河北省衡水中学高二(上)期末数学模拟试卷(理科) (19)
河北省衡水中学高二数学上学期期末考试 文【会员独享】.doc

—高二上学期期末考试高二年级(文科)数学试卷一、选择题(每小题5分,共60分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1. 如果椭圆13610022=+y x 上一点P 到焦点1F 的距离等于6,那么点P 到另一焦点2F 的距离是( )A. 4B.6C.14D.16 2.函数()12x xy e e -=+的导数是( ) A 、()12x xe e -- B 、()12x xe e -+ C 、x xe e --D 、x xe e-+3.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形的面积和的14,且样本容量为160,则中间一组的频数为( ) A .32 B .0.2C .40D .0.254. 一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其两面涂有油漆的概率是( )A .121B .274C .278D .945.如果执行右下面的程序框图,那么输出的S =( )A .22B .46C .94D .1906.用系统抽样法从160名学生中抽取容量为本,将160名学生从1~160编号,按编号顺序平均分成1~8号,9~16号,。
,153~160号)。
若按等间隔抽样,第16组应抽出的号码为126,则第一组中用抽签方法确定的号码是( )A . 4B . 5 C.6 D . 77.为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,已知恰有点落在阴影部分内,据此,可估计阴影部分的面积是( )A.12B.9C.8D.6第5题图8. 已知直线1+=kx y 与曲线b ax x y ++=3切于点(1,3),则b 的值为( )A .3B .-3C .5D .-59. 设曲线12+=x y 上任一点(y x ,)处的切线的斜率为)(x g ,则函数x x g y cos )(=的部分图象可以为()10.给出下列命题:(1)若函数f(x)=2x 2+1,图象上P(1,3)及邻近上点Q(1+Δx,3+Δy), 则xy∆∆=4+2Δx (2)加速度是动点位移函数S(t)对时间t 的导数; (3))()()3(lim 310a f ha f h a f h '=-+→ 其中正确的命题有( )A. 0个B.1个C.2个D.3个11.设抛物线x y 82-=的焦点为F ,准线为l ,P 为抛物线上一点,l PA ⊥,A 为垂足,如果直线AF 的斜率为3,那么=PF ( )A . 34B . 38C . 8D . 1612.函数)3(2sin )(πf x x x f '+=,)(x f '为)(x f 的导函数,令21-=a ,2log 3=b ,则下列关系正确的是( )A .)()(b f a f >B .)()(b f a f <C .)()(b f a f =D .)(|)(|b f a f < 二、填空题(每题5分,共13. 已知点P 是椭圆14922=+y x 上的一点,且以P 及两焦点为顶点的三角形的面积为52,求点P 的坐标 _______14.如果点M (y x ,)在运动过程是总满足关系式8)5()5(2222=++--+y x y x ,则点第七题图M 的轨迹方程为 _______15.已知数列{}n a 中,n a a a n n +==+11,1,利用如下图所示的程序框图计算该数列的第10项,则判断框中应填的语句是_____ _____16.某中学号召学生在暑假期间至少参加一次社会公益活动(以下简称活动).该校文学社共有100名学生,他们参加活动的次数统计如上图所示.则该文学社学生参加活动的人均次数为 ;从文学社中任意选两名学生,他们参加活动次数不同的概率是 . 三、解答题(共70分)。
衡水中学2018-2019学年度高二上学期期末试题

