北师大版数学八年级上册1.3《蚂蚁怎样走最近》word练习题

合集下载

八年级数学上册 1.3 蚂蚁怎样走最近同步练习 北师大版

八年级数学上册 1.3 蚂蚁怎样走最近同步练习 北师大版

1.3蚂蚁怎样走最近(一)选择题1.小红要求△ABC最长边上的高,测得AB=8 cm,AC=6 cm,BC=10 cm,则可知最长边上的高是A.48 cmB.4.8 cmC.0.48 cmD.5 cm2.满足下列条件的△ABC,不是直角三角形的是A.b2=c2-a2B.a∶b∶c=3∶4∶5C.∠C=∠A-∠BD.∠A∶∠B∶∠C=12∶13∶153.在下列长度的各组线段中,能组成直角三角形的是A.5,6, 7B.1,4,9C.5,12,13D.5,11,124.若一个三角形的三边长的平方分别为:32,42,x2则此三角形是直角三角形的x2的值是A.42B.52C.7D.52或75.如果△ABC的三边分别为m2-1,2 m,m2+1(m>1)那么A.△ABC是直角三角形,且斜边长为m2+1B.△ABC是直角三角形,且斜边长2 为mC.△ABC是直角三角形,但斜边长需由m的大小确定D.△ABC不是直角三角形(二)解答题1.已知a,b,c为△ABC三边,且满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.2.阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判定△ABC的形状.3.问:上述解题过程,从哪一步开始出现错误?请写出该步的序号:_________;错误的原因为_________;本题正确的结论是_________.答案:(一)1. B2. D3. C4.D(注意有两种情况(ⅰ)32+42=52,(ⅱ)32+7=42)5. A(二)1.解:由已知得(a2-10a+25)+(b2-24b+144)+(c2-26c+169)=0(a-5)2+(b-12)2+(c-13)2=0由于(a-5)2≥0,(b-12)2≥0,(c-13)2≥0.所以a-5=0,得a=5;b-12=0,得b=12;c-13=0,得c=13.又因为132=52+122,即a2+b2=c2所以△ABC是直角三角形.2.解:∵a2c2-b2c2=a4-b4①∴c2(a2-b2)=(a2+b2)(a2-b2) ②∴c2=a2+b2 ③∴△ABC是直角三角形3.③a2-b2可以为零△ABC为直角三角形或等腰三角形。

北师大版数学八年级上册课后习题参考精品解析含答案

北师大版数学八年级上册课后习题参考精品解析含答案

八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,§,¤,♀,∮,≒,均表示本章节内的类似符号。

§1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。

2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm).问题解决12cm2。

1.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。

.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’F’和△D’F’C’的位置上.学生通过量或其他方法说明B’E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。

即(B’C’)2=AB2+CD2:也就是BC2=a2+b2。

,这样就验证了勾股定理§l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.§1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。

4.如图1~1,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理解得x=12,则水池的深度为12尺,芦苇长为13尺。

1.3蚂蚁怎样走最近习题

1.3蚂蚁怎样走最近习题

10、如图,是一个三级台阶,它的每一级的长、宽和 、如图,是一个三级台阶,它的每一级的长、 高分别等于55 55cm,10cm和 高分别等于55 ,10 和6cm,A和B是这个台 , 和 是这个台 阶的两个相对的端点, 点上有一只蚂蚁 想到B点去 点上有一只蚂蚁, 阶的两个相对的端点,A点上有一只蚂蚁,想到 点去 吃可口的食物。请你想一想,这只蚂蚁从A点出发 点出发, 吃可口的食物。请你想一想,这只蚂蚁从 点出发,沿 着台阶面爬到B点 最短线路是多少? 着台阶面爬到 点,最短线路是多少?
A A
B
C
B
11、如图,把长方形纸片ABCD折叠,使顶 点A与顶点C重合在一起,EF为折痕。若 AB=9,BC=3,试求以折痕EF为边长的正方 形面积。
E D C
A
G
F
B
12、假期中,王强和同学到某海岛上去玩 探宝游戏,按照探宝图,他们登陆后先往 东走8千米,又往北走2千米,遇到障碍后 又往西走3千米,在折向北走到6千米处往 东一拐,仅走1千米就找到宝藏,问登陆点 A 到宝藏埋藏点B的距离是多少千米?
H G F B
D A C
H
B1
F
B3
G

