量子力学4氢原子与类氢原子的波函数与能级
氢原子的波函数

氢原子是所有原子中最简单的原子,它核外仅有一个电子,电子在核外运动时的势能,只决定于核对它的吸引,它的Schrödinge r方程可以精确求解。
能够精确求解的还有类氢离子,如He+、Li2+离子等。
为了求解方便,要把直角坐标表示的ψ(x,y,z) 改换成球极坐标表示的ψ(r,θ,φ),二者的关系如图8-3所示:r表示P点与原点的距离,θ、φ称为方位角。
x = r sinθcosφy = r sinθsinφz = r cosθ解出的氢原子的波函数ψn,l,m(r,θ,φ)及其相应能量列于表8-1中。
图8-3 直角坐标转换成球极坐标表8-1氢原子的一些波函数及其能量cos cossin sinsin sin* A1、A2、A3、B均为常数为了方便起见,量子力学借用Bohr N H D理论中“原子轨道” (atomic orbit)的概念,将波函数仍称为原子轨道(atomic orbital),但二者的涵义截然不同。
例如:Bohr N H D认为基态氢原子的原子轨道是半径等于52.9 pm的球形轨道。
而量子力学中,基态氢原子的原子轨道是波函数ψ1S(r,θ,φ)=A1e-Br,其中A1 和B均为常数,它说明ψ1S在任意方位角随离核距离r改变而变化的情况,它代表氢原子核外1s电子的运动状态,但并不表示1s电子有确定的运动轨道。
1s电子具有的能量是-2.18³10-18J。
氢原子核外电子的运动状态还有许多激发态,如ψ2s(r,θ,φ)、(r,θ,φ)等,相应的能量是-5.45³10-19J。
要解出薛定谔方程的ψ和E,必须要满足一定的条件,才能使解是合理的,因此,在求解过程中必需引进n , l , m三个量子数。
这三个参数的取值和组合一定时,就确定了一个波函数。
三个量子数的取值限制和它们的物理意义如下:常用符号n表示。
它可以取非零的任意正整数,即1,2,3 …n 。
它决定电子在核外空间出现概率最大的区域离核的远近,并且是决定电子能量高低的主要因素。
量子力学选择题1,2,3

量子力学选择题(1)原子半径的数量级是:CA.10-10cm; B.10-8m C. 10-10m D.10-13m(2)若氢原子被激发到主量子数为n的能级,当产生能级跃迁时可能发生的所有谱线总条数应为:BA.n-1 B .n(n-1)/2 C .n(n+1)/2 D .n(3)氢原子光谱赖曼系和巴耳末系的系线限波长分别为:DA.R/4 和R/9B.R 和R/4C.4/R 和9/RD.1/R 和4/R(4)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为:DA.3Rhc/4 B. Rhc C.3Rhc/4e D. Rhc/e(5)氢原子基态的电离电势和第一激发电势分别是:AA.13.6V和10.2V; B –13.6V和-10.2V;C.13.6V和3.4V;D. –13.6V和-3.4V(6)根据玻尔理论,若将氢原子激发到n=5的状态,则:AA.可能出现10条谱线,分别属四个线系B.可能出现9条谱线,分别属3个线系C.可能出现11条谱线,分别属5个线系D.可能出现1条谱线,属赖曼系(7)欲使处于激发态的氢原子发出Hα线,则至少需提供多少能量(eV)?BA.13.6B.12.09C.10.2D.3.4(8)氢原子被激发后其电子处在第四轨道上运动,按照玻尔理论在观测时间内最多能看到几条线?DA.1B.6C.4D.3(9)氢原子光谱由莱曼、巴耳末、帕邢、布喇开系…组成.为获得红外波段原子发射光谱,则轰击基态氢原子的最小动能为: DA .0.66 eV B.12.09eV C.10.2eV D.12.75eV(10)用能量为12.75eV的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋); AA.3B.10C.1D.4(11)按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的:CA.1/10倍B.1/100倍 C .1/137倍 D.1/237倍(12)已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的“正电子素”那么该“正电子素”由第一激发态跃迁时发射光谱线的波长应为:CA.3R/8 B.3R/4 C.8/3R D.4/3R(13)电子偶素是由电子和正电子组成的原子,基态电离能量为:CA.-3.4eVB.+3.4eVC.+6.8eVD.-6.8eV(14)根据玻尔理论可知,氦离子H e+的第一轨道半径是: A(a). a0/2 (b). a0/4 (c).2a0(d). 