线C 的方程,并说明曲线C 是什么图形;(2)21,l l 是过点)1,0(-T 且互相垂直的两条直线,其中1l 与1C 相交于B A ,两点,2l 与C 的一个交点为D (与T 不重合),求ABD ∆面积取得最大值时直线1l 的方程.21.如图,在矩形ABCD 中,)0,1(),0,1(x B A +且D x ,0 在曲线x y 1=上,BC 与曲线xy 1=交于E ,四边形ABEF 为矩形.(1)用x 分别表示矩形ABCD ,曲线梯形ABED 及矩形ABEF 的面积,并用不等式表示它们的大小关系;(2)设矩形ABEF 的面积为)(x f ,若)1(2ln )(-<x a xx x f 对任意的()1,0∈x 恒成立,求实数a 的取值范围;(3)求证:e >⎪⎭⎫⎝⎛201820172018(e 为自然对数的底数).22.在直角坐标系xOy 中,曲线1C 的参数方程为1cos 2sin x y αα⎧=+⎪⎪⎨⎪=+⎪⎩(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的方程为)3πρθ=+.(1)求1C 与2C 交点的直角坐标;(2)过原点O 作直线l ,使l 与1C ,2C 分别相交于点A ,B (A ,B 与点O 均不重合),求AB 的最大值. 23.已知函数1()f x x x a a=++-. (1)若2a =,求不等式9()2f x ≥的解集; (2)若对任意的x R ∈,任意的(0,)a ∈+∞恒有()f x m >,求实数m 的取值范围.。
贵州省2018届高考数学适应性试卷

贵州省2018届高考数学适应性试卷(理科)一、选择题(本大題共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合題目要求的•)1.已知集合A={x|x2﹣2x﹣3>0},B={x|2<x<4},则集合A∩B=()A.(1,4)B.(2,4)C.(2,3)D.(3,4)2.已知复数z=,则对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.某几何体三视图如下,图中三个等腰三角形的直角边长都是2,该几何体的体积为()A.B.C.4D.4.下列命题中正确的是()A.cosα≠0是α≠2kπ+(k∈Z)的充分必要条件B.函数f(x)=3ln|x|的零点是(1,0)和(﹣1,0)C.设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(﹣1<ξ<0)=﹣pD.若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差会改变5.若{a n}是等差数列,公差d≠0,a2,a3,a6成等比数列,则该等比数列的公比为()A.1B.2C.3D.46.阅读程序框图,运行相应的程序,则输出i的值为()A.3B.4C.5D.67.变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.D.58.在平行四边形ABCD中,•=0,AC=,BC=1,若将其沿AC折成直二面角D ﹣AC﹣B,则AC与BD所成的角的余弦值为()A.B.C.D.9.过点(﹣2,0)的直线l与圆x2+y2=5相交于M、N两点,且线段MN=2,则直线l 的斜率为()A.±B.±C.±1D.±10.设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离小于2的概率是()A.B.C.D.11.如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.12.已知函数f(x)=x﹣lnx+k,在区间[,e]上任取三个数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则k的取值范围是()A.(﹣1,+∞)B.(﹣∞,﹣1)C.(﹣∞,e﹣3)D.(e﹣3,+∞)二、填空题(本小题共4小题,每小题5分,共20分)13.若函数f(x)=(x﹣a)(x+3)为偶函数,则f(2)=.14.(x+a)4的展开式中含x4项的系数为9,则实数a的值为.15.设A ,B 是球O 的球面上两点,∠AOB=,C 是球面上的动点,若四面体OABC 的体积V 的最大值为,则此时球的表面积为.16.已知数列{a n }满足a 1=﹣40,且na n +1﹣(n +1)a n =2n 2+2n ,则a n 取最小值时n 的值为 .三、解答题(本题共70分)17.(12分)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且acosB=4,bsinA=3.(1)求tanB 及边长a 的值;(2)若△ABC 的面积S=9,求△ABC 的周长.18.(12分)为检测空气质量,某市环保局随机抽取了甲、乙两地2016年20天PM2.5日平均浓度(单位:微克/立方米)监测数据,得到甲地PM2.5日平均浓度频率分布直方图和乙地PM2.5日平均浓度的频数分布表.乙地20天PM2.5日平均浓度频数分布表(1)根据乙地20天PM2.5日平均浓度的频率分布表作出相应的频率分组直方图,并通过两个频率分布直方图比较两地PM2.5日平均浓度的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)通过调查,该市市民对空气质量的满意度从高到低分为三个等级:记事件C :“甲地市民对空气质量的满意度等级高于乙地市民对空气质量的满意度等级”,假设两地市民对空气质量满意度的调查结果相互独立,根据所给数据,利用样本估计总体的统计思想,以事件发生的频率作为相应事件发生的概率,求事件C 的概率.19.(12分)如图1,在等腰直角三角形ABC 中,∠B=90°,将△ABC 沿中位线DE 翻折得到如图2所示的空间图形,使二面角A ﹣DE ﹣C 的大小为θ(0<θ<).(1)求证:平面ABD ⊥平面ABC ; (2)若θ=,求直线AE 与平面ABC 所成角的正弦值.20.(12分)已知椭圆E :+=1(a >b >0)的离心率为,点P (1,)在椭圆E 上,直线l 过椭圆的右焦点F 且与椭圆相交于A ,B 两点. (1)求E 的方程;(2)在x 轴上是否存在定点M ,使得•为定值?若存在,求出定点M 的坐标;若不存在,说明理由.21.(12分)已知函数f (x )=xlnx +ax ,函数f (x )的图象在点x=1处的切线与直线x +2y ﹣1=0垂直.(1)求a 的值和f (x )的单调区间; (2)求证:e x >f′(x ).[选修4-4:坐标系与参数方程选讲]22.(10分)曲线C1的参数方程为(α为参数)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=sinθ.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)过原点且倾斜角为α(<α≤)的射线l与曲线C1,C2分别相交于A,B两点(A,B异于原点),求|OA|•|OB|的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|x﹣5|,g(x)=.(1)求f(x)的最小值;(2)记f(x)的最小值为m,已知实数a,b满足a2+b2=6,求证:g(a)+g(b)≤m.2017年贵州省高考数学适应性试卷(理科)参考答案与试题解析一、选择题(本大題共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合題目要求的•)1.已知集合A={x|x2﹣2x﹣3>0},B={x|2<x<4},则集合A∩B=()A.(1,4)B.(2,4)C.(2,3)D.(3,4)【考点】交集及其运算.【分析】先求出集合A,再由交集定义能求出集合A∩B.【解答】解:∵集合A={x|x2﹣2x﹣3>0}={x|x<﹣1或x>3},B={x|2<x<4},∴集合A∩B={x|3<x<4}=(3,4).故选:D.2.已知复数z=,则对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】化简已知复数,可得其共轭复数,由复数的几何意义可得.【解答】解:化简可得z====﹣2+i,∴=﹣2﹣i,对应的点为(﹣2,﹣1),在第三象限,故选:C3.某几何体三视图如下,图中三个等腰三角形的直角边长都是2,该几何体的体积为()A.B.C.4D.【考点】由三视图求面积、体积.【分析】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,代入锥体体积公式,可得答案.【解答】解:由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,其底面面积S=×2×2=2,高h=2,故几何体的体积V==,故选:A.4.下列命题中正确的是()A.cosα≠0是α≠2kπ+(k∈Z)的充分必要条件B.函数f(x)=3ln|x|的零点是(1,0)和(﹣1,0)C.设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(﹣1<ξ<0)=﹣pD.若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差会改变【考点】命题的真假判断与应用.【分析】A.根据充分条件和必要条件的定义进行判断.B.根据函数零点的定义进行判断.C.根据正态分布的大小进行求解.D.根据方差的性质进行判断.【解答】解:A.由cosα≠0得α≠kπ+,则cosα≠0是α≠2kπ+(k∈Z)的充分不必要条件,故A错误,B.由f(x)=0得ln|x|=0,z则|x|=1,即x=1或x=﹣1,即函数f(x)=3ln|x|的零点是1和﹣1,故B错误,C.随机变量ξ服从正态分布N(0,1),则图象关于y轴对称,若P(ξ>1)=p,则P(0<ξ<1)=﹣p,即P(﹣1<ξ<0)=﹣p,故C正确,D.若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不会改变,故D错误,故选:C5.若{a n}是等差数列,公差d≠0,a2,a3,a6成等比数列,则该等比数列的公比为()A.1B.2C.3D.4【考点】等比数列的通项公式.