B2
A
C
D
在一棵树的10米高处 有两只猴子 在一棵树的 米高处B有两只猴子, 米高处 有两只猴子, 其中一只猴子爬下树走到离树20米的 其中一只猴子爬下树走到离树 米的 池塘A,另一只猴子爬到树顶D后直接 池塘 ,另一只猴子爬到树顶 后直接 跃向池塘的A处 跃向池塘的 处,如果两只猴子所经过 距离相等,试问这棵树有多高? 距离相等,试问这棵树有多高? D B. C A
1 6 3 2 A 8 B
探索与提高:
如图所示,现在已测得长方体木块的长 3厘米,宽4厘米,高24厘米。一只蜘蛛潜 伏在木块的一个顶点A处,一只苍蝇在这 个长方体上和蜘蛛相对的顶点B处。

蚂蚁怎样走最近训练题

蚂蚁怎样走最近训练题

蚂蚁怎样走最近训练题蚂蚁可真是个聪明的家伙,走路不光是为了找食物,还是为了找到最短的路。

这种本能真是让人忍不住赞叹,它们就像天生的“寻路小能手”,只要一有目标,立刻就能找到通往目的地的捷径。

你可能会好奇,蚂蚁到底是怎么做到的呢?难道它们不迷路吗?答案很简单,蚂蚁的“智慧”就藏在它们的习性里。

说实话,蚂蚁的找路能力简直可以用“如鱼得水”来形容。

你看啊,一只蚂蚁走得慢吞吞的,好像完全没什么紧张感,走得自得其乐。

但是它每次出发,都不是瞎走,它是有“路线图”的!从它家出发,直接走到食物源,这路上的每一步,都不是空走的。

它靠的,就是自己留在地上的“信息素”。

没错,蚂蚁的“智慧”就是靠这些化学物质来进行导航的。

蚂蚁一走过,脚下就会留下气味,这个气味就像是一种信号,告诉其他蚂蚁:“嘿,我找到路了!走这条路快!”而且最妙的是,蚂蚁之间的沟通根本不是嘴巴聊的,它们完全靠这种“气味语言”来互通信息。

你想啊,蚂蚁走了一段,发现路好像不太对劲,走了一段又掉头,这些信息都会通过留下的气味,快速地传递给它们的同伴。

于是,蚂蚁就会一边走,一边感应到别的蚂蚁走过的气味,慢慢地找到了最优的路径。

你能想象吗?这一整套操作,看似简单,实际却高效得不得了。

不过啊,要说到最神奇的,还是蚂蚁在面对选择的时候,它们完全不是盲目地跟随别人走。

它们会根据地上不同的气味强度来判断,哪条路更短,哪条路更有效率。

就像是你去吃饭时,看到大街上的人排队,看到哪个餐厅排的人多,你就觉得那个地方的饭肯定好吃,顺着人流走。

蚂蚁也是这么做的,它们会跟着气味最浓的那条路走,越走越快,越走越准,最后竟然找到了最佳的路线。

我们人类也能从蚂蚁的行为中学到点东西。

就拿我们自己找工作来说吧,如果找工作的方法不对,可能就会绕弯子,白白浪费时间。

就像蚂蚁一样,找到捷径才是王道,千万别总是觉得漫无目的地走一走就能找到对的东西。

你想想,蚂蚁都能靠气味找到最近的路,我们怎么能不动脑筋呢?说到这里,我不得不提个小细节:蚂蚁并不是一开始就能找到最短的路。

北师大版-数学-八年级上册-第一章第3节蚂蚁怎样走最近 作业

北师大版-数学-八年级上册-第一章第3节蚂蚁怎样走最近 作业

北师大版八年级上第一章第3节蚂蚁怎样走最近 作业一、积累·整合1. 在直角三角形ABC 中, ∠C=900,,BC=12,CA=5,AB= ______.2. 如果直角三角形的一条直角边长为40,斜边长为41,那么另一条直角边的长为______.3. 如图:有一圆柱,它的高等于cm 8,底面直径等于cm 4(3=π) 在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点 处的食物,需要爬行的最短路程大约是 ( )A cm 10B cm 12C cm 19D cm 20二、拓展·应用 4 .如图,已知直角三角形ABC 的两直角边AC,BC 的长分别为4cm,3cm,求斜边AB 上的高CD 的长.5.某人拿一根竹竿进3米宽的矩形城门,竹竿竖起来比城门高1米,把竹竿斜着拿,两端恰好顶着城门的对角,竹竿有多长?6. 如图,AD ⊥AB,BC ⊥AB,AB=20,AD=8,BC=12,E 为AB 上一点,且DE=CE,求AE. A E BD7.小明要外出旅游,他带的行李箱长cm 40,宽cm 30,高cm 60,一把cm 80长的雨伞能否装进这个行李箱?三、探索·创新BACDBCBA C8. 印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题。