4a0(15)假设氦原子(Z=2)的一个电子已被电离,如果还想把另一个电子电离,若以eV为单位至少需提供的能量为:AA.54.4 B.-54.4 C.13.6 D.3.4(16)在H e+离子中基态电子的结合能是:BA.27.2eVB.54.4eVC.19.77eVD.24.17eV(17)处于基态的氢原子被能量为12.09eV的光子激发后,其轨道半径增为原来的CA.4倍 B.3倍 C.9倍 D.16倍(18)为了证实德布罗意假设,戴维孙—革末于1927年在镍单晶体上做了电子衍射实验从而证明了:BA.电子的波动性和粒子性B.电子的波动性C.电子的粒子性D.所有粒子具有波粒二象性(19)如果一个原子处于某能态的时间为10-7S,原子这个能态能量的最小不确定数量级为(以焦耳为单位):BA.10-34; B.10-27; C.10-24; D.10-30(20)将一质子束缚在10-13cm的线度内,则估计其动能的量级为:AA. eV;B. MeV;C. GeV,D.10-20J(21)按量子力学原理,原子状态用波函数来描述.不考虑电子自旋,对氢原子当nl确定后,对应的状态数为:DA.n2;B.2n;C.l;D.2l+1(22).用波尔-索末菲(Bohr-Sommerfeld)的量子化条件得到的一维谐振子的能量为(n = 0,1,2,L)CA.En=nħω .B. En=(n+1/2) ħωC. En = (n+1)ħω.D. En= 2nħω .(23). 康普顿效应证实了CA.电子具有波动性.B. 光具有波动性.C.光具有粒子性.D. 电子具有粒子(24). 设ψ(x)=δ(x),在x −x+dx 范围内找到粒子的几率为D A.δ (x ) B.δ (x)dx C.δ2(x) D.δ2(x)dx(25).设ψ1(x)和ψ2(x)分别表示粒子的两个可能运动状态,则它们线性迭加的态c 1ψ1+ c 2ψ2的几率分布为D(26).波函数应满足的标准条件是DA.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限.(27).有关微观实物粒子的波粒二象性的正确表述是C A.波动性是由于大量的微粒分布于空间而形成的疏密波. B.微粒被看成在三维空间连续分布的某种波包. C.单个微观粒子具有波动性和粒子性. D. A, B, C 都对(28).下列哪种论述不是定态的特点CA.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量(29).在一维无限深势阱中运动的粒子,其体系的A A.能量是量子化的,而动量是连续变化的. B.能量和动量都是量子化的. C.能量和动量都是连续变化的. D.能量连续变化而动量是量子化的(30).线性谐振子的AA.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的.(31).在极坐标系下,氢原子体系在不同球壳内找到电子的几率为D(32). 在极坐标系下,氢原子体系在不同方向上找到电子的几率为D*21*212*12*12222112*1212222112*121222*********.2...ψψψψψψψψψψψψψψψψC C C C C C D C C C C C C C C C B C C A ++++++++dr r r R D rdr r R C r r R B r r R A nl nl nlnl 222222)(.)(.)(.)(.(33). F和G是厄密算符,则DA.FG必为厄密算符.B.FG−GF必为厄密算符.C.i(FG+GF)必为厄密算符.D.i(FG−GF)必为厄密算符(34).一维自由粒子的运动用平面波描写,则其能量的简并度为BA.1.B. 2.C. 3.D. 4.(35).若不考虑电子的自旋,氢原子能级n=3 的简并度为CA. 3.B. 6.C. 9.D. 12(36).氢原子能级的特点是DA.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小.(37).一维自由粒子的能量本征值BA. 可取一切实数值.B.只能取不为负的一切实数.C.可取一切实数,但不能等于零.D.只能取不为正的实数.(38).体系处于ψ=C1Y11+C2Y10态中,则ψBA.是体系角动量平方算符、角动量Z 分量算符的共同本征函数.B.是体系角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.C.不是体系角动量平方算符的本征函数,是角动量Z 分量算符的本征函数.D.即不是角动量平方算符的本征函数,也不是角动量Z 分量算符的本征函数.