衡水中学2018-2019学年度高二上学期期末试题试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷(选择题共34分)一、(每小题2分,共16分)1.下列各项中字形书写不正确的一项是()(2分)A.冷漠暴戾恣睢危言危行杯弓蛇影百尺竿头,更进一步B.糅合鞭辟入里陈言务去闭门造车毕其功于一役C.装潢不一而足平白无故坐镇指挥百足之虫,死而不僵D.惊蛰矢志不渝飞短流长涸泽之鲋不齿于人类2.下列各句中,加点的词语使用不恰当的一项是()(2分)A.山西自古被称为表里山河....,特殊的地理环境,给当时的三晋百姓以巨大的庇佑,担负起保护它的儿女的天职。
B.政府有关部门应该考虑如何更好地发掘、利用博大精深的中华传统文化,以便尽快增强我国的“软实力...”。
C.这是一位已故著名作家的作品,由于各种原因一直没有发表,这次出版对编辑来说也有点敝帚自珍....的意味。
D.快报摄影记者呈上中山路改建之后的实景图,除了能让读者先睹为快之外,还能让老杭州们按图索骥....,看看自己熟悉的老建筑现在的风貌。
3.下列各句中,没有语病的一句是()(2分)A.这次羽毛球邀请赛在新建的贺家山体育馆举行,参赛选手通过小组赛和复赛、决赛的激烈角逐,最后张碧江、邓丹捷分别获得了冠亚军。
B.树立以病人为中心的服务观念,为病人提供高质量的服务,可让病人得到更多心理安慰,也有利于提高医院的社会声誉和经济效益。
C.由于规划周密、准备充分,去年在北京举办的第29届奥运会成为奥运会中历届参赛国最多、开幕式演艺最精彩的一次盛会,好评如潮。
D.在中国,不管把恐龙化石当做“龙骨”并作为一味中药已有很长历史了,但从科学角度对之进行发现和研究,则是从20世纪才开始的事。
4.依次填入下面一段文字横线处的语句,衔接最恰当的一组是(2分)“开卷有益”是说打开书就一定会有收获。
____。
_____,____,_____,_____ 。
_____,如果你勤读书、读好书,你就一定能真正体会到读书的乐趣。
衡水中学高二(上)期末数学试卷(理科)

衡水中学高二(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中.有且只有一项是符合题目要求的.1.(5分)设命题P:∀x∈R,x2+2>0.则¬P为()A.B.C.D.∀x∈R,x2+2≤02.(5分)等差数列{a n}前n项和为S n,公差d=﹣2,S3=21,则a1的值为()A.10 B.9 C.6 D.53.(5分)“”是“”的()A.充要条件B.充分不必要条件C.必要不充分条件D.不充分也不必要条件4.(5分)已知向量=(2,1,4),=(1,0,2),且+与k﹣互相垂直,则k的值是()A.1 B.C.D.5.(5分)在△ABC中,若AB=,BC=3,∠C=120°,则AC=()A.1 B.2 C.3 D.46.(5分)若双曲线﹣=1的一条渐近线经过点(3,﹣4),则此双曲线的离心率为()A.B.C.D.7.(5分)若a,b均为大于1的正数,且ab=100,则lga•lgb 的最大值是()A.0 B.1 C.2 D.8.(5分)已知数列{a n}:a1=1,,则a n=()A.2n+1﹣3 B.2n﹣1 C.2n+1 D.2n+2﹣79.(5分)若直线2ax+by﹣2=0(a>0,b>0)平分圆x2+y2﹣2x﹣4y﹣6=0,则+的最小值是()A.2﹣B.﹣1 C.3+2D.3﹣210.(5分)设x,y满足约束条件,则z=x﹣2y的取值范围为()A.(﹣3,3)B.[﹣3,3]C.[﹣3,3)D.[﹣2,2] 11.(5分)如图过拋物线y2=2px(p>0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为()A.y2=x B.y2=3x C.y2=x D.y2=9x12.(5分)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若△ABC中,AC=,A=45°,C=75°,则BC=.14.(5分)已知数列{a n}满足:,且a2+a4+a6=9,则的值为.15.(5分)设不等式(x﹣a)(x+a﹣2)<0的解集为N,若x∈N是的必要条件,则a的取值范围为.16.(5分)已知椭圆的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为C,若=2,则椭圆的离心率为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知正项数列{a n}的前n项的和为S n,且满足:,(n∈N+)(1)求a1,a2,a3的值(2)求数列{a n}的通项公式.18.