9.观察下表:请你结合该表格及相关知识,求出b, c的值.简明答案1. 132. 93. A 解析:画出展开图4. 2.4 解析:利用三角形的面积求解。

5. 5米解析:利用方程知识6. 127.不可以,解析:402+302+602=6100,802=6400,6100<6400。

8.3.75尺解析:利用方程知识9. b=84, c=85。

解析:132=84+85。

初中数学北师大版《八年级上》《第一章-勾股定理》《1.3-蚂蚁怎样走最近》精选专项试题训练【55】(

初中数学北师大版《八年级上》《第一章-勾股定理》《1.3-蚂蚁怎样走最近》精选专项试题训练【55】(

初中数学北师大版《八年级上》《第一章勾股定理》《1.3 蚂蚁怎样走最近》精选专项试题训练【55】(含答案考点及解析)班级:___________ 姓名:___________ 分数:___________1.已知等腰三角形的底边长为,腰长为,则这个三角形的面积为 .【答案】12【考点】初中数学知识点》图形与证明》三角形【解析】试题分析:作底边上的高,根据等腰三角形三线合一和勾股定理求出高,再代入面积公式求解即可.解:如图,作底边BC上的高AD,则AB=5cm,BD=×6=3cm,∴AD=,∴三角形的面积为:×6×4=12.考点:1.勾股定理;2.等腰三角形的性质.2.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是A.5B.10C.12D.13【答案】D.【考点】初中数学知识点》图形与证明》三角形【解析】试题分析:在Rt△CAE中,CE=5,AC=12,由勾股定理得:又DE是AB的垂直平分线,∴BE=AE=13.故选D.考点:1.勾股定理;2.线段垂直平分线的性质.3.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.【答案】(1)25; (2)150;(3)12.【考点】初中数学知识点》图形与证明》三角形【解析】试题分析:(1)根据勾股定理可求得AB的长;(2)根据三角形的面积公式计算即可求解;(3)根据三角形的面积相等即可求得CD的长.试题解析:(1)∵在△ABC中,∠ACB=90°,BC=15,AC=20,∴AB2=AC2+BC2,解得AB=25.(2)答:△ABC的面积是150;∵CD是边AB上的高,∴解得:CD=12.答:CD的长是12.考点: 勾股定理.4.在直角三角形ABC中,∠C=90°,BC=12,AC=9,则AB=________.【答案】15【考点】初中数学知识点》图形与证明》三角形【解析】根据勾股定理,直接得出结果:AB====15.5.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为________.【答案】-1【考点】初中数学知识点》图形与证明》三角形【解析】AC=AM==,∴AM=6.在直角三角形ABC中,∠C=90º,如果c=13,a=5,那么b=【答案】12.【考点】初中数学知识点》图形与证明》三角形【解析】试题分析:根据勾股定理直接解答即可.试题解析:如图,因为c=13,a=5,由勾股定理得b=考点: 勾股定理.7.如图,矩形ABCD,AB=5cm,AC=13cm,则这个矩形的面积为______________cm2.【答案】60【考点】初中数学知识点》图形与证明》三角形【解析】根据勾股定理求出BC的长,BC2=132-52=144,则BC=12,面积为5×12=60.8.下列说法不正确的是A.三个角的度数之比为1∶3∶4的三角形是直角三角形B.三个角的度数之比为3∶4∶5的三角形是直角三角形C.三边长度之比为3∶4∶5的三角形是直角三角形D.