(39).幺正变换BA.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢.(40).氢原子的一级斯塔克效应中,对于n = 2 的能级由原来的一个能级分裂为CA. 五个子能级.B. 四个子能级.C. 三个子能级.D. 两个子能级.(41).Stern-Gerlach 实验证实了DA. 电子具有波动性.B.光具有波动性.C. 原子的能级是分立的.D. 电子具有自旋.(42).下列有关全同粒子体系论述正确的是AA.氢原子中的电子与金属中的电子组成的体系是全同粒子体系.B.氢原子中的电子、质子、中子组成的体系是全同粒子体系.C.光子和电子组成的体系是全同粒子体系.D.α粒子和电子组成的体系是全同粒子体系.(43).全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数A.是对称的.B.是反对称的.C.具有确定的对称性.D.不具有对称性.(44). 完全描述微观粒子运动状态的是:( C)(A) 薛定谔方程(B)测不准关系(C)波函数(D) 能量(45). 完全描述微观粒子运动状态变化规律的是:( C)(A)波函数(B) 测不准关系(C) 薛定谔方程(D) 能级(46). 若光子与电子的波长相等,则它们:(C )(A)动量及总能量均相等(B) 动量及总能量均不相等(C)动量相等,总能量不相等(D)动量不相等,总能量相等1、下列实验哪个不能证明辐射场的量子化[ D ](A)、光电效应 (B)、原子光吸收(C)、黑体辐射 (D)、电子晶体衍射2、下面哪个实验现象不能说明电子自旋的存在[ C ]A. 原子光谱精细结构B.反常塞曼效应C. 光的康普顿散射D.斯特恩-盖拉赫实验3、分别处于p 态和d 态的两个电子,它们的总角动量的量子数的取值是[ D ]A. 0,1,2,3,4.B.1,2,3,4.C. 0,1,2,3.D.1,2,3.4、下列哪位科学家不是因为量子力学与原子物理方面的贡献而获得诺贝尔奖的是[ D ](A). 波尔 (B).狄拉克 (C).薛定谔 (D). 德拜5、金属的光电效应的红限依赖于:[ C ](A)入射光的频率 (B)入射光的强度(C)金属的逸出功 (D)入射光的频率和金属的逸出功6、以下关于力学量算符,表述和正确的是:[ D ](A)、力学量算符的数学形式是算子(B)、力学量算符的数学形式是矩阵(C)、定义在希尔伯特空间的映射,对态矢量的任意映射都是算符(D)、定义在希尔伯特空间的映射,把一个态矢量映射为另一个态矢量的才是算符。
氢原子的量子理论-作业(含答案)

第26章 氢原子的量子理论习题 (初稿)一、填空题1. 氢原子的波函数可以写成如下形式(,,)()(,)l l nlm nl lm r R r Y ψθϕθϕ=,请给出电子出现在~r r dr +球壳的概率为___________,电子出现在(),θϕ方向立体角d Ω的概率为_______________。
2. 泡利不相容原理是指______________,原子核外电子排布除遵循泡利不相容原理外,还应遵循的物理规律是__________。
3. 可以用用 4 个量子数描述原子中电子的量子态,这 4 个量子数各称和取值围怎样分别是:(1)(2)(3)(4)。
4. 根据量子力学原理,如果不考虑电子自旋,对氢原子当n 确定后,对应的总量子态数目为__个,当n 和l 确定后,对应的总量子态数目为____个5. 给出以下两种元素的核外电子排布规律: 钾(Z=19):铜(Z=29): _____6. 设有某原子核外的 3d 态电子,其可能的量子数有个,分别可表示为____________________________。
7. 电子自旋与其轨道运动的相互作用是何种性质的作用。
8. 类氢离子是指___________________,里德伯原子是指________________。
9. 在主量子数为n=2,自旋磁量子数为s=1/2的量子态中,能够填充的最大电子数是________。
10. 1921年斯特恩和格拉赫实验中发现,一束处于s 态的原子射线在非均匀磁场中分裂为两束,对于这种分裂用电子轨道运动的角动量空间取向量子化难于解释,只能用_________来解释。
二、计算题11. 如果用13.0 eV 的电子轰击处于基态的氢原子,则: (1)氢原子能够被激发到的最高能级是多少?(2)氢原子由上面的最高能级跃迁到基态发出的光子可能波长为多少? (3)如果使处于基态的氢原子电离,至少要多大能量的电子轰击氢原子?12. 写出磷的电子排布,并求每个电子的轨道角动量。
量子力学补充习题集1

河北科技师范学院物理专业试用量子力学补充习题集数理系物理教研室二OO五年八月第一章 量子力学的实验基础1-1 求证:﹙1﹚当波长较短(频率较高)。