【分析】由已知条件求出,所以该等比数列的公比为d=,由此能求出结果.【解答】解:∵{a n}是等差数列,公差d≠0,a2,a3,a6成等比数列,∴(a1+2d)2=(a1+d)(a1+5d),解得,∴该等比数列的公比为d===3.故选:C.6.阅读程序框图,运行相应的程序,则输出i的值为()A.3B.4C.5D.6【考点】程序框图.【分析】通过程序框图的要求,写出前四次循环的结果得到输出的值.【解答】解:该程序框图是循环结构经第一次循环得到i=1,a=2;经第二次循环得到i=2,a=5;经第三次循环得到i=3,a=16;经第四次循环得到i=4,a=65满足判断框的条件,执行是,输出4故选B7.变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.D.5【考点】简单线性规划.【分析】作出不等式组对应的平面区域,设z=(x﹣2)2+y2,利用距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,设z=(x﹣2)2+y2,则z的几何意义为区域内的点到定点D(2,0)的距离的平方,由图象知CD的距离最小,此时z最小.由得,即C(0,1),此时z=(x﹣2)2+y2=4+1=5,故选:D.8.在平行四边形ABCD中,•=0,AC=,BC=1,若将其沿AC折成直二面角D ﹣AC﹣B,则AC与BD所成的角的余弦值为()A.B.C.D.【考点】平面向量数量积的运算.【分析】由•=0得到AC⊥CB,以C为坐标原点,建立空间直角坐标系,利用向量方法求出异面直线AC与BD所成角的余弦值【解答】解:∵•=0,AC=,BC=1,如图∴AC⊥CB,∴AC=CD=,过点A作AE⊥CD,在Rt△CAD和Rt△AEC,sin∠ACD===,则AE=,CE=,在空间四边形中,直二面角D﹣AC﹣B,∵BC⊥AC,BC⊥CD,∴BC⊥平面ACD,以C点为原点,以CD为y轴,CB为x轴,过点C与EA平行的直线为x轴,建立空间直角坐标系,∴C(0,0,0),A(,,0),B(0,0,1),D(0,,0),∴=(,,0),=(0,,﹣1),∴||=,=2,•=2,设AC与BD所成的角为θ,则cosθ===.故选:B.9.过点(﹣2,0)的直线l与圆x2+y2=5相交于M、N两点,且线段MN=2,则直线l 的斜率为()A.±B.±C.±1D.±【考点】直线与圆的位置关系.【分析】设直线l的斜率为k,则直线l的方程为y=k(x+2),求出圆x2+y2=5的圆心,半径r=,再求出圆心到直线l:y=k(x+2)的距离d,利用过点(﹣2,0)的直线l与圆x2+y2=5相交于M、N两点,且线段MN=2,由勾股定理得,由此能求出k的值.【解答】解:设直线l的斜率为k,则直线l的方程为y=k(x+2),圆x2+y2=5的圆心O(0,0),半径r=,圆心O(0,0)到直线l:y=k(x+2)的距离d=,∵过点(﹣2,0)的直线l与圆x2+y2=5相交于M、N两点,且线段MN=2,∴由勾股定理得,即5=+3,解得k=±1.故选:C.10.设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离小于2的概率是()A.B.C.D.【考点】几何概型.【分析】根据题意,区域D:表示矩形,面积为3.到坐标原点的距离小于2的点,位于以原点O为圆心、半径为2的圆内,求出阴影部分的面积,即可求得本题的概率.【解答】解:区域D:表示矩形,面积为3.到坐标原点的距离小于2的点,位于以原点O为圆心、半径为2的圆内,则图中的阴影面积为+=∴所求概率为P=故选:D.11.如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.【考点】椭圆的简单性质.【分析】不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e===.故选D.12.已知函数f(x)=x﹣lnx+k,在区间[,e]上任取三个数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则k的取值范围是()A.(﹣1,+∞)B.(﹣∞,﹣1)C.(﹣∞,e﹣3)D.(e﹣3,+∞)【考点】利用导数求闭区间上函数的最值.【分析】由条件可得2f(x)min>f(x)max且f(x)min>0,再利用导数求得函数的最值,从而得出结论.【解答】解:任取三个实数a,b,c均存在以f(a),f(b),f(c)为边长的三角形,等价于f(a)+f(b)>f(c)恒成立,可转化为2f(x)min>f(x)max且f(x)min>0.令得x=1.当时,f'(x)<0;当1<x<e时,f'(x)>0;则当x=1时,f(x)min=f(1)=1+k,=max{+1+k,e﹣1+k}=e﹣1+k,从而可得,解得k>e﹣3,故选:D.二、填空题(本小题共4小题,每小题5分,共20分)13.若函数f(x)=(x﹣a)(x+3)为偶函数,则f(2)=﹣5.【考点】函数奇偶性的性质.【分析】根据偶函数f(x)的定义域为R,则∀x∈R,都有f(﹣x)=f(x),建立等式,解之求出a,即可求出f(2).【解答】解:因为函数f(x)=(x﹣a)(x+3)是偶函数,所以∀x∈R,都有f(﹣x)=f(x),所以∀x∈R,都有(﹣x﹣a)•(﹣x+3)=(x﹣a)(x+3),即x2+(a﹣3)x﹣3a=x2﹣(a﹣3)x﹣3a,所以a=3,所以f(2)=(2﹣3)(2+3)=﹣5.故答案为:﹣5.【点评】本题主要考查了函数奇偶性的性质,同时考查了运算求解的能力,属于基础题.14.(x+1)(x+a)4的展开式中含x4项的系数为9,则实数a的值为2.【考点】二项式系数的性质.【分析】利用(x+1)(x+a)4=(x+1)(x4+4x3a+…),进而得出.【解答】解:(x+1)(x+a)4=(x+1)(x4+4x3a+…),∵展开式中含x4项的系数为9,∴1+4a=9,解得a=2.故答案为:2.【点评】本题考查了二项式定理的展开式,考查了推理能力与计算能力,属于基础题.15.设A,B是球O的球面上两点,∠AOB=,C是球面上的动点,若四面体OABC的体积V的最大值为,则此时球的表面积为36π.【考点】球的体积和表面积.【分析】当点C位于垂直于面AOB时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为,求出半径,即可求出球O的体积【解答】解:如图所示,当点C位于垂直于面AOB时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC =V C﹣AOB=×R2×sin60°×R=,故R=3,则球O的表面积为4πR2=36π,故答案为:36π.【点评】本题考查球的半径,考查体积的计算,确定点C位于垂直于面AOB时,三棱锥O﹣ABC的体积最大是关键.属于中档题16.已知数列{a n}满足a1=﹣40,且na n+1﹣(n+1)a n=2n2+2n,则a n取最小值时n的值为10或11.【考点】数列递推式.【分析】na n+1﹣(n+1)a n=2n2+2n,化为﹣=2,利用等差数列的通项公式可得a n,再利用二次函数的单调性即可得出.【解答】解:∵na n+1﹣(n+1)a n=2n2+2n,∴﹣=2,∴数列{}是等差数列,首项为﹣40,公差为2.∴=﹣40+2(n﹣1),化为:a n=2n2﹣42n=2﹣.则a n取最小值时n的值为10或11.故答案为:10或11.【点评】本题考查了等差数列的通项公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.三、解答题(本题共70分)17.(12分)(2017•贵州模拟)设△ABC的内角A,B,C所对的边分别为a,b,c,且acosB=4,bsinA=3.(1)求tanB及边长a的值;(2)若△ABC的面积S=9,求△ABC的周长.【考点】三角形中的几何计算.【分析】(1)由acosB=4,bsinA=3,两式相除,结合正弦定理可求tanB=,又acosB=4,可得cosB>0,从而可求cosB,即可解得a的值.(2)由(1)知sinB=,利用三角形面积公式可求c,由余弦定理可求b,从而解得三角形周长的值.【解答】解:(Ⅰ)在△ABC中,由acosB=4,bsinA=3,两式相除,有==•=•=,所以tanB=,又acosB=4,故cosB>0,则cosB=,所以a=5.…(6分)(2)由(1)知sinB=,由S=acsinB,得到c=6.由b2=a2+c2﹣2accosB,得b=,故l=5+6+=11+即△ABC的周长为11+.…(12分)【点评】本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.18.(12分)(2017•贵州模拟)为检测空气质量,某市环保局随机抽取了甲、乙两地2016年20天PM2.5日平均浓度(单位:微克/立方米)监测数据,得到甲地PM2.5日平均浓度频率分布直方图和乙地PM2.5日平均浓度的频数分布表.乙地20天PM2.5日平均浓度频数分布表(1)根据乙地20天PM2.5日平均浓度的频率分布表作出相应的频率分组直方图,并通过两个频率分布直方图比较两地PM2.5日平均浓度的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)通过调查,该市市民对空气质量的满意度从高到低分为三个等级:记事件C :“甲地市民对空气质量的满意度等级高于乙地市民对空气质量的满意度等级”,假设两地市民对空气质量满意度的调查结果相互独立,根据所给数据,利用样本估计总体的统计思想,以事件发生的频率作为相应事件发生的概率,求事件C 的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图. 【分析】(1)根据乙地20天PM2.5日平均浓度的频率分布表能作出相应的频率分组直方图,由频率分布直方图能求出结果.(2)记A1表示事件:“甲地市民对空气质量的满意度等级为满意或非常满意”,A2表示事件:“甲地市民对空气质量的满意度等级为非常满意”,B1表示事件:“乙地市民对空气质量的满意度等级为不满意”,B2表示事件:“乙地市民对空气质量的满意度等级为满意”,则A1与B1独立,A2与B2独立,B1与B2互斥,C=B1A1∪B2A2,由此能求出事件C的概率.