三边长度之比为5∶12∶13的三角形是直角三角形【答案】B【考点】初中数学知识点》图形与证明》三角形【解析】三个角的度数之比中有两个之和等于另一个,可以判定是直角三角形,另外两边的平方和=第三边的平方,也可以判定是直角三角形,三个角的度数之比为3∶4∶5的三角形,三个角分别是45度、60度和75度,不是直角三角形.9.已知:a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2+b2)(a2-b2).②∴c2=a2+b2.③∴△ABC是直角三角形.问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号: ______________;(2)错误的原因为________________________________;(3)本题正确的解题过程:【答案】(1)③ (2)除式可能为零(3)∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2).∴a2-b2=0或c2=a2+b2.当a2-b2=0时,a=b;当c2=a2+b2时,∠C=90度,∴△ABC是等腰三角形或直角三角形.【考点】初中数学知识点》图形与证明》三角形【解析】(1)(2)两边都除以a2-b2,而a2-b2的值可能为零,由等式的基本性质,等式两边都乘以或除以同一个不为0的整式,等式仍然成立.(3)根据等式的基本性质和勾股定理,分情况加以讨论.10.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.【答案】108【考点】初中数学知识点》图形与证明》三角形【解析】因为,所以△是直角三角形,且两条直角边长分别为9、12,则以两个这样的三角形拼成的长方形的面积为.11.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是 .【答案】15【考点】初中数学知识点》图形与证明》三角形【解析】设第三个数是,①若为最长边,则,不是整数,不符合题意;② 若17为最长边,则,三边是整数,能构成勾股数,符合题意,故答案为:15.12.若一个三角形的三边长的平方分别为:32,42,x2则此三角形是直角三角形的x2的值是A.42B.52C.7D.52或7【答案】D【考点】初中数学北师大版》八年级上》第一章勾股定理》1.3 蚂蚁怎样走最近【解析】试题分析:根据勾股定理的逆定理列出方程解即可.根据勾股定理的逆定理列出方程解则可,有42是斜边或者x2是斜边两种情况.当42是斜边时,32+x2=42,x2=42-32=7;当x2是斜边时,x2=32+42=52,故选D.考点:本题考查了勾股定理的逆定理点评:在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,然后进行计算.注意本题有两种情况.13.满足下列条件的△ABC,不是直角三角形的是A.b2=c2-a2B.a∶b∶c=3∶4∶5C.∠C=∠A-∠BD.∠A∶∠B∶∠C=12∶13∶15【答案】D【考点】初中数学北师大版》八年级上》第一章勾股定理》1.2 能得到直角三角形吗【解析】试题分析:根据勾股定理的逆定理及三角形的内角和定理依次分析各项即可.A、由b2=c2-a2得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;B、由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;C、由三角形三个角度数和是180°及∠C=∠A-∠B解得∠A=90°,故是故是直角三角形;。