温度较低时,普朗克公式简化为维恩公式;﹙2﹚当波长较长(频率较低),温度较高时,普朗克公式简化为瑞利—金斯公式。
1-2 单位时间内太阳辐射到地球上每单位面积的能量为1324J.m -2.s -1,假设太阳平均辐射波长是5500A,问这相当于多少光子?1-3 一个质点弹性系统,质量m=1.0kg ,弹性系数k=20N.m -1。
这系统的振幅为0.01m 。
若此系统遵从普朗克量子化条件,问量子数n 为何?若n 变为n+1,则能量改变的百分比有多大?1-4 用波长为2790A和2450A 的光照射某金属的表面,遏止电势差分别为0.66v 与1.26v 。
设电子电荷及光速均已知,试确定普朗克常数的数值和此金属的脱出功。
1-5 从铝中移出一个电子需要4.2ev 能量,今有波长为2000A 的光投射到铝表面,试问:(1)由此发射出来的光电子的最大动能是多少?(2)铝的红限波长是多少?1-6 康普顿实验得到,当x 光被氢元素中的电子散射后,其波长要发生改变,令λ为x 光原来的波长,λ'为散射后的波长。
试用光量子假说推出其波长改变量与散射角的关系为2sin42θπλλλmc=-'=∆ 其中m 为电子质量,θ为散射光子动量与入射方向的夹角(散射角)1-7 根据相对论,能量守恒定律及动量守恒定律,讨论光子与电子之间的碰撞:(1)证明处于静止的自由电子是不能吸收光子的;(2)证明处于运动状态的自由电子也是不能吸收光子的。
1-8 能量为15ev 的光子被氢原子中处于第一玻尔轨道的电子吸收而形成一光电子。
问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?1-9 两个光子在一定条件下可以转化为正负电子对,如果两个光子的能量相等,问要实现这种转化光子的波长最大是多少?1-10 试证明在椭圆轨道情况下,德布罗意波长在电子轨道上波长的数目等于整数。
量子力学中要用到的数学知识大汇总

量子力学中要用到的数学知识大汇总第一章矩阵1.1矩阵的由来、定义和运算方法1.矩阵的由来2.矩阵的定义3.矩阵的相等4.矩阵的加减法5.矩阵和数的乘法6.矩阵和矩阵的乘法7.转置矩阵8.零矩阵9.矩阵的分块1.2行矩阵和列矩阵1.行矩阵和列矩阵2.行矢和列矢3.Dirac符号4.矢量的标积和矢量的正交5.矢量的长度或模6.右矢与左矢的乘积1.3方阵1.方阵和对角阵2.三对角阵3.单位矩阵和纯量矩阵4.Hermite矩阵5.方阵的行列式,奇异和非奇异方阵6.方阵的迹7.方阵之逆8.酉阵和正交阵9.酉阵的性质10.准对角方阵11.下三角阵和上三角阵12.对称方阵的平方根13.正定方阵14.Jordan块和Jordan标准型1.4行列式求值和矩阵求逆1.行列式的展开/doc/4b14802796.html,place展开定理3.三角阵的行列式4.行列式的初等变换及其性质5.利用三角化求行列式的值6.对称正定方阵的平方根7.平方根法求对称正定方阵的行列之值8.平方根法求方阵之逆9.解方程组法求方阵之逆10.伴随矩阵11.伴随矩阵法求方阵之逆1.5线性代数方程组求解1.线性代数方程组的矩阵表示2.用Cramer法则求解线性代数方程组3.Gauss消元法解线性代数方程组4.平方根法解线性代数方程组1.6本征值和本征矢量的计算1.主阵的本征方程、本征值和本征矢量2.GayleyHamilton定理及其应用3.本征矢量的主定理4.Hermite方阵的对角化——计算本征值和本征矢量的Jacobi法1.7线性变换1.线性变换的矩阵表示2.矢量的酉变换3.相似变换4.等价矩阵5.二次型6.标准型7.方阵的对角化参考文献习题第二章量子力学基础2.1波动和微粒的矛盾统一1.从经典力学到量子力学2.光的波粒二象性3.驻波的波动方程4.电子和其它实物的波动性——de Broglie关系式5.de Broglie波的实验根据6.de Broglie波的统计意义7.态叠加原理8.动量的几率——以动量为自变量的波函数2.2量子力学基本方程——Schrdinger方程1.Schrdinger方程第一式2.Schrdinger方程第一式的算符表示3.Schrdinger方程第二式4.波函数的物理意义5.力学量的平均值(由坐标波函数计算)6.力学量的平均值(由动量波函数计算)2.3算符1.算符的加法和乘法2.算符的对易3.算符的平方4.线性算符5.本征函数、本征值和本征方程6.Hermite算符7.Hermite算符本征函数的正交性——非简并态8.简并本征函数的正交化9.Hermite算符本征函数的完全性10.波函数展开为本征函数的叠加11.连续谱的本征函数12.Dirac δ函数13.