【解答】解:(1)根据乙地20天PM2.5日平均浓度的频率分布表作出相应的频率分组直方图,如下图:由频率分布直方图得:甲地PM2.5日平均浓度的平均值低于乙地PM2.5日平均浓度的平均值,而且甲地的数据比较集中,乙地的数据比较分散.(2)记A1表示事件:“甲地市民对空气质量的满意度等级为满意或非常满意”,A2表示事件:“甲地市民对空气质量的满意度等级为非常满意”,B1表示事件:“乙地市民对空气质量的满意度等级为不满意”,B2表示事件:“乙地市民对空气质量的满意度等级为满意”,则A1与B1独立,A2与B2独立,B1与B2互斥,C=B1A1∪B2A2,P(C)=P(B1A1∪B2A2)=P(B1)P(A1)+P(B2)P(A2),由题意P(A1)=,P(A2)=,P(B1)=,P(B2)=,∴P(C)=.【点评】本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意互斥事件加法公式和相互独立事件事件概率乘法公式的合理运用.19.(12分)(2017•贵州模拟)如图1,在等腰直角三角形ABC中,∠B=90°,将△ABC沿中位线DE翻折得到如图2所示的空间图形,使二面角A﹣DE﹣C的大小为θ(0<θ<).(1)求证:平面ABD⊥平面ABC;(2)若θ=,求直线AE与平面ABC所成角的正弦值.【考点】直线与平面所成的角;平面与平面垂直的判定.【分析】(1)证明:DE⊥平面ADB,DE∥BC,可证BC⊥平面ABD,即可证明平面ABD⊥平面ABC.(2)取DB中点O,AO⊥DB,由(1)得平面ABD⊥平面EDBC,AO⊥面EDBC,所以以O为原点,建立如图坐标系,则A(0,0,),B(1,0,0),C(1,4,0),E(﹣1,2,0),利用平面ABC的法向量求解.【解答】(1)证明:由题意,DE∥BC,∵DE⊥AD,DE⊥BD,AD∩BD=D,∴DE⊥平面ADB,∴BC⊥平面ABD;∵面ABC,∴平面ABD⊥平面ABC;(2)由已知可得二面角A﹣DE﹣C的平面角就是∠ADB设等腰直角三角形ABC的直角边AB=4,则在△ADB中,AD=DB=AB=2,取DB中点O,AO⊥DB,由(1)得平面ABD⊥平面EDBC,∴AO⊥面EDBC,所以以O为原点,建立如图坐标系,则A(0,0,),B(1,0,0),C(1,4,0),E(﹣1,2,0)设平面ABC的法向量为,,.由,取,},∴直线AE与平面ABC所成角的θ,sinθ=|cos<>|=||=.即直线AE与平面ABC所成角的正弦值为:【点评】本题考查线面垂直,考查向量法求二面角,考查学生分析解决问题的能力,属于中档题.20.(12分)(2017•贵州模拟)已知椭圆E: +=1(a>b>0)的离心率为,点P(1,)在椭圆E上,直线l过椭圆的右焦点F且与椭圆相交于A,B两点.(1)求E的方程;(2)在x轴上是否存在定点M,使得•为定值?若存在,求出定点M的坐标;若不存在,说明理由.【考点】直线与椭圆的位置关系.【分析】(1)由题意的离心率公式求得a=c,b2=a2﹣c2=c2,将直线方程代入椭圆方程,即可求得a和b,求得椭圆方程;(2)在x轴上假设存在定点M(m,0),使得•为定值.若直线的斜率存在,设AB的斜率为k,F(1,0),由y=k(x﹣1)代入椭圆方程,运用韦达定理和向量数量积的坐标表示,结合恒成立思想,即可得到定点和定值;检验直线AB的斜率不存在时,也成立.【解答】解:(1)由椭圆的焦点在x轴上,椭圆的离心率e==,则a=c,由b2=a2﹣c2=c2,将P(1,)代入椭圆方程,解得:c=1,a=,b=1,∴椭圆的标准方程:;(2)在x轴上假设存在定点M(m,0),使得•为定值.若直线的斜率存在,设AB的斜率为k,F(1,0),由,整理得(1+2k2)x2﹣4k2x+2k2﹣2=0,x1+x2=,x1x2=,y1y2=k2(x1﹣1)(x2﹣1)=k2[x1x2+1﹣(x1+x2)]=k2(+1﹣)=﹣,则•=(x1﹣m)(x2﹣m)+y1y2=x1x2+m2﹣m(x1+x2)+y1y2,=+m2﹣m•﹣=,欲使得•为定值,则2m2﹣4m+1=2(m2﹣2),解得:m=,此时•=﹣2=﹣;当AB斜率不存在时,令x=1,代入椭圆方程,可得y=±,由M(,0),可得•=﹣,符合题意.故在x轴上存在定点M(,0),使得•=﹣.【点评】本题考查椭圆方程的求法,注意运用离心率公式,考查存在性问题的解法,注意运用分类讨论的思想方法和联立直线方程和椭圆方程,运用韦达定理和向量的数量积的坐标表示,考查化简整理的运算能力,属于中档题.21.(12分)(2017•贵州模拟)已知函数f(x)=xlnx+ax,函数f(x)的图象在点x=1处的切线与直线x+2y﹣1=0垂直.(1)求a的值和f(x)的单调区间;(2)求证:e x>f′(x).【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)由f′(1)=1+a=2,解得:a=1,利用导数求解单调区间.(2)要证e x>f′(x),即证e x>lnx+2,x>0时,易得e x>x+1,即只需证明x >lnx+1即可【解答】解:(1)f′(x)=lnx+1+a,f′(1)=1+a=2,解得:a=1,故f(x)=xlnx+x,f′(x)=lnx+2,令f′(x)>0,解得:x>e﹣2,令f′(x)<0,解得:0<x<e﹣2,故f(x)在(0,e﹣2)递减,在(e﹣2,+∞)递增;(2)要证e x>f′(x),即证e x﹣lnx﹣2>0,即证e x>lnx+2,x>0时,易得e x>x+1,即只需证明x+1≥lnx+2即可,即只需证明x>lnx+1即可令h(x)=x﹣lnx+1,则h′(x)=1﹣,令h′(x)=0,得x=1h(x)在(0,1)递减,在(1,+∞)递增,故h(x)≥h(1)=0.即x+1≥lnx+2成立,即e x>lnx+2,∴e x>f′(x).【点评】本题考查了导数的综合应用,构造合适的新函数,放缩法证明函数不等式,属于难题.[选修4-4:坐标系与参数方程选讲]22.(10分)(2017•贵州模拟)曲线C1的参数方程为(α为参数)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=sinθ.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)过原点且倾斜角为α(<α≤)的射线l与曲线C1,C2分别相交于A,B两点(A,B异于原点),求|OA|•|OB|的取值范围.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)先将C1的参数方程化为普通方程,再化为极坐标方程,将C2的极坐标方程两边同乘ρ,根据极坐标与直角坐标的对应关系得出C2的直角坐标方程;(2)求出l的参数方程,分别代入C1,C2的普通方程,根据参数的几何意义得出|OA|,|OB|,得到|OA|•|OB|关于k的函数,根据k的范围得出答案.【解答】解:(1)曲线C1的参数方程为(α为参数),普通方程为(x﹣2)2+y2=4,即x2+y2=4x,极坐标方程为ρ=4cosθ;曲线C1的极坐标方程为ρcos2θ=sinθ,普通方程为:y=x2;(2)射线l的参数方程为(t为参数,<α≤).把射线l的参数方程代入曲线C1的普通方程得:t2﹣4tcosα=0,解得t1=0,t2=4cosα.∴|OA|=|t2|=4cosα.把射线l的参数方程代入曲线C2的普通方程得:cos2αt2=tsinα,解得t1=0,t2=.∴|OB|=|t2|=.∴|OA|•|OB|=4cosα•=4tanα=4k.∵k∈(,1],∴4k∈(,4].∴|OA|•|OB|的取值范围是(,4].【点评】本题考查参数方程与极坐标与普通方程的互化,考查参数的几何意义的应用,属于中档题.[选修4-5:不等式选讲]23.(2017•贵州模拟)已知函数f(x)=|x﹣1|+|x﹣5|,g(x)=.(1)求f(x)的最小值;(2)记f(x)的最小值为m,已知实数a,b满足a2+b2=6,求证:g(a)+g(b)≤m.【考点】函数的最值及其几何意义.【分析】(1)化简f(x)的解析式,得出f(x)的单调性,利用单调性求出f (x)的最小值;(2)计算[g(a)+g(b)]2,利用基本不等式即可得出结论.【解答】解:(1)f(x)=|x﹣1|+|x﹣5|=,∴f(x)在(﹣∞,1]上单调递减,在[5,+∞)上单调递增,∵f(1)=4,f(5)=4,∴f(x)的最小值为4.(2)证明:由(1)可知m=4,g(a)+g(b)=+,∴[g(a)+g(b)]2=1+a2+1+b2+2=8+2,∵≤=4,∴[g(a)+g(b)]2≤16,∴g(a)+g(b)≤4.【点评】本题考查了函数的单调性,分段函数的最值计算,基本不等式的应用,属于中档题.。
贵阳第一中学2018届高考适应性月考卷(二)理数-答案

2 2 e 1 ,即 2a e ,所以 a ,故选 D. e e 2 e
图2
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)
题号 答案
【解析】
13 1 3
14 3
15 2
16 6
14. x 2 y 2 1 , ( x 3)2 y 2 4 ,由圆心距与半径或者图象(如图 3)进行比较,两圆位置
X 的可能取值为 0,1,2,3;
…………………………………………(1 分)
理科数学参考答案·第 3 页(共 7 页)
P( X 0)
3 2 1 C0 C1 C2 33 44 66 4 C11 4 C11 4 C11 P ( X 1) P ( X 2) , , , 3 3 3 C15 91 C15 91 C15 455 0 C3 4 4 C11 , 3 C15 455
(Ⅱ)由题意,一年中空气质量为一级的概率 P
5 1 . 15 3
……………………(9 分)
1 设一年中空气质量达一级的天数为 Y ,则 Y B 360 , , 3 1 故 E (Y ) 360 120 , 3
……………………(10 分)
…………………………………………(11 分) ………………………… (12 分)
以相加可得
89 ,且 sin 2 90 1 ,所 2
91 ,故选 B. 2
8.易知 a 1 , b 4 ,且几何体为圆柱体,它的外接球球心位于上下底面两个
圆心的连线中点处,如图 1 所示.由勾股定理可得球半径为 OA 5 ,根据 球的表面积公式 4πR 2 20π ,故选 A.