《蚂蚁怎样走最近》同步练习 2022年北师大版八上

《蚂蚁怎样走最近》同步练习 2022年北师大版八上

3 蚂蚁怎样走最近一、目标导航知识目标:能运用勾股定理及直角三角形的判别条件〔即勾股定理的逆定理〕解决简单的实际问题.能力目标:①学会观察图形,勇于探索图形间的关系,培养学生的空间观念.②在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感目标:①通过有趣的问题提高学习数学的兴趣.②在解决实际问题的过程中,体验数学学习的实用性,表达人人都学有用的数学. 二、根底过关1.斜边长25cm ,一条直角边长7cm ,这个直角三角形的面积为 .2.轮船在大海中航行,它从A 点出发,向正北方向航行20km ,遇到冰山后折向正东方向航行15km ,那么此时轮船与A 点的距离为 .3.欲登12米高的建筑物,梯子底端离建筑物5米,梯子的长度至少 米.4.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,红莲移动的水平距离为2米,问这里水深是 米.5.在直线l 上依次摆放着七个正方形〔如下图〕.斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1234S S S S 、、、,那么1234S S S S +++=_______.5题图6.一只蚂蚁沿直角三角形的边爬行一周需2秒,如果将直角三角形的边扩大1倍,那么这只蚂蚁再沿边爬行一周需〔 〕A .2秒B .4秒C .6秒D .8秒7.某市在旧城改造中,方案在市内一块如下图的三角形空地上种植草皮以美化环境,这种草皮每平方米售价a 元,那么购置这种草皮至少需要〔 〕A .450a 元B .225a 元C .150a 元D .300a 元8.,如图长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,那么△ABE 的面积为〔 〕A .6cm 2B .8cm 2C .10cm 2D .12cm 2三、能力提升9.小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.150°20m 30m 第7题图 A E FC 第8题图10.小明的叔叔家承包了一个矩形鱼池,其面积为48m 2,其对角线长为10m ,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?11.在某一平地上,有一棵树高8米的大树,一棵树高3米的小树,两树之间相距12米.今一只小鸟在其中一棵树的树梢上,要飞到另一棵树的树梢上,问它飞行的最短距离是多少?〔画出草图然后解答〕12.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,DA =15km ,CB =10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,那么E 站应建在离A 站多少km 处?13.一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?ADE BC14.假期中,王强和同学到某海岛上去探宝旅游,按照探宝图〔如图〕,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,再折向北走到6千米处往东一拐,仅走1千米就找到宝藏,问登陆点A到宝藏点B的直线距离是多少千米?四、聚沙成塔①勾股定理的别称:中国:勾股定理希腊:毕达哥拉斯定理埃及:埃及三角形法国、比利时:驴桥定理②读一读:古今中外几乎不谋而合地发现和应用了勾股定理.它充分表现了勾股定理是自然界最本质,最根本的规律.所以,在人类借助宇宙飞船设法寻找“外星人〞的时候,中国著名数学家华罗庚建议,用一幅勾股定理的数形关系图作为与“外星人〞交谈的语言.3 蚂蚁怎样走最近1.84 cm 2 2.25k m 3.13 4.325.4 6.B 7.C 8.A 9.12米 10.提示:设长为x m , 宽为y m ,根据题意,得2248100xy x y =⎧⎨+=⎩∴86x y =⎧⎨=⎩ 2(86)28c m =+= 11.提示:过A 为AE ⊥CD 于E ,∵AB =CE =3cm , CD =8cm DE =5m ∴AE =BC =12m ∴AD =22DE AE +=22512+=13m ∴最短距离为13m . 12.