动量的本征函数的归一化14.Heaviside阶梯函数和δ函数2.4量子力学的基本假设1.公理方法2.基本概念3.假设Ⅰ——状态函数和几率4.假设Ⅱ——力学量与线性Hermite算符5.假设Ⅲ——力学量的本征状态和本征值6.假设Ⅳ——态随时间变化的Schrdinger方程7.假设Ⅴ——Pauli互不相容原理2.5关于定态的一些重要推论1.定态的Schrdinger方程2.力学量具有确定值的条件3.不同力学量同时具有确定值的条件4.动量和坐标算符的对易规律5.Hesienberg测不准关系式2.6运动方程1.Heisenberg运动方程——力学量随时间的变化2.量子Poisson括号3.力学量守恒的条件4.几率流密度和粒子数守恒定律5.质量和电荷守恒定律6.Ehrenfest定理2.7维里定理和HellmannFeynman定理1.超维里定理2.维里定理3.Euler齐次函数定理4.维里定理的某些简化形式5.HellmannFeynman定理2.8表示论1.态的表示2.算符的表示3.另一套量子力学的基本假设参考文献习题第三章简单体系的精确解3.1自由粒子1.一维自由粒子2.三维自由粒子3.2势阱中的粒子1.一维无限深的势阱2.多烯烃的自由电子模型3.三维长方势阱4.圆柱体自由电子模型3.3隧道效应——方形势垒1.隧道效应2.Schrdinger方程3.波函数中系数的确定(E>V0)4.贯穿系数与反射系数(E>V0)5.能量小于势垒的粒子(E<V0)3.4二阶线性常微分方程的级数解法1.二阶线性常微分方程2.级数解法3.正则奇点邻域的级数解法4.若干二阶线性微分方程3.5线性谐振子和Hermite多项式1.线性谐振子2.幂级数法解U方程3.谐振子能量的量子化4.Hermite微分方程与Hermite多项式5.Hermite多项式的递推公式6.Hermite多项式的微分式定义——Rodrigues公式7.Hermite多项式的母函数展开式定义8.谐振子的波函数——Hermite正交函数9.矩阵元的计算参考文献习题第四章氢原子和类氢离子4.1Schrdinger方程1.氢原子质心的平移运动2.氢原子中电子对核的相对运动3.氢原子作为两个质点的体系4.坐标的变换5.变量分离6.球坐标系7.球坐标系中的变量分离8.Φ方程之解9.θ方程之解10.R方程之解11.能级4.2Legendre多项式1.微分式定义2.幂级数定义3.母函数展开式定义和递推公式4.母函数的展开5.正交性6.归一化4.3连带Legendre函数1.微分式定义2.递推公式3.正交性4.归一化4.4laguerre多项式和连带Laguerre函数1.母函数展开式定义2.微分式定义3.级数定义4.积分性质5.连带Laguerre多项式和连带Laguerre函数6.连带Laguerre多项式的母函数展开式定义7.连带Laguerre多项式的级数定义8.连带Laguerre函数的积分性质4.5类氢原子的波函数1.类氢原子的波函数2.氢原子的基态3.径向分布4.角度分布5.电子云的空间分布6.波函数的等值线图和立体表示图参考文献习题第五章角动量和自旋5.1角动量算符1.经典力学中的角动量2.角动量算符3.对易规则4.Hamilton算符与角动量算符的对易规则5.三??算符具有相同本征函数的条件6.角动量的本征函数5.2阶梯算符法求角动量的本征值1.角动量算符的对易规则2.阶梯算符的性质3.阶梯算符的作用4.角动量的本征值5.3多质点体系的角动量算符1.经典力学中多质点体系的角动量2.总角动量算符及其对易规则3.多电子原子的Hamilton算符的对易规则5.4电子自旋1.电子自旋2.假设Ⅰ——自旋角动量算符的对易规则3.假设Ⅱ——单电子自旋算符的本征态和本征值4.电子自旋的阶梯算符5.自旋算符的矩阵表示6.假设Ⅲ——自由电子的g因子参考文献习题第六章变分法和微扰理论6.1多电子体系的Schrdinger方程1.原子单位2.多电子分子的Schrdinger方程3.BornOppenheimer原理4.多电子体系的Schrdinger方程举例5.多电子体系的Schrdinger方程的近似解法6.2变分法1.最低能量原理2.变分法3.氦原子和类氦离子的变分处理(一)4.氦原子和类氦离子的变分处理(二)5.激发态的变分原理6.线性变分法7.变分法的推广6.3定态微扰理论1.非简并能级的一级微扰理论2.基态氦原子或类氦离子3.简并能级的一级微扰理论4.微扰法在氢原子中的应用5.二级微扰理论6.4含时微扰理论与量子跃迁1.含时微扰理论2.光的吸收与发射3.激发态的平均寿命4.光谱选律5.偶极强度与吸收系数的关系参考文献习题第七章群论基础知识7.1群的定义和实例1.群的定义2.群的几个例子3.乘法表和重排定理4.