贵阳第一中学 2018 届高考适应性月考卷(二) 理科数学参考答案
2018届贵州省贵阳市高三适应性监测考试(二)理科数学试题及答案

2018届贵州省贵阳市⾼三适应性监测考试(⼆)理科数学试题及答案贵阳市⾼三适应性监测考试(⼆)理科数学⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.)1. 设集合{}2320A x x x =++<,集合124x N x ??=≥,则M N ?=()。
A. {}2x x ≥- B. {}1x x >- C. {}1x x <-D. {}2x x ≤-2. 设复数1z ai =+(a 是正实数),且z =12z i-等于 A. 1i + B. 1i - C. 1i -+ D. 1i --3. 若,x y R ∈,则x y >的⼀个充实不必要条件是()。
A.x y > B. 22x y > C. >D. 33x y >4. 已知3(,),tan()7224πππαα∈-=-,则sin α的值等于()。
A. 35 B. 35- C. 45D. 45- 5. 如图所⽰的程序框图,运⾏相应的程序,输出的S 值等于()。
A. 18B. 20C. 21D. 406. 函数()sin cos f x x x =+的图像的⼀条对称轴⽅程为()。
A. 4x π=B. 2x π=C. 4x π=- D. 2x π=-7. 61()ax x-展开式的常数项为160-,则a 的值为()。
A. 1- B. 2- C. 1D. 2 8.某⼏何体的三视图如图所⽰,且该⼏何体的体积是3,则该⼏何体的所有棱中,最长的棱为()。
A.49. 函数(0,1)x y a a a =>≠与b y x =的图像如图,则下列不等式⼀定成⽴的是()A. 0a b >B. 0a b +>C. 1b a >D. log 2a b >10. 以双曲线222:1(0)3x y C a a -=>的⼀个焦点F 为圆⼼的圆与双曲线的渐近线相切,则该圆的⾯积为()。
【高三英语试题精选】2018年贵阳市高三数学理科适应性考试试卷二(含答案)

120188144160
02030401
∵,所以仅从日均收入的角度考虑,我会选择去乙司
20解(I)∵也为抛物线的焦点,∴,
由线段,得,∴的坐标为,代入椭圆方程得
又,联立可解得,
所以椭圆的方程为
(Ⅱ)由(Ⅰ)知,所以直线方程为,
联立直线方程和椭圆方程可得
2018年贵阳市高三数学理科适应性考试试卷二(含答案)
w
贵阳市4坐标系与参数方程
在极坐标系中,直线,曲线上任意一点到极点的距离等于它到直线的距离
(I)求曲线的极坐标方程;
(I)若是曲线上两点,且,求的最大值
23选修4-5不等式选讲
已知函数
(I)求的最小值;
(II)若均为正实数,且满足,求证
贵阳市10DCBCB 11、12AB
令,则,,所以
由得的坐标为
∵直线与平面所成角的正弦值为,
解得或
19解(I)由题意得,甲司一名推销员的日工资(单位元)与销售数的关系式为
乙司一名推销员的日工资(单位元)与销售数的关系式为
(Ⅱ)记甲司一名推销员的日工资为(单位元),由条形图可得的分布列为
122124126128130
0204020181
∴当时,,
令时,
即
∴
22解(Ⅰ)设点是曲线上任意一点,则,即
(II)设,则
23解(I)当时,
当时,,当时,综上 Nhomakorabea的最小值
(II)证明均为正实数,且满足,
∵
(当且仅当时,取“=”)
∴,即
w
∴
联立直线方程相抛物线方程可得,
∴
∴
∵到直线的距离为,
贵州省贵阳市2018年高三适应性考试(二)数学(理)Word版含答案

贵阳市2018年高三适应性考试(二)理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数Z 的共轭复数为Z ,且()25Z i +=(i是虚数单位),则在复平面内,复数Z 对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限 2.设集合(){}(){},,,2x P x y y k Q x y y ====,己知P Q φ=,那么k 的取值范围是( ) A .()-0∞, B .()0+∞, C .(]-0∞, D .()1+∞,3.如图,在ABC ∆中,BE 是边AC 的中线,O 是BE 边的中点,若,AB a AC b ==,则AO =( )A .1122a b + B .1124a b + C .1142a b + D .1144a b+ 4.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再贏两局才能得到冠军,若两队每局获胜的概率相同,则甲队获得冠军的概率为( )A .12B .35 C.23 D .345.已知()23sin πα-=-,且,02πα⎛∈-⎫ ⎪⎝⎭,则()2tan n α-=( ) A .255 B .25-5 C.52 D .5-26.已知m 和n 是两条不同的直线,α和ρ是两个不重合的平面,那么下面给出的条件中一定能推出m β⊥的是( )A .a β⊥ 且m a ⊥B .αβ⊥且//m a C.m n ⊥且//n β D .//m n 且n β⊥7.设实数,x y 满足约束条件1213x y x y x ≥⎧⎪⎨⎪≥+-⎩≥,则下列不等式恒成立的是( )A .3x ≥B .4y ≥ C.28x y +≥ D .21x y -≥- 8.定义在R 上的函数()f x 是奇函数,且在()0,+∞内是增函数,又()30f -=,则()0f x <的解集是( )A .()()-303+∞,,B .()()--03∞,3, C.()()--33+∞∞,,D .()()-3003,,9.若函数()()0,06f x Asin x A πωω⎛⎫ ⎪>⎝⎭=->的图象如图所示,则图中的阴影部分的面积为( )A .12B .14C. D.10.元朝时,著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,与店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =时,问一开始输入的x =( )A .34B .78 C.1516 D .313211.已知二次函数()21f x ax bx =++的导函数为()()','00,()f x f f x >与x 轴恰有-个交点则使()()1'0f kf ≥恒成立的实数k 的取值范围为( )A .2k ≤B .2k ≥ C.52k ≤D .52k ≥12.如图,已知梯形ABCD 中2AB CD=,点E 在线段AC 上,且25AE AC =,双曲线过C D E 、、三点,以A B 、为焦点; 则双曲线离心率e 的值为( )A .32 BC.2 D .2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.72x x x ⎛⎫ ⎪⎝⎭-的展开式中,4x 的系数是____.(用数字作答). 14.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,将底面为矩形,一棱垂直于底面的四棱锥称之为“阳马”,已知某“堑堵”与某“阳马”组合而成的几何体的三x =. .15.设圆C 的圆心为双曲线()222102x y a a -=>的右焦点,且圆C 与此双曲线的渐近线相切,若圆C被直线:0l x =截得的弦长等于2,则a 的值为 .16.在ABC ∆中,AB C 、、所对的边为 a b c 、、,2,3sinB sinA c ==,则ABC ∆面积的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.Sn 为数列{}n a 的前n 项和,13a =,且()21,nSn a n n N *=+-∈. (I)求数列{}n a 的通项公式:(Ⅱ)设11n n n b a a +=,求数列{}n b 的前n 项和n T18.已知如图1所示,在边长为12的正方形11'AA A A ,中,111////BB CC AA ,且3AB =,14'BC AA =,分别交11,BB CC 于点P Q 、,将该正方形沿11,BB CC ,折叠,使得1'A A 与1AA 重合,构成如图2 所示的三棱柱111ABC A B C -,在该三棱柱底边AC 上有一点M ,满足()01AM kMC k =<<; 请在图2 中解决下列问题:(I)求证:当34k =时,BM //平面APQ ;(Ⅱ)若直线BM 与平面APQ所成角的正弦值为,求k 的值19.甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.(I)请将两家公司各一名推销员的日工资y (单位: 元) 分别表示为日销售件数n 的函数关系式;(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。
最新--贵州省贵阳市高三适应性监测考试(二)理科综合试题及答案 精品

贵州省贵阳市2018年高三适应性监测考试(二)n1贵阳市2018年高三适应性监测考试(二) 理科综合能力测试参考答案与评分建议2018年5月评分说明:1.考生如按其他方法或步骤解答,正确的,同样给分;有错的,根据错误的性质,参照评分建议中相应的规定给分。
2.计算题只有最后答案而无演算过程的,不给分;只写出一般公式但未能与试题所给的具体条件联系的,不给分。
3.化学方程式不配平不给分。
第Ⅰ卷一、选择题:选对的得6分,选错或未选的给0分。
1.B 2.D 3.B 4.C 5.A 6.D 7.D 8.B 9.A 10.D 11.C 12.B 13.A 二、选提题:单项选择题每小题6分,多项选择全部选对的得6分,选对但不全的得3分,有选错的得0分14.D 15.B 16.C 17.A 18.AD 19.BC 20.CD 21.AC第Ⅱ卷三、非选择题(包括必考题和选考题两部分。
第22题~第32题为必考题,每个试题考生都必须作答。
第33题~第40题为选考题,考生根据要求作答)(一)必考题(11题,共129分) 22.本题共6分(1)R 1 (2)A (每空3分) 23.本题共9分 (1)td(2)222t md (3)弹簧的弹性势能E p 与弹簧的形变量x 的二次方成正比 (每空3分)24.本题共14分 解:(1)设货物在传送带上加速到最大速度v 0所需的时间为t 1,匀速运动的时间为t 2,由题意得t t t =+21 (2分)L t t =+201021v v (2分) 10gt μ=v (2分)联立解得:5.0=μ (2分)(2)要求此传送带能够将货物输送到B 端,设传送带的倾角为θ,必须有θθμsin cos mg mg > (2分)设A 、B 两端的最大高度差h ,有22tan hL h -=θ (2分)联立解得:52<h m (2分)25.本题共18分解:(1)由题意可以知:3Tt =(2分) Bqm T π2=(2分)联立解得: Bqm t 32π= (2分)(2)如图所示,由题意可知,粒子运动轨迹的圆心在坐标原点O 处,粒子经过OA 上的C 点进入区域Ⅰ,然后又从该点返回区域Ⅱ,则在电场中必须做直线运动,由于OA ⊥PC ,设PC长为x ,电场强度的最小值为E ,由几何知识可知30tan R x = (2分) 由运动学及牛顿运动定律可得ax 22=v (2分)ma Eq = (2分)又由于RmBq 2v v = (2分)联立解得:mRq B E 232=(4分)262分。