提示:设AE =x k m BE =(25)x -k m ∵DE =CE 且DE =22AD AE + CE =22BE BC + ∴2215x +=2(25)100x ++ ∴10x =∴E 点应建在离A 站10km 处13.提示:能通过,∵AB =2cm ∴AO =BO =CO =1cm ∵2.3m +1m =3.3m ∴3.3m >2.5m 且2m >1.6m ;∵OD =12AB -BD =0.8m CD =CH -DH =0.2m ∴22oc OD CD =+=21017m <1m ∴能通过.14.提示:过B 作BC ⊥AD 于C ,∴BC =2+6=8k m ,AC =8-〔3-1〕=6k m ∴2210AB BC AC km=+=2 一次函数一、目标导航知识目标:①理解一次函数和正比例函数的概念,以及它们之间的关系.②通过由信息写一次函数表达式的过程,开展学生的数学应用能力. 能力目标:①经历一般规律的探索过程、开展学生的抽象思维能力.②经历利用一次函数解决实际问题的过程,开展学生的数学应用能力. 二、根底过关1.以下函数:〔1〕43y x =+; 〔2〕12y x =-; 〔3〕1y x=; 〔4〕2y x =; 〔5〕1y x =-中,一次函数有〔 〕A .1个B .2个C .3个D .4个2.以下函数中,是一次函数但不是正比例函数的是〔 〕A .3xy =-B .3y x=-C .12x y +=D .212x y x+=3.以下关系中,是正比例关系的是〔 〕A .当路程s 一定时,速度v 与时间t ;B .圆的面积S 与圆的半径r ;C .正方体的体积V 与棱长a ;D .正方形的周长C 与它的一边长a . 4.假设22(1)m y m x -=-是正比例函数,那么m 的值为〔 〕 A .1 B .-1 C .1或-1D .22-5.假设52y +与3x -成正比例,那么y 是x 的〔 〕 A .正比例函数 B .一次函数 C .没有函数关系 D .以上答案都不正确6.假设函数23y x b =+-是正比例函数,那么b =_______.7.正方形的周长为L ,面积为S ,用L 表示S 的函数关系式为___________.8.某学生的家离学校2km ,他以16km/min 的速度骑车到学校,•写出他与学校的距离s 〔km 〕和骑车的时间t 〔min 〕的函数关系式为_________,s 是t 的________函数.9.从含盐5%的盐水y kg 中,蒸去x kg 水分,制成含盐20%的盐水,那么y 与x 之间的函数关系式为________.10.当3x =-时,函数y x k =+和1y kx =-的值相等,那么k 的值为_______. 11.设函数2(2)1my m m -=-++,当m =______时,它是一次函数;当m =______时,它是正比例函数.12.粮库有粮50吨,每天运走5吨,写出剩下的粮食P 〔吨〕与运粮的天数t 〔天〕的函数关系式,并指出自变量的取值范围.三、能力提升13.某汽车油箱中存油20kg ,油从管道匀速流出,经210min 流尽.〔1〕写出油箱中剩余油量y 〔kg 〕与流出的时间x 〔min 〕之间的函数关系式; 〔2〕经过多少小时后,流出的油量是剩余油量的三分之二?14.某商店售货时,在进价的根底上加一定的利润,其数量x 与售价y 如下表所示,请你根据表中所提供的信息,列出售价y 与数量x 的函数关系式,并求出当数量是2.5千克时的售价是多少元?15.弹簧挂上物体后会伸长,测得某弹簧的长度y 〔cm 〕与所挂物体的质量x 〔kg 〕有下面的关系,如表所示.那么弹簧的总长y 〔cm 〕与所挂物体质量x 〔kg 〕之间的函数关系式为16段到达节约用水目的,收费标准如下:每户每月用水未超过6m 3时,每平方米收费1.0元,超过6m 3时,超过局部每立方米收费1.8元,设某户月用水量为x 〔m 3〕,应交水费为y 〔元〕.〔1〕分别写出用水未超过6m 3和超过6m 3时,y与x 的函数关系式; 〔2〕假设某户6月份共交水费8.8元,求该户这个月用水多少立方米?17.在“保护母亲河行动──云南绿色希望工程〞活动中,发行了一种卡,目的在于新世纪之初建设万亩青少年新世纪林.此种卡面值12元,其中10•元为通话费,2元捐给“云南绿色希望工程〞基金,另附赠1元的通话费,•假设以发行的卡数为自变量x,“云南绿色希望工程〞基金为函数y.〔1〕写出y与x之间的函数关系式,并指出自变量x的取值范围;〔2〕购置一张这样的卡,实际可有多少元的通话费?•植树一亩需费用400元,假设今年我市九年级毕业生共有46 000人,每人购置一张卡,那么该项基金可植树多少亩?18.