同构和同态7.2子群、生成元和直积1.子群2.生成元3.直积7.3陪集、共轭元素和类1.陪集/doc/4b14802796.html,grange定理3.共轭元素和类4.置换群的类7.4共轭子群、正规子群和商群1.共轭子群2.正规子群(自轭子群)3.商群和同态定理7.5对称操作群1.对称操作2.操作的乘积3.对称操作群4.共轭对称元素系,同轭对称操作类和两个操作可对易的条件5.生成元、子群和直积7.6分子所属对称群的确定1.单轴群2.双面群3.立方体群4.分子对称群的生成元和生成关系5.晶体学点群6.分子所属对称群的确定参考文献习题第八章群表示理论8.1对称操作的矩阵表示1.基矢变换和坐标变换2.物体绕任意轴的旋转,Euler角3.对称操作的矩阵表示4.函数的变换8.2群的表示1.群表示的定义2.等价表示和特征标3.可约表示和不可约表示,不变子空间4.Schur引理5.正交关系6.正交关系示例7.投影算符和表示空间的约化8.直积群的表示9.实表示和复表示8.3表示的直积及其分解1.表示的直积2.对称积和反对称积3.直积表示的分解4.ClebschGordan系数8.4某些群的不可约表示1.循环群2.互换群3.点群4.回转群5.旋转群6.双值表示8.5群论在量子化学中的应用1.态的分类和谱项2.能级的分裂3.时间反演对称性和Kramers简并4.零矩阵元的鉴别和光谱选律5.矩阵元的计算,不可约张量方法6.久期行列式的劈因子7.不可约表示基的构成8.杂化轨道的构成9.轨道对称性守恒原理这些可是爱考的专业课老师(如果俺考研成功她可就是俺滴学姐啦)珍藏不外漏的当年的笔记啊。
原子物理量子力学主要知识点复习

1.爱因斯坦关系是什么?什么是波粒二象性?答:爱因斯坦关系:⎪⎩⎪⎨⎧========k n n h n c h n c E p h hv Eλπλνπω22 其中 波粒二象性:光不仅具有波动性,而且还具有质量、动量、能量等粒子的内禀属性,就是说光具有波粒二象性。
2.α粒子散射与夫兰克-赫兹实验结果验证了什么? 答:α粒子散射实验验证了原子的核式结构,夫兰克-赫兹实验验证了原子能量的量子化3.波尔理论的内容是什么?波尔氢原子理论的局限性是什么? 答:波尔理论:(1)原子能够而且只能够出于一系列分离的能量状态中,这些状态称为定态。
出于定态时,原子不发生电磁辐射。
(2)原子在两个定态之间跃迁时,才能吸收或者发射电磁辐射,辐射的频率v 由式12E E hv -=决定(3)原子处于定态时,电子绕原子核做轨道运动,轨道角动量满足量子化条件: n r m = υ 局限性:(1)不能解释较复杂原子甚至比氢稍复杂的氦原子的光谱; (2)不能给出光谱的谱线强度(相对强度);(3)从理论上讲,量子化概念的物理本质不清楚。
4.类氢体系量子化能级的表示,波数与光谱项的关系?答:类氢体系量子化能级的表示:()22202442nZ e E n πεμ-= 波数与光谱项的关系 ,4,5.3,3,5.2,121ˆ22=⎪⎭⎫ ⎝⎛-=n n R v5.索莫菲量子化条件是什么,空间取向量子化如何验证? 答:索莫菲量子化条件是nh q p =⎰d空间取向量子化通过史特恩-盖拉赫(Stern-Gerlach )实验验证。
、 6.碱金属的四个线系,选择定则,能级特点及形成原因? 答:碱金属的四个线系:主线系、第一辅线系(漫线系)、第二辅线系(锐线系)、柏格曼系(基线系)碱金属的选择定则:1,0,1±=∆±=∆j l碱金属的能级特点:碱金属原子的能级不但与主量子数n 有关,还和角量子数l 有关;且对于同一n ,都比氢(H)能级低。
氢原子中的量子力学

氢原子中的量子力学量子力学是物理学中的基础理论之一,它在解释微观世界中的现象和规律方面发挥着重要作用。
氢原子作为量子力学研究的经典模型之一,对于理解量子力学的基本原理和应用具有重要意义。
本文将对氢原子中的量子力学进行探讨和分析。
1. 氢原子的结构在研究氢原子的量子力学前,我们需要了解氢原子的基本结构。
氢原子由一个质子和一个电子组成,其中质子带正电荷,电子带负电荷。
质子位于氢原子的中心,被一个电子绕着围绕。
氢原子的结构可以用量子力学的波函数来描述。
2. 薛定谔方程薛定谔方程是量子力学的核心方程,用于描述微观粒子的行为。
对于氢原子来说,薛定谔方程可以写为:HΨ = EΨ其中H是哈密顿算符,Ψ是波函数,E是能量。
通过求解薛定谔方程,可以得到氢原子各个能级的波函数和能量。
3. 氢原子的能级和波函数根据薛定谔方程的求解结果,氢原子具有一系列离散的能级。
每个能级对应着不同的能量和波函数。
能级的能量大小与主量子数n有关,主量子数n越大,能级越高。
波函数则用于描述电子在不同能级上的空间分布。