贵州省贵阳市2018年高考数学二模试卷理科 含解析

2018年贵州省贵阳市高考数学二模试卷(理科)一、选择题(每题5分)1.已知函数f(x)=lg(1﹣x)的定义域为M,函数的定义域为N,则M∩N=()A.{x|x<1且x≠0}B.{x|x≤1且x≠0}C.{x|x>1} D.{x|x≤1}2.复数z=(2﹣i)2在复平面内对应的点所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.设随机变量ξ服从正态分布N(1,σ2),若P(ξ<2)=0.8,则P(0<ξ<1)的值为()A.0.6 B.0.4 C.0.3 D.0.24.如图,给出的是计算1+++…++的值的一个程序框图,判断框内应填入的条件是()A.i<101?B.i>101?C.i≤101?D.i≥101?5.在三角形ABC中,角A、B、C的对边长分别为a,b,c,且满足a:b:c=6:4:3,则=()A.﹣B.C.﹣D.﹣6.若函数y=kx的图象上存在点(x,y)满足约束条件,则实数k的最大值为()A.B.2 C.D.17.若函数f(x)=sinx+acosx的图象的一条对称轴方程为x=,则实数a的一个可能的取值为()A.1 B.﹣1 C.2 D.﹣28.过点M(2,0)作圆x2+y2=1的两条切线MA,MB(A,B为切点),则•=()A.B.C.D.9.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()A. B. C. D.10.曲线y=ln(2x﹣1)上的点到直线2x﹣y+8=0的最短距离是()A.B.2C.3D.011.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=90°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为()A.B.C.1 D.12.已知函数f(x)=,若存在实数x1、x2、x3、x4满足,x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则x1•x2•(x3﹣2)•(x4﹣2)的取值范围是()A.(4,16) B.(0,12) C.(9,21) D.(15,25)二、填空题(每题5分)13.设函数f(x)=,则f(f(﹣4))的值是______.14.已知m>0,(1+mx)10=a0+a1x+a2x2+…+a10x10,若a1+a2+…+a10=1183,则实数m=______.15.若关于x的函数f(x)=(t≠0)的最大值为a,最小值为b,且a+b=2018,则实数t的值为______.16.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,AB=2,AC=1,∠BAC=60°,则此球的表面积等于______.三、解答题17.已知数列{a n}的各项均为正数,其前n项和为S n,且a n与1的等差中项等于S n与1的等比中项.(1)求a1的值及数列{a n}的通项公式;(2)设b n=+(﹣1)n﹣1×3n+1t,对于n∈N*有b n+1>b n恒成立,求实数t的取值范围.18.微信是现代生活进行信息交流的重要工具,随机对使用微信的60人进行了统计,得到如下数据统计表,每天使用微信时间在两小时以上的人被定义为“微信达人”,不超过2两小时的人被定义为“非微信达人”,己知“非微信达人”与“微信达人”人数比恰为3:2.(1)确定x,y,p,q的值,并补全须率分布直方图;(2)为进一步了解使用微信对自己的日不工作和生活是否有影响,从“微信达人”和“非微信达人”60人中用分层抽样的方法确定10人,若需从这10人中随积选取3人进行问卷调查,3“”X X19.已知如图,△ABC和△DBC所在的平面互相垂直,且AB=BC=BD=1,∠ABC=∠DBC=120°(1)求证:AD⊥BC;(2)求二面角A﹣BD﹣C的余弦值.20.已知椭圆C: +=1(a>b>0)的离心率为,F1,F2分别是椭圆C的左、右焦点,椭圆C的焦点F1到双曲线﹣y2=1渐近线的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)直线AB:y=kx+m(k<0)与椭圆C交于不同的A,B两点,以线段AB为直径的圆经过点F2,且原点O到直线AB的距离为,求直线AB的方程.21.已知函数f(x)=e x sinx,F(x)=mx.(1)求函数f(x)的单调区间;(2)当x∈[0,]时,f(x)≥F(x),求实数m的取值范围.[选修4-1几何证明选讲]22.如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.[选修4-4坐标系与参数方程选讲]23.在平面直角坐标系xOy中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为,A,B两点的极坐标分别为.(1)求圆C的普通方程和直线l的直角坐标方程;(2)点P是圆C上任一点,求△PAB面积的最小值.[选修4-5,不等式选讲]24.已知函数f(x)=|2x﹣m|+m.(Ⅰ)若不等式f(x)≤6的解集为{x|﹣1≤x≤3},求实数m的值;(Ⅱ)在(Ⅰ)的条件下,求使f(x)≤a﹣f(﹣x)有解的实数a的取值范围.2018年贵州省贵阳市高考数学二模试卷(理科)参考答案与试题解析一、选择题(每题5分)1.已知函数f(x)=lg(1﹣x)的定义域为M,函数的定义域为N,则M∩N=()A.{x|x<1且x≠0}B.{x|x≤1且x≠0}C.{x|x>1} D.{x|x≤1}【考点】函数的定义域及其求法;交集及其运算.【分析】由函数y=lgx的定义域是{x|x>0}和y=的定义域是{x|x≠0},即可求出答案.【解答】解:∵1﹣x>0,得x<1,∴函数f(x)=lg(1﹣x)的定义域M={x|x<1}.∵x≠0时,函数有意义,∴函数的定义域N={x|x≠0}.∴M∩N={x|x<1}∩{x|x≠0}={x|x<1,且x≠0}.故选A.2.复数z=(2﹣i)2在复平面内对应的点所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算.【分析】利用复数的运算、几何意义即可得出.【解答】解:复数z=(2﹣i)2=3﹣4i在复平面内对应的点(3,﹣4)所在的象限是第四象限.故选:D.3.设随机变量ξ服从正态分布N(1,σ2),若P(ξ<2)=0.8,则P(0<ξ<1)的值为()A.0.6 B.0.4 C.0.3 D.0.2【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量ξ服从正态分布N(1,σ2),看出这组数据对应的正态曲线的对称轴x=1,根据正态曲线的特点,得到P(0<ξ<1)=P(0<ξ<2),得到结果.【解答】解:∵随机变量X服从正态分布N(1,σ2),∴μ=1,得对称轴是x=1.∵P(ξ<2)=0.8,∴P(ξ≥2)=P(ξ<0)=0.2,∴P(0<ξ<2)=0.6∴P(0<ξ<1)=0.3.故选:C.4.如图,给出的是计算1+++…++的值的一个程序框图,判断框内应填入的条件是()A .i <101?B .i >101?C .i ≤101?D .i ≥101? 【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S 的值.【解答】解:程序运行过程中,各变量值如下表所示: 第1次循环:S=0+1,i=1,第2次循环:S=1+,i=3,第3次循环:S=1++,i=5,…依此类推,第51次循环:S=1+++…+,i=101,退出循环其中判断框内应填入的条件是:i ≤101, 故选:C .5.在三角形ABC 中,角A 、B 、C 的对边长分别为a ,b ,c ,且满足a :b :c=6:4:3,则=( )A .﹣B .C .﹣D .﹣【考点】正弦定理;余弦定理.【分析】由于a :b :c=6:4:3,不妨设a=6,b=4,c=3,利用正弦定理余弦定理即可得出.【解答】解:在△ABC 中,由于a :b :c=6:4:3,不妨设a=6,b=4,c=3,∴cosA===﹣.则====﹣.故选:A .6.若函数y=kx的图象上存在点(x,y)满足约束条件,则实数k的最大值为()A.B.2 C.D.1【考点】简单线性规划.【分析】画出约束条件的可行域,利用函数的几何意义,求解最值即可.【解答】解:约束条件的可行域如图阴影部分:函数y=kx中,k的几何意义是经过坐标原点的直线的斜率,由题意可知:直线经过可行域的A时,k取得最大值,由解得A(1,2).K的最大值为:2.故选:B.7.若函数f(x)=sinx+acosx的图象的一条对称轴方程为x=,则实数a的一个可能的取值为()A.1 B.﹣1 C.2 D.﹣2【考点】两角和与差的正弦函数;正弦函数的图象.【分析】化简函数f(x)=acosx+sinx为一个角的一个三角函数的形式,利用图象关于直线x=对称,就是x=时,函数取得最值,求出a即可.【解答】解:函数f(x)=acosx+sinx=sin(x+θ),其中tanθ=a,θ∈(﹣,),其图象关于直线x=对称,所以+θ=,θ=,所以tanθ=a=1.故选:A.8.过点M(2,0)作圆x2+y2=1的两条切线MA,MB(A,B为切点),则•=()A.B.C.D.【考点】直线与圆的位置关系;平面向量数量积的运算.【分析】根据直角三角形中的边角关系,求得MA、MB的值以及∠AMO=∠BMO的值,再利用两个向量的数量积的定义求得•的值.【解答】解:由圆的切线性质可得,OA⊥MA,OB⊥MB.直角三角形OAM、OBM中,由sin∠AMO=sin∠BMO==,可得∠AMO=∠BMO=,MA=MB===,∴•=×cos=,故选D.9.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()A. B. C. D.【考点】简单空间图形的三视图.