某公司推销一种产品,设x〔件〕是推销产品的数量,y〔元〕是推销费,以下图表示公司每月付给推销员推销费的两种方案,看图解答以下问题:〔1〕求y1与y2的函数表达式;〔2〕解释图中表示的两种方案是如何付推销费的?〔3〕如果你是推销员,应如何选择付费方案?19.某食品批发部准备用10 000•元从厂家购进一批出厂价分别为16元和20元的甲、乙两种酸奶,然后将甲、乙两种酸奶分别加价20%和25%向外销售.如果设购进甲种酸奶为x〔箱〕,全部售出这批酸奶所获销售利润为y〔元〕.〔1〕求所获销售利润y〔元〕与x〔箱〕之间的函数关系式;〔2〕根据市场调查,甲、乙两种酸奶在保质期内销售量都不超过300箱,那么食品批发部怎样进货获利最大,最大销售利润是多少?四、聚沙成塔20.中国移动通信已于2021年年3月21日开始在所属18个省、•市移动公司陆续推出“全球通〞移动资费“套餐〞,这个“套餐〞的最大特点是针对不同的用户采取了不同的收费方式,具体方案如表所示:每月实际收入水平,选中上表中的方案3,请问:〔1〕“套餐〞中第3种收费方式的月话费y与月通话费t〔月通话量是指一个月内每次通话用时之和〕的关系式是什么?它是一次函数吗?〔2〕取第3种收费方式,通话量为多少时比原收费方式的月通话费省钱?2 一次函数1.C 2.C 3.D 4.B 5.B 7.S =116L 28.s =2-16t ,一次 9.y =43x 10.1211.±1,-1 12.P =50-5t 〔0≤t ≤10〕. 13.〔1〕y =20-221x ;〔2〕根据题意,得221x =23〔20-221x 〕,解得x =84〔m in 〕.14.y =8xxx ,∴y 是x 的正比例函数.当x =2.5时,y =8.4×2.5=21,即当数量是2.5千克时的售价是21元.15.由表中可知,弹簧原长为12cm ,每增加1kg 质量,弹簧伸长为0.5cm ,故yx . 16.〔1〕当x ≤6时,y =x ,当x >6时,y =6×1+〔x -6〕×1.8=1.8x -4.8;〔2〕当水费为8.8元时,那么该户的月用水量超过了6m 3,把yyx -4.8,得x =759. 17.〔1〕y 与x 的函数关系式为:y =2x ,自变量x 的取值范围是:x ≥0的整数.〔2〕购置一张这种 卡实际通话费为10+1=11〔元〕, 当x =46 000时,y =2x =2×46 000=92000,92 000÷400=230〔亩〕. 18.〔1〕设y 1=kx 1+b 1,y 2=kx 2+b 2.12112212120,300,30600;30600.20,10,0;300.b b k b k b k k b b ==⎧⎧⎨⎨+=+=⎩⎩==⎧⎧∴⎨⎨==⎩⎩则 ∴y 1=20x ,y 2=10x +300.〔2〕y 1是不推销产品没有推销费,每推销10件得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.〔3〕假设业务能力强,平均每月能保证推销多于30件,就选择y 1的付费方案;•否那么选择y 2的付费方案.19.〔1〕解法一:根据题意,得y =16×20%·x +20×25%×100001620x-=-0.8x +2 500,解法二:•y =16·x ·20%+〔10 000-16x 〕·25%=-0.8x +2 500.〔2〕解法一:由题意知300,1000016300.20x x ≤⎧⎪-⎨≤⎪⎩,解得250≤x ≤300.由〔1〕知y =-0.8x +2 500,∵k =-0.8<0,∴y 随x 的增大而减小, ∴当x =250时,y 值最大,此时y =-0.8×250+2 500=2 300〔元〕, ∴100001620x -=100001625020-⨯=300〔箱〕.答:当购进甲种酸奶250箱,•乙种酸奶300箱时,所获销售利润最大,最大销售利润为2 300元. •解法二:•因为16•×20%<20×25%,即乙种酸奶每箱的销售利润大于甲种酸奶的销售利润,•因此最大限度的购进乙种酸奶时所获销售利润最大,即购进乙种酸奶300箱,那么x =100002030016-⨯=250〔箱〕.由〔1〕知y =-0.8x +2 500,•∴x =250时,y 值最大,此时y =-0.8×250+2 500=2 300〔元〕.聚沙成塔:〔1〕当t ≤300m in 时,y =168,不是一次函数,当t >300m in 时,y =168+〔tt +3是一次函数;〔2〕原收费方式的月话费为:50+0.4t,由题意得50+0.4t>168,得ttt+3,得t<470.即当通话时间在295m in到470m in之间时,选用方案3比原收费方式要省钱.。