4. 轨道角动量和磁量子数与经典力学不同,量子力学引入了轨道角动量概念。
在氢原子中,电子围绕质子运动形成了各种可能的轨道。
轨道角动量的大小由量子数l决定,而轨道的形状由量子数l和磁量子数m决定。
具体来说,轨道角动量大小为√(l(l+1))ħ,其中ħ为普朗克常数除以2π。
5. 能级跃迁和光谱氢原子的能级之间存在跃迁现象,当电子从一个能级跃迁到另一个能级时,会吸收或辐射能量。
这种能级跃迁的现象在光谱研究中得到了广泛应用。
通过观察氢原子的光谱,我们可以了解到能级之间的能量差异和波长特性。
6. 精细结构与自旋在考虑相对论效应后,氢原子的能级结构发生了微小的变化,形成了精细结构。
精细结构与电子的自旋状态有关,自旋可以取两个值:向上和向下。
通过考虑自旋,我们可以得到更加精确的氢原子能级和波函数。
7. 氢原子的波函数叠加在量子力学中,波函数可以叠加,形成各种可能的状态。
量子力学-氢原子和类氢离子

角动量及其算符(1)
9
二、角动量的本征值与本征函数(2)
角动量及其算符(2)
x r sin cos 在球坐标下, y r sin sin z r cos ˆ 则 l x i(sin cot cos ), ˆ l y i( cos cot sin ) ˆ l z i 形式简洁
( 2) ( 3)
对于任意函数f (r, θ, φ) (其中,r, θ, φ都是 x, y, z 的函数)则有: 将(1) 式两边分 别对 x y z 求偏导数 得: 将(2) 式两边分 别对 x y z 求偏导数 得:
r sin cos x r sin sin s y r cos z
d lm ( ) (1-cos ) P (cos ) m l d (cos ) 1 m ( ) exp(im ) 2
2 2 2 d | Y ( , ) | sin d 1 lm 0 0
4
|m| 2
m
一、氢原子(3)
2、氢原子能级图
6
一、氢原子波函数(5)
3、氢原子的能级简并度(2)
En n ,
2
n 1, 2,3, ,
l 0,1, 2, ,( n 1); m l , l 1, , l 1, l ; 波函数 nlm ( r, , ) Rnl ( r )Ylm ( , ) n 2,l 0,1 当l 0 m 0; 当l 1 m 1,0, 1, ( nlm) (200),(210),(211),(21 1) E2 200 R20Y00; 210 R21Y10; 211 R21Y11;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Rn2,l (r)r 2dr
0
2 0
Yl*,m
(
,
)Yl
,m
(
,
)
s
in
dd
1
注意到球谐函数是已经归一化的,所以有:
0
2 0
Yl*,m
(
,
)Yl
,m
(
,
)
s
in
dd
1
故径向波函数的归一化的表达式应写为:
r 0
Rn2,l
z y
x z
y x
5.与角动量算符有关的对易关系:
1) LˆyLˆz LˆzLˆy iLˆx [Lˆy,Lˆz]iLˆx
LˆxLˆy LˆyLˆx iLˆz [Lˆx,Lˆy]iLˆz
LˆzLˆx LˆxLˆz iLˆy [Lˆz,Lˆx]iLˆy
m1 m2 m1r
m1 m2
U(r )
2M 2
z m1 r1 R
r m2 c
r2
o
y
定义:总 质量 M 与折 合质量 μ :
M m1 m2 m1m2
m1 m2
定态薛定格方程为:
pM2
22 R
p2 22r
2
2M
2 R
这里n l m 为决定 nlm(r, , ) 的三个量子数. 由于能量本
征值只与主量子数 n 有关,所以En 是简并的.简并度为:
n1(2l 1)n2
l 0
可见一组确定的 n l m 就可以决定库仑场中电子的波函数 也就可完全决定库仑场中电子的一个状态.
通常还使用符号s , p , d , f , g , h .... 等依次表示 l = 0 , 1, 2 , 3 , 4 , 5 , 6 .... 等具体数值。
(r )r 2dr
1
E<0时库仑场中电子状态的定态波函数为:
n,l,m(r, ,) Rn,l (r)Yl,m( ,)
n 1,2,3
n --- 称为主量子数。
l 0,1,2,3(n 1) l ---- 称为角量子数。
m 0,1,2,3 l m ---- 称为磁量子数。
p
2
1 2a0
3/2
0
0
2
e
i
pr
cos
e
r a0
r
2
s
in
drdd
0
c
p
2
2
2a0
3/2
0
1
e
i
pr
c
os
e
r a0
r
2
drd
c
os
1
p
2i 2a0
3/ 2
(2r
na)
nl 1 0
(1) 1
[(n l) !