【分析】根据三视图的特点,知道左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条对角线,对角线是由左下角都右上角的线,得到结果.【解答】解:被截去的四棱锥的三条可见棱中,在两条为长方体的两条对角线,它们在右侧面上的投影与右侧面(长方形)的两条边重合,另一条为体对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图,只有D符合.故选D.10.曲线y=ln(2x﹣1)上的点到直线2x﹣y+8=0的最短距离是()A.B.2C.3D.0【考点】利用导数研究曲线上某点切线方程;函数的最值及其几何意义;点到直线的距离公式.【分析】在曲线y=ln(2x﹣1)上设出一点,然后求出该点处的导数值,由该导数值等于直线2x﹣y+8=0的斜率求出点的坐标,然后由点到直线的距离公式求解.【解答】解:设曲线y=ln(2x﹣1)上的一点是P(m,n),则过P的切线必与直线2x﹣y+8=0平行.由,所以切线的斜率.解得m=1,n=ln(2﹣1)=0.即P(1,0)到直线的最短距离是d=.故选B.11.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=90°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为()A.B.C.1 D.【考点】抛物线的简单性质.【分析】设|AF|=a,|BF|=b,由抛物线定义,2|MN|=a+b.再由勾股定理可得|AB|2=a2+b2,进而根据基本不等式,求得|AB|的范围,即可得到答案.【解答】解:设|AF|=a,|BF|=b,由抛物线定义,得AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,∴2|MN|=|AQ|+|BP|=a+b.由勾股定理得,|AB|2=a2+b2配方得,|AB|2=(a+b)2﹣2ab,又ab≤,∴(a+b)2﹣2ab≥(a+b)2﹣2,得到|AB|≥(a+b).∴≤=,即的最大值为.故选A.12.已知函数f(x)=,若存在实数x1、x2、x3、x4满足,x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则x1•x2•(x3﹣2)•(x4﹣2)的取值范围是()A.(4,16) B.(0,12) C.(9,21) D.(15,25)【考点】根的存在性及根的个数判断.【分析】画出函数f(x)的图象,确定x1x2=1,x3+x4=12,2<x3<4,8<x4<10,利用一元二次函数的性质进行求解即可.【解答】解:当2≤x≤10,时,f(x)=sin x,则函数的图象如图,则0<x1<1<x2<2<x3<x4,且x3,x4,关于x=6对称,∵f(x1)=f(x2),∴﹣log2x1=log2x2,∴log2x1x2=0,∴x1x2=1,∵f(x3)=f(x4),∴x3+x4=12,2<x3<x4<10∴x1x2(x3﹣2)(x4﹣2)=(x3﹣2)(x4﹣2)=x3x4﹣2(x3+x4)+4=x3x4﹣20,∵2<x3<4,8<x4<10,x3+x4=12,∴x3=﹣x4+12,则x3x4=(12﹣x4)x4=﹣(x4)2+12x4=﹣(x4﹣6)2+36,∵8<x4<10,∴20<x3x4<32则0<x3x4﹣20<12,故选:B.二、填空题(每题5分)13.设函数f(x)=,则f(f(﹣4))的值是4.【考点】函数的值.【分析】直接利用分段函数求解函数值即可.【解答】解:函数f(x)=,则f(f(﹣4))=f(16)=log216=4.故答案为:4.14.已知m>0,(1+mx)10=a0+a1x+a2x2+…+a10x10,若a1+a2+…+a10=1183,则实数m=1.【考点】二项式定理的应用.【分析】由题意令x=0,求得a0=1.再令x=1,结合a1+a2+…+a10=1183,求得m的值.【解答】解:∵m>0,(1+mx)10=a0+a1x+a2x2+…+a10x10,故令x=0,可得a0=1.再令x=1,可得a0+a1+a2+…+a10=1184=(1+m)10,∴m=1,故答案为:1.15.若关于x的函数f(x)=(t≠0)的最大值为a,最小值为b,且a+b=2018,则实数t的值为1018.【考点】函数的最值及其几何意义.【分析】函数f(x)可化为t+,令g(x)=,则g(﹣x)=﹣g(x),设g(x)的最大值为M,最小值为N,则M+N=0,由f(x)的最大值和最小值,解方程即可得到t=1018.【解答】解:函数f(x)=(t≠0)===t +,令g (x )=,则g (﹣x )==﹣g (x ),设g (x )的最大值为M ,最小值为N ,则M +N=0,即有t +M=a ,t +N=b , a +b=2t +M +N=2t=2018, 解得t=1018. 故答案为:1018.16.已知三棱柱ABC ﹣A 1B 1C 1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,AB=2,AC=1,∠BAC=60°,则此球的表面积等于 8π . 【考点】球的体积和表面积.【分析】利用三棱柱ABC ﹣A 1B 1C 1的侧棱垂直于底面,棱柱的体积为,AB=2,AC=1,∠BAC=60°,求出AA 1,再求出△ABC 外接圆的半径,即可求得球的半径,从而可求球的表面积.【解答】解:∵三棱柱ABC ﹣A 1B 1C 1的侧棱垂直于底面,棱柱的体积为,AB=2,AC=1,∠BAC=60°,∴=∴AA 1=2∵BC 2=AB 2+AC 2﹣2AB •ACcos60°=4+1﹣2,∴BC=设△ABC 外接圆的半径为R ,则,∴R=1∴外接球的半径为=∴球的表面积等于4π×=8π故答案为:8π三、解答题17.已知数列{a n }的各项均为正数,其前n 项和为S n ,且a n 与1的等差中项等于S n 与1的等比中项.(1)求a 1的值及数列{a n }的通项公式; (2)设b n =+(﹣1)n ﹣1×3n+1t ,对于n ∈N *有b n+1>b n 恒成立,求实数t 的取值范围.【考点】数列的求和;数列递推式.【分析】(1)通过4S n =1+2a n +与4S n ﹣1=1+2a n ﹣1+作差,进而计算可知数列{a n }时首项为1、公差为2的等差数列,计算即可;(2)通过(1)化简可知对于n ∈N *有2•9n >(﹣3)n+1t 恒成立,分n 为奇数、偶数两种情况讨论即可.【解答】解:(1)依题意, =,即4S n =1+2a n +,∴当n ≥2时,4S n ﹣1=1+2a n ﹣1+,两式相减得:4a n =2a n +﹣2a n ﹣1﹣,整理得:(a n +a n ﹣1)(a n ﹣a n ﹣1)=2(a n +a n ﹣1), 又∵a n >0, ∴a n ﹣a n ﹣1=2,∵4a 1=1+2a 1+,即a 1=1,∴数列{a n }时首项为1、公差为2的等差数列, ∴a n =1+2(n ﹣1)=2n ﹣1; (2)由(1)可知b n =+(﹣1)n ﹣1×3n+1t=9n +(﹣3)n+1t ,∵对于n ∈N *有b n+1>b n 恒成立, ∴9n+1+(﹣3)n+2t >9n +(﹣3)n+1t , 整理得:2•9n >(﹣3)n+1t ,①当n 为奇数时,即:2•9n >3n+1t , ∴t 小于2•3n ﹣1的最小值, ∴t <2;②当n 为偶数时,即:2•9n >﹣3n+1t , ∴t 大于﹣2•3n ﹣1的最大值, ∴t >﹣6;综上所述,实数t 的取值范围是:(﹣6,2).18.微信是现代生活进行信息交流的重要工具,随机对使用微信的60人进行了统计,得到如下数据统计表,每天使用微信时间在两小时以上的人被定义为“微信达人”,不超过2两小时的人被定义为“非微信达人”,己知“非微信达人”与“微信达人”人数比恰为3:2. (1)确定x ,y ,p ,q 的值,并补全须率分布直方图;(2)为进一步了解使用微信对自己的日不工作和生活是否有影响,从“微信达人”和“非微信达人”60人中用分层抽样的方法确定10人,若需从这10人中随积选取3人进行问卷调查,3“”X X【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(1)根据分布直方图、频率分布表的性质,列出方程组,能确定x,y,p,q的值,并补全须率分布直方图.(2)用分层抽样的方法,从中选取10人,则其中“网购达人”有4人,“非网购达人”有6人,ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和数学期望.【解答】解:(1)根据题意,有:,解得x=9,y=6,∴p=0.15,q=0.10,补全频率分布图有右图所示.(2)用分层抽样的方法,从中选取10人,则其中“网购达人”有10×=4人,“非网购达人”有10×=6人,∴ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为:Eξ==.19.已知如图,△ABC和△DBC所在的平面互相垂直,且AB=BC=BD=1,∠ABC=∠DBC=120°(1)求证:AD⊥BC;(2)求二面角A﹣BD﹣C的余弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(1)在平面ABC内作AH⊥BC,H是垂足,连HD,则AH⊥平面BDC,HD⊥BC,由三垂线定理能证明AD⊥BC.(2)在平面BDC内作HR⊥BD,连AR,则∠ARH是二面角A﹣BD﹣C的平面角的补角,由此能求出二面角A﹣BD﹣C的余弦值.【解答】(1)证明:在平面ABC内作AH⊥BC,H是垂足,连HD.因为平面ABC⊥平面BDC.所以AH⊥平面BDC.HD是AD在平面BDC的射影.依题设条件得HD⊥BC,∴由三垂线定理得AD⊥BC.(2)解:在平面BDC内作HR⊥BD,R是垂足,连AR.HR是AR在平面BDC的射影,∴AR⊥BD,∴∠ARH是二面角A﹣BD﹣C的平面角的补角,设AB=a,得AH=,HR=BH=,∴cos==.∴二面角A﹣BD﹣C的余弦值为.20.已知椭圆C: +=1(a>b>0)的离心率为,F1,F2分别是椭圆C的左、右焦点,椭圆C的焦点F1到双曲线﹣y2=1渐近线的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)直线AB:y=kx+m(k<0)与椭圆C交于不同的A,B两点,以线段AB为直径的圆经过点F2,且原点O到直线AB的距离为,求直线AB的方程.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)根据椭圆的离心率以及点到渐近线的距离建立方程关系求出a,b即可求椭圆C的方程;(Ⅱ)设A(x1,y1),B(x2,y2),联立直线方程和椭圆方程,转化为一元二次方程,根据根与系数之间的关系以及设而不求的思想进行求解即可.