数学:第一章-3《蚂蚁怎样走最近》(北师大版八年级)

数学:第一章-3《蚂蚁怎样走最近》(北师大版八年级)

;/ 三菱空调维修 三菱空调 ;

己会傻到去救这些人吗,又没有美人在里面丶"别自视清高了。"红柳白了他壹眼,右手壹挥,便带着根汉瞬移出去了几百万里,这家伙の实力也确实是惊人丶;猫补中文肆0肆叁年轻女人(猫补中文)别看这女人长の如此貌美,但要是真动起手来,根汉可完全不是这女人の对手,甚至都走 不上一些回合丶由红柳带着他壹阵瞬移,壹次瞬移就是这么远の距离,而且这女人还几乎不用休息,就可以连续の进行瞬移丶几亿里の距离,对于她来说,竟然也就是几分钟の功夫,就带着根汉来到了这昊宇仙城の外面了丶如此近距离の看着昊宇仙城,根汉也是被眼前の仙城给震撼了, 与其说这是壹座仙城,不如说这就是壹大堆の飘浮在星空中の宫殿所聚在壹起の壹个区域丶仙城之外,有壹圈神光庇护,守护着整个昊宇仙城丶整个昊宇仙城,在星空之下,有大量の像仙岛壹样の,或者是宫殿阁楼壹样の岛,壹小块壹小块の陆地组成丶这些陆地不知道有多少,起码也得 有数十亿座吧,根汉肉眼根本都数不清楚到底有多少丶这些飘浮着の陆地,有大有小,上面居住着各位修行者,这些飘浮在星空中の陆地,就组成了这壹座仙城丶整个这些数十亿座の陆地,组合起来就是昊宇仙城了,像这样の仙城或者说是这样の城池,根汉还是头壹回见丶这里面也没有 城墙,没有城塔,只有这些大大小小の,无数の浮岛丶而唯壹の阻碍,就是外面の这壹圈神光,这圈神光被称为昊宇神光阵,也是唯壹の法阵丶想要进入这昊宇仙城,只要交壹定の灵石就可以进去了,并不会有什么刻薄の要求丶根汉和红柳顺利の进入了仙城,根汉这壹回也算是坐了壹回 红柳の超级火箭了,几分钟就挪了三亿里,这个速度根汉以前从来没有经历过丶进入仙城后,根汉首先便扫了扫附近の壹些修行者の元灵,得知这仙城中の规矩还真是挺多の丶首先是仙城中不允许惹事,尤其是私自斗法之类の事情,会在仙城中被严惩丶昊宇仙城最大の势力呢,只有城 主府,别の势力都是依
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3蚂蚁怎样走最近
专题 最短路径的探究
1. 编制一个底面周长为a 、高为b 的圆柱形花柱架,需用沿圆柱
表面绕织一周的竹条若干根,如图中的A 1C 1B 1,A 2C 2B 2,…,则
每一根这样的竹条的长度最少是______________.
2. 请阅读下列材料:
问题:如图(1),一圆柱的底面半径和高均为5dm ,BC 是底面
直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到点C 的最短路线.
小明设计了两条路线:
路线1:侧面展开图中的线段AC.如下图(2)所示:
设路线1的长度为1l ,则222222212525)5(5π+=π+=+==BC AB AC l ; 路线2:高线AB + 底面直径BC ,如上图(1)所示,
设路线2的长度为2l ,
则225)105()(2222=+=+=BC AB l .
0)8(252002522525252222221>-π=-π=-π+=-l l .
∴2
221l l > ∴21l l >
所以要选择路线2较短。

(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的
底面半径为1dm ,高AB 为5dm ”继续按前面的方式进行计算.
请你帮小明完成下面的计算:
路线1:==221AC l ___________________;
路线2:=+=222)(BC AB l __________ ,
∵2221_____l l , ∴ 21_____l l ( 填>或<).
所以应选择路线____________(填1或2)较短.
(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r,高为h 时,应如何选择上面的两条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短.
比较两个正数的大小,有时用它们的平方来比较更方便
3. 探究活动:有一圆柱形食品盒,它的高等于8cm,底面直径为18
cm,蚂蚁爬行的速度为
2cm/s.
(1)如果在盒内下底面的A处有一只蚂蚁,它想吃到盒内对面中部点B处的食物,那么它至少需要多少时间?(盒的厚度和蚂蚁的大小忽略不计,结果可含根号)
(2)如果在盒外下底面的A处有一只蚂蚁,它想吃到盒内对面中部点B处的食物,那么它至少需要多少时间?(盒的厚度和蚂蚁的大小忽略不计)
答案:
【解析】 底面周长为a 、高为b 的圆柱的侧面展开图为矩形,它的边长分别
为a,b ,所以对角线长为
2.解:(1)25+π 2 49 < < 1
(2)l 12=AC 2=AB 2+BC 2=h 2+(πr )2,
l 22=(AB+BC )2=(h+2r )2,
l 12-l 22=h 2+(πr )2-(h+2r )2=r (π2r-4r-4h )=r[(π2-4)r-4h].
r 恒大于0,只需看后面的式子即可.
当r=
244
h π-时,l 12=l 22; 当r >244
h π-时,l 12>l 22; 当r <244h π-时,l 12<l 22. 3.解:(1)如图,AC=π•18π
÷2=9cm ,BC=4cm ,则蚂蚁走过的最短路径为:
cm 2s ),即至少需要2

(2)如图,作B 关于EF 的对称点D ,连接AD ,交EF 于点P ,连接BP ,则
蚂蚁走的最短路程是AP+PB=AD ,由图可知,AC=9cm ,CD=8+4=12(cm ).
所以(cm ),15÷2=7.5(s )
即至少需要7.5s .。

相关文档
最新文档