(n l 1 ) !
]2(2r na)
(2l 1 )!
!
----缔合拉盖尔多项式
形R式n可,l (r写) 为的:归一化的
Rn2l
(r)r
2dr
1
r0
3. 氢原子中电子状态的波函数:
(r,,) Rnl(r)Ylm(,)
l(l 1) r 2 ]R(r)
0
和 Lˆ2Yl ,m ( , ) l(l 1) 2Yl ,m ( , )
三、氢原子定态薛定谔方程的解:
1. 能量本征值
En
22
e4 (4
0)2
1 n2
13.6
1 n2
(eV )
(n 1,2,3,)
• 能量是量子化的
• 当 n 时,En连续值
L2 l(l 1)2 l 0,1,2,3, 称为角量子数.
角动量平方算符的本征函数为:
Yl,m(,) Nl,mPlm(cos )eim Plm(cos ) ----缔合勒让德多项式
Nl,m
(2l1)(l m) !
4 (l m) !
----归一化系数
解:为此需把电子基态波函数按动量算符的本征波函数
来展开,写为:
100
(r )
c
p
p
(r )dp
其中:
cp *p (r )100(r )dr
100 (r )
1
r
e a0
a03
p
(r
)
1
2
3/2
i
pr
e
c
Lˆ2
2
sin
sin
2 sin 2
2
2
Lˆ2Yl,m(,) l(l 1)2Yl,m(,)
l(l 1) l 0,1,2,3
2﹑方程①的解: 把 λ = l( l +1 )代入方程 ① 可得:
1 r2
r
(r 2
B)当E<0时:E只有取某些确定的值,方程才有满足波函 数标准化条件的解。
E
En
Z 2me
22(4
4
0)2
1 n2
(n 1,2,3,) ----- 系统的能量
具有分立谱。
②径向本征波函数:
当 E ˂ 0 时电子只能在核的附近运动,处于束缚态。
Rn,l (r)
Nn,le
Zr na
L L i L
该式给出角动量算符的一般定义.
2) [Lˆ2,Lˆx] 0 [Lˆ2,Lˆy] 0 [Lˆ2,Lˆz] 0
角动量平方算符与其各分量算符是可以同时测量的,且具 有共同的本征函数系.
6.球坐标系中角动量算符的表示:
x rsin
r
2
r
1
sin
sin
1
sin2
2
2
Ze2 E
4 0r
2﹑分离变量:
设: (r,,) R(r)Y (,)
将其代入原方程,并用
2 2mr
2
R(r)Y ( ,)
去除方程两边,移项以后可得:
1 r2
r
(r 2
dR(r dr
)
)
2m 2
(E
Ze2 )
4 0r
r2
R(r)
0
①
和
1
s in
s in
Y
( ,
)
s
1 in 2
2Y ( ,) 2
Y ( ,)
②
二﹑方程的解:
1﹑方程②就是角动量平方算符的本征值方程。
1.角动量平方算符的本征值方程:
Lˆ2Ylm( ,) L2Ylm( ,) 22,Ylm( ,)
利用分离变量法可以求解该微分方程,在保证函数 Y( , ) 为有
限的条件下可求得:
Lˆ2Yl ,m ( , ) l(l 1) 2Yl ,m ( , )
即角动量平方算符的本征值为:
1 R(r)
d dr
r 2
dR(r) dr
2mr 2 2
E
Ze2
4 0r
1
Y ( ,)
1
sin
s in
Y
( ,)
1
sin2
2Y ( ,)
2
该方程左边只与 r 有关,而右边只与 θ ,φ 有关。所以, 如果两边能相等,那么只有他们同等于一个常数。并以 λ 来 表示该常数,则有:
2. 径向波函数
r
Rn,l(r) Nn,le na (2r na)Ln2l11(2r na)
a 4 02 ----称为玻尔半径
ne2 n称为主量子数.且有 l (n-1).
Nnl
(
2 na
)3
(nl 1) 2n[(nl)
! !
]3
----归一化系数
L2l1 n1
二、电子相对于核运动的定态薛定谔方程:
感兴趣的是原子内部的状态。而方程(2)就是描写电子 相对于核的运动情况的定态薛定格方程。
分离变量后可得:
2
2
2r
U
(r )(r )
E(r )
1 r2
r
(r 2
R(r ) ) r
[
2 2
(E
e2 ) 4 0r
2Zr na
nl 1 0
(1)
1
(n
[(n l)!]2 (2Zr na)
l 1 )!(2l 1 )!
----缔合拉盖尔多项式
波函数的归一化:
r
2
dr
*r,
,
r,
,
r
2
sin
drdd
1
r0
Lˆ x
i(sin
ctg
cos