【解答】解:(Ⅰ)∵椭圆C: +=1(a>b>0)的离心率为,∴,∵双曲线﹣y2=1的一条渐近线方程为x﹣y=0,椭圆C的左焦点F1(﹣c,0),∵椭圆C的焦点F1到双曲线﹣y2=1渐近线的距离为.∴d==得c=1,则a=,b=1,则椭圆C的方程为y2=1;(Ⅱ)设A,B两点的坐标分别为A(x1,y1),B(x2,y2),由原点O到直线AB的距离为,得=,即m2=(1+k2),①将y=kx+m(k<0)代入y2=1;得(1+2k2)x2+4kmx+2m2﹣2=0,则判别式△=16k2m2﹣4(1+2k2)(2m2﹣2)=8(2k2﹣m2+1)>0,∴x1+x2=﹣,x1x2=,∵以线段AB为直径的圆经过点F2,∴=0,即(x1﹣1)(x2﹣1)+y1y2=0即(x1﹣1)(x2﹣1)+(kx1+m)(kx2+m)=0,即(1+k2)x1x2+(km﹣1)(x1+x2)+m2+1=0,∴(1+k2)•+(km﹣1)•(﹣)+m2+1=0,化简得3m2+4km﹣1=0 ②由①②得11m4﹣10m2﹣1=0,得m2=1,∵k<0,∴,满足判别式△=8(2k2﹣m2+1)>0,∴AB的方程为y=﹣x+1.21.已知函数f(x)=e x sinx,F(x)=mx.(1)求函数f(x)的单调区间;(2)当x∈[0,]时,f(x)≥F(x),求实数m的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)f′(x)=e x sinx+e x cosx=e x sin(x+),分别解出f′(x)>0,f′(x)<0,即可得出单调区间;(2)令g(x)=f(x)﹣mx=e x sinx﹣mx,即g(x)≥0恒成立,而g′(x)=e x(sinx+cosx)﹣m,令h(x)=e x(sinx+cosx),利用导数研究函数h(x)的单调性可得:在[0,]上单调递增,1≤h(x)≤,对m分类讨论,即可得出函数g(x)的单调性,进而得出m的取值范围.【解答】解:(1)f′(x)=e x sinx+e x cosx=e x sin(x+),当x∈(2kπ﹣,2kπ+)时,f′(x)>0,函数f(x)单调递增,x∈(2kπ+,2kπ+),f′(x)<0,函数f(x)单调递减.(2)令g(x)=f(x)﹣mx=e x sinx﹣mx,即g(x)≥0恒成立,而g′(x)=e x(sinx+cosx)﹣m,令h(x)=e x(sinx+cosx),h′(x)=e x(sinx+cosx)+e x(cosx﹣sinx)=2e x cosx.∵x∈[0,],h′(x)≥0,∴h(x)在[0,]上单调递增,1≤h(x)≤,当m≤1时,g′(x)≥0,g(x)在[0,]上单调递增,g(x)≥g(0)=0,符合题意;当m≥时,g′(x)≤0,g(x)在[0,]上单调递减,g(x)≤g(0),与题意不合;当1<m<时,g′(x)为一个单调递增的函数,而g′(0)=1﹣k<0,g′()=﹣k>0,由零点存在性定理,必存在一个零点x0,使得g′(x0)=0,当x∈[0,x0)时,g′(x)≤0,从而g(x)在此区间上单调递减,从而g(x)≤g(0)=0,与题意不合,综上所述:m的取值范围为(﹣∞,1].[选修4-1几何证明选讲]22.如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.【考点】圆的切线的性质定理的证明;直线与圆相交的性质;直线与圆的位置关系;与圆有关的比例线段.【分析】(I)连接AB,根据弦切角等于所夹弧所对的圆周角得到∠BAC=∠D,又根据同弧所对的圆周角相等得到∠BAC=∠E,等量代换得到∠D=∠E,根据内错角相等得到两直线平行即可;(II)根据切割线定理得到PA2=PB•PD,求出PB的长,然后再根据相交弦定理得PA•PC=BP•PE,求出PE,再根据切割线定理得AD2=DB•DE=DB•(PB+PE),代入求出即可.【解答】解:(I)证明:连接AB,∵AC是⊙O1的切线,∴∠BAC=∠D,又∵∠BAC=∠E,∴∠D=∠E,∴AD∥EC.(II)∵PA是⊙O1的切线,PD是⊙O1的割线,∴PA2=PB•PD,∴62=PB•(PB+9)∴PB=3,在⊙O2中由相交弦定理,得PA•PC=BP•PE,∴PE=4,∵AD是⊙O2的切线,DE是⊙O2的割线,∴AD2=DB•DE=9×16,∴AD=12[选修4-4坐标系与参数方程选讲]23.在平面直角坐标系xOy中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为,A,B两点的极坐标分别为.(1)求圆C的普通方程和直线l的直角坐标方程;(2)点P是圆C上任一点,求△PAB面积的最小值.【考点】圆的参数方程;简单曲线的极坐标方程.【分析】(1)由圆C的参数方程消去t得到圆C的普通方程,由直线l的极坐标方程,利用两角和与差的余弦函数公式化简,根据x=ρcosθ,y=ρsinθ转化为直角坐标方程即可;(2)将A与B的极坐标化为直角坐标,并求出|AB|的长,根据P在圆C上,设出P坐标,利用点到直线的距离公式表示出P到直线l的距离,利用余弦函数的值域确定出最小值,即可确定出三角形PAB面积的最小值.【解答】解:(1)由,化简得:,消去参数t,得(x+5)2+(y﹣3)2=2,∴圆C的普通方程为(x+5)2+(y﹣3)2=2.由ρcos(θ+)=﹣,化简得ρcosθ﹣ρsinθ=﹣,即ρcosθ﹣ρsinθ=﹣2,即x﹣y+2=0,则直线l的直角坐标方程为x﹣y+2=0;(Ⅱ)将A(2,),B(2,π)化为直角坐标为A(0,2),B(﹣2,0),∴|AB|==2,设P点的坐标为(﹣5+cost,3+sint),∴P点到直线l的距离为d==,∴d min==2,则△PAB面积的最小值是S=×2×2=4.[选修4-5,不等式选讲]24.已知函数f(x)=|2x﹣m|+m.(Ⅰ)若不等式f(x)≤6的解集为{x|﹣1≤x≤3},求实数m的值;(Ⅱ)在(Ⅰ)的条件下,求使f(x)≤a﹣f(﹣x)有解的实数a的取值范围.【考点】绝对值不等式的解法.【分析】(Ⅰ)求得不等式f(x)≤6的解集为m﹣3≤x≤3,再根据不等式f(x)≤6的解集为{x|﹣1≤x≤3},可得m﹣3=﹣1,由此求得m的范围.(Ⅱ)令g(x)=f(x)+f(﹣x)=|2x﹣2|+|2x+2|+4的最小值,可得a的范围.【解答】解:(Ⅰ)∵函数f(x)=|2x﹣m|+m,不等式f(x)≤6的解集为{x|﹣1≤x≤3},∴|2x﹣m|≤6﹣m 的解集为{x|﹣1≤x≤3}.由|2x﹣m|≤6﹣m,可得m﹣6≤2x﹣m≤6﹣m,求得m﹣3≤x≤3,故有m﹣3=﹣1,m=2.(Ⅱ)在(Ⅰ)的条件下,f(x)=|2x﹣m|+2,令g(x)=f(x)+f(﹣x)=|2x﹣2|+|2x+2|+4=,故g(x)的最小值为8,故使f(x)≤a﹣f(﹣x)有解的实数a的范围为[8,+∞).2018年9月16日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贵阳市 2018 年高三适应性考试(二)理科数学第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数 的共轭复数为 ,且( 是虚数单位),则在复平面内,复数 对应的点位于()A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】A【解析】分析:利用复数的运算法则可得 ,从而可得复数 ,再根据复数的几何意义即可得出.详解:∵∴,即.∴∴复数 的对应点 位于第一象限故选 A.点睛:本题考查复数的运算法则及几何意义.求解此类问题要能够灵活准确的对复平面内的点的坐标与复数进行相互转化,复数与复平面内 一一对应.2. 设集合,己知,那么 的取值范围是( )A.B.C.D.【答案】C【解析】分析:根据集合的定义与性质,即可求出 的取值范围.详解:∵集合∴集合∵集合,且∴故选 C.点睛:本题考查了交集的定义与应用问题,意在考查学生的计算求解能力.3. 如图,在中, 是边 的中线, 是 边的中点,若,则 =( )A.B.C.D.【答案】B【解析】分析:利用向量的共线定理、平行四边形法则即可得出.详解:∵在中, 是 边上的中线∴∵ 是 边的中点∴∴∵∴故选 B. 点睛:本题考查了平面向量的基本定理的应用.在解答此类问题时,熟练掌握向量的共线定理、 平行四边形法则是解题的关键. 4. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再贏两 局才能得到冠军,若两队每局获胜的概率相同,则甲队获得冠军的概率为( )A.B.C.D.【答案】D【解析】解法一:以甲再打的局数分类讨论,若甲再打一局得冠军的概率为 p1,则 p1= ,若甲打两局得冠军的概率为 p2,则 p2=,故甲获得冠军的概率为 p1+p2= ,故选 D.解法二:设乙获得冠军的概率 p1,则 p1=选 D. 考点:相互独立事件的概率.5. 已知,且,则,故甲获得冠军的概率为 p=1-p1= ,故 ()A.B.C.D.【答案】A 【解析】分析:由题设条件可得 ,再根据同角三角函数关系式可得 , ,然后根据 诱导公式化简,即可得解.详解:∵∴∵∴,则.∵∴故选 A.点睛:本题主要考查了同角三角函数关系式,诱导公式的应用,熟练掌握基本关系及诱导公式是解题的关键,诱导公式的口诀:“奇变偶不变,符号看象限”.6. 已知 和 是两条不同的直线, 和 是两个不重合的平面,那么下面给出的条件中一定能推出 的是( )A.且B.且C.且D. 且【答案】D【解析】分析:在 A 中, 与 平行或 ⊂ ;在 B 中, 与 平行、相交或 ⊂ ;在 C 中,与 平行、相交或 ⊂ ;在 D 中,由线面垂直的判定定理得 .详解:由 和 是两条不同的直线, 和 是两个不重合的平面,知:在 A 中,且,则 与 平行或 ⊂ ,故 A 错误;在 B 中, 且 ,则 与 平行、相交或 ⊂ ,故 B 错误;在 C 中, 且 ,则 与 平行、相交或 ⊂ ,故 C 错误;在 D 中, 且 ,由线面垂直的判定定理得 ,故 D 正确. 故选 D. 点睛:本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识, 解答时需注意空间中线线、线面、面面间的位置关系的合理运用.空间几何体的线面位置关 系的判定与证明:①对于异面直线的判定,要熟记异面直线的概念(把不平行也不想交的两 条直线称为异面直线);②对于异面位置关系的判定中,熟记线面平行于垂直、面面平行与垂 直的定理是关键.7. 设实数 满足约束条件,则下列不等式恒成立的是( )A.B.C.D.【答案】C【解析】分析:作出不等式组对应的平面区域,利用线性规划的知识进行判断即可.详解:作出不等式组对应的平面区域如图所示:其中, , ,则 , 不成立;分别作出直线,,由图象可知不成立,恒成立的是.故选 C.点睛:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.8. 定义在 上的函数 是奇函数,且在内是增函数,又,则的解集是()A.B.C.D.【答案】B 【解析】分析:根据函数奇偶性和单调性的性质,作出函数的草图,利用数形结合进行求解 即可.详解::∵ 是奇函数,且在内是增函数∴在内是增函数∵∴∴对应的函数图象如图(草图)所示:∴当或 时,;当或时,.∴的解集是故选 B.点睛:本题主要考查不等式的求解,利用函数奇偶性和单调性的关系及数形结合进行求解是解决本题的关键.解这种题型往往是根据函数所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上的单调性相反,奇函数在对称区间上的单调性相同),然后再根据单调性列不等式求解.9. 若函数的图象如图所示,则图中的阴影部分的面积为( )A.B.C.D.【答案】C 【解析】分析:由图象求出函数解析式,然后利用定积分求得图中阴影部分的面积.详解:由图可知, ,,即 .∴ ,则.∴图中的阴影部分面积为故选 C. 点睛:本题考查了导数在求解面积中的应用,关键是利用图形求解的函数解析式,在运用积 分求解.定积分的计算一般有三个方法:①利用微积分基本定理求原函数;②利用定积分的 几何意义,利用面积求定积分;③利用奇偶性对称求定积分,奇函数在对称区间的定积分值 为 0. 10. 元朝时,著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,与 店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图 表达如图所示,即最终输出的 时,问一开始输入的 =( )A.B.C.D.【答案】B【解析】分析: 根据流程图,求出对应的函数关系式,根据题设条件输出的建立方程求出自变量的值即可.详解:第一次输入 , ;第二次输入,;第三次输入,;,由此关系第四次输入,,输出,解得 .故选 B. 点睛:本题考查算法框图,解答本题的关键是根据所给的框图,得出函数关系,然后通过解 方程求得输入的值,当程序的运行次数不多或有规律时,可采用模拟运行的办法解答.11. 已知二次函数的导函数为与 轴恰有一个交点,则使恒成立的实数 的取值范围为( )A.B.C.D.【答案】A【解析】分析:先对函数 求导,得出,再根据,得出 ,然后利用与 轴恰有-个交点得出 ,得到 与 的关系,要使恒成立等价于,然后利用基本不等式求得 的最小值,即可求得实数 的取值范围.详解:∵二次函数∴ ∵ ∴ ∵ 与 轴恰有一个交点∴,即 .∵恒成立∴恒成立,即.∵∴ 故选 A.,当且仅当 时取等号点睛:本题综合考查了二次函数、导数、基本不等式. 对于函数恒成立或者有解求参的问题, 常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数 最值大于或者小于 0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.12. 如图,已知梯形中,点 在线段 上,且点,以 为焦点; 则双曲线离心率 的值为( ),双曲线过三A.B.C.D. 2【答案】B【解析】分析:以 所在的直线为 轴,以 的垂直平分线为 轴,建立坐标系,求出 的坐标,根据向量的运算求出点 的坐标,代入双曲线方程即可求出详解:由,以 所在的直线为 轴,以 的垂直平分线为 轴,建立如图所示的坐标系:设双曲线的方程为,则双曲线是以 , 为焦点.∴,将 代入到双曲线的方程可得:,即.∴设,则.∵ ∴∴,,则.将点代入到双曲线的方程可得,即.∴ ,即 .故选 B. 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲 线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出 ,代入公式 ;②只需要根据一个条件得到关于 的齐次式,转化为 的齐次式,然后转化为关于 的方程(不等式),解方程(不等式),即可得 ( 的取值范围). 第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13.的展开式中, 的系数是____.(用数字作答).【答案】84 【解析】分析:在二项展开式的通项公式中,令 的幂指数等于 4,求出 的值,即可求得展开式中 的系数.详解:由于的通项公式为.∴令,解得 .∴的展开式中, 的系数是.故答案为 . 点睛:求二项展开式有关问题的常见类型及解题策略 (1)求展开式中的特定项.可依据条件写出第 项,再由特定项的特点求出 值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第 项,由特 定项得出 值,最后求出其参数.14. 《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,将底面为矩形,一 棱垂直于底面的四棱锥称之为“阳马”,已知某“堑堵”与某“阳马”组合而成的几何体的 三视图中如图所示,已知该几何体的体积为 ,则图中 =.__________.【答案】 【解析】分析: 由已知中的三视图,可知该几何体右边是四棱锥,即“阳马”,左边是直三 棱柱,即“堑堵”,该几何体的体积只需把“阳马”,和“堑堵”体积分别计算相加即可. 详解:由三视图知:几何体右边是四棱锥,即“阳马”,其底面边长为 和 ,高为 ,其体积为;左边是直三棱柱,即“堑堵”,其底面边长为 和 ,高为 1,其体积为.∵该几何体的体积为∴∴ 故答案为 . 点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力.三视图问 题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图 是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实 线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看 俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.15. 设圆 的圆心为双曲线的右焦点,且圆 与此双曲线的渐近线相切,若圆被直线截得的弦长等于 2,则 的值为__________.【答案】【解析】分析:先利用圆与双曲线的渐近线相切得圆的半径,再利用圆 被直线截得的弦长等于 2,求出 与圆心到直线 的距离之间的等量关系,即可求出 .详解:由题意可设圆心坐标为.∵圆 的圆心为双曲线的右焦点∴圆心坐标为,且双曲线的渐近线的方程为,即.∵圆 与此双曲线的渐近线相切∴圆 到渐近线的距离为圆 的半径,即又∵圆 被直线截得的弦长等于 2∴圆心到直线 的距离为∵∴故答案为 .点睛:本题主要考查椭圆与双曲线的几何性质,直线的方程,直线与圆的位置关系以及点到直线的距离公式等基础知识.当直线与圆相切时,其圆心到直线的距离等于半径是解题的关键,当直线与圆相交时,弦长问题属常见的问题,最常用的方法是弦心距,弦长一半,圆的半径构成直角三角形,运用勾股定理解题.16. 在中,所对的边为,,则面积的最大值为__________.【答案】3【解析】分析:由已知利用正弦定理可得 ,由余弦定理可解得 ,利用同角三角函数基本关系式可求得 ,进而利用三角形面积公式即可计算得解.详解:∵∴由正弦定理可得∵∴由余弦定理可得.∴∴,当且仅当 时取等号.∴面积的最大值为故答案为 .点睛:本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的综合应用.解答本题的关键是熟练掌握公式和定理,将三角形面积问题转化为二次函数.转化思想是高中数学最普遍的数学思想,在遇到复杂的问题都要想到转化,将复杂变简单,把陌生的变熟悉,从而完成解题目标.三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)17. 为数列 的前 项和, ,且.(I)求数列 的通项公式;(Ⅱ)设,求数列 的前 项和 .【答案】(I);(Ⅱ).【解析】分析:根据,得,再根据,即可求得数列 的通项公式;(Ⅱ)由(I)可得数列 的通项公式,根据裂项相消法即可求得数列的前 项和 .详解:(I)由①,得②.∴②-①得整理得.(Ⅱ)由可知则点睛:本题主要考查递推公式求通项的应用以及裂项相消法求数列的和,属于中档题. 裂项 相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2); (3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18. 已知如图 1 所示,在边长为 12 的正方形,中,,且,分别交于点 ,将该正方形沿,折叠,使得 与 重合,构成如图 2 所示的三棱柱,在该三棱柱底边 上有一点 ,满足; 请在图 2 中解决下列问题:(I)求证:当 时, //平面 ;(Ⅱ)若直线 与平面 所成角的正弦值为 ,求 的值.【答案】(I)见解析;(II) 或 .【解析】分析:(I)过 作交 于 ,连接 ,则行四边形,则,由此能证明 //平面 ;(Ⅱ)根据,推出四边形为平及正方形边长为 ,可推出,从而以为 轴,建立空间直角坐标系,设立各点坐标,然后求出平面 的法向量,再根据直线 与平面 所成角的正弦值为 ,即可求得 的值.详解:(I)解: 过 作交 于 ,连接 ,所以,∴共面且平面交平面 于 ,∵又,∴四边形为平行四边形,∴,平面 , 平面 ,∴ //平面(II)解:∵∴,从而,即.∴.分別以为 轴,则,.设平面 的法向量为,所以得.令 ,则 ,,所以由得 的坐标为∵直线 与平面 所成角的正弦值为 ,∴解得 或 . 点睛:本题主要考查线面平行的判定定理利用空间向量求线面角.利用法向量求解空间线面角 的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系; 第二,破 “求 坐标关”,准确求解相关点的坐标;第三,破“求向量关”,求出平面的法向量;第五,破 “应用公式关”. 19. 甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪 80 元, 每销售一件产品提成 1 元; 乙公司规定底薪 120 元,日销售量不超过 45 件没有提成,超过 45 件的部分每件提成 8 元. (I)请将两家公司各一名推销员的日工资 (单位: 元) 分别表示为日销售件数 的函数关系 式; (II)从两家公司各随机选取一名推销员,对他们过去 100 天的销售情况进行统计,得到如下 条形图。