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且bcosC=(2a﹣c)cosB.(1)求角B的值;(2)若a,b,c成等差数列,且b=3,求ABB1A1面积.19.(12分)已知递增的等比数列{a n}满足:a2•a3=8,a1+a4=9 (1)求数列{a n}的通项公式;(2)设数列,求数列{b n}的前n项的和T n.20.(12分)已知点A(﹣,0),B(,0),P是平面内的一个动点,直线PA与PB交于点P,且它们的斜率之积是﹣.(1)求动点P的轨迹C的方程;(2)设直线l:y=kx+1与曲线C交于M、N两点,当线段MN的中点在直线x+2y=0上时,求直线l的方程.21.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D ﹣AF﹣E与二面角C﹣BE﹣F都是60°.(1)证明平面ABEF⊥平面EFDC;(2)证明:CD∥EF(3)求二面角E﹣BC﹣A的余弦值.22.(12分)已知O是坐标系的原点,F是抛物线C:x2=4y的焦点,过点F的直线交抛物线于A,B两点,弦AB的中点为M,△OAB的重心为G.(Ⅰ)求动点G的轨迹方程;(Ⅱ)设(Ⅰ)中的轨迹与y轴的交点为D,当直线AB与x 轴相交时,令交点为E,求四边形DEMG的面积最小时直线AB的方程.2016-2017学年广东省深圳市南山区高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中.有且只有一项是符合题目要求的.1.(5分)设命题P:∀x∈R,x2+2>0.则¬P为()A.B.C.D.∀x∈R,x2+2≤0【解答】解:命题是全称命题,则命题的否定是特称命题,即¬P:,故选:B2.(5分)等差数列{a n}前n项和为S n,公差d=﹣2,S3=21,则a1的值为()A.10 B.9 C.6 D.5【解答】解:公差d=﹣2,S3=21,可得3a1+×3×2×(﹣2)=21,解得a1=9,故选:B.3.(5分)“”是“”的()A.充要条件B.充分不必要条件C.必要不充分条件D.不充分也不必要条件【解答】解:当+2kπ时,满足但不一定成立,即充分性不成立,当时,成立,即必要性成立,则“”是“”的必要不充分条件,故选:C4.(5分)已知向量=(2,1,4),=(1,0,2),且+与k﹣互相垂直,则k的值是()A.1 B.C.D.【解答】解:+=(3,1,6),k﹣=(2k﹣1,k,4k﹣2),∵+与k﹣互相垂直,∴3(2k﹣1)+k+6(4k﹣2)=0,解得k=,故选:D.5.(5分)在△ABC中,若AB=,BC=3,∠C=120°,则AC=()A.1 B.2 C.3 D.4【解答】解:在△ABC中,若AB=,BC=3,∠C=120°,AB2=BC2+AC2﹣2AC•BCcosC,可得:13=9+AC2+3AC,解得AC=1或AC=﹣4(舍去).故选:A.6.(5分)若双曲线﹣=1的一条渐近线经过点(3,﹣4),则此双曲线的离心率为()A.B.C.D.【解答】解:双曲线﹣=1的一条渐近线经过点(3,﹣4),可得3b=4a,即9(c2﹣a2)=16a2,解得=.故选:D.7.(5分)若a,b均为大于1的正数,且ab=100,则lga•lgb 的最大值是()A.0 B.1 C.2 D.【解答】解:∵a>1,b>1,∴lga>0,lgb>0∴lga•lgb≤()2=()2=1当且仅当a=b=10时等号成立即lga•lgb的最大值是1故选B.8.(5分)已知数列{a n}:a1=1,,则a n=()A.2n+1﹣3 B.2n﹣1 C.2n+1 D.2n+2﹣7【解答】解:由,得a n+1+3=2(a n+3),∵a1+3=4≠0,∴数列{a n+3}是以4为首项,以2为公比的等比数列,则,∴.故选:A.9.(5分)若直线2ax+by﹣2=0(a>0,b>0)平分圆x2+y2﹣2x﹣4y﹣6=0,则+的最小值是()A.2﹣B.﹣1 C.3+2D.3﹣2【解答】解:由题意可得直线2ax+by﹣2=0(a>0,b>0)经过圆x2+y2﹣2x﹣4y﹣6=0的圆心(1,2),故有2a+2b=2,即a+b=1.再根据+=+=3++≥3+2=2+2,当且仅当=时,取等号,故+的最小值是3+2,故选:C.10.(5分)设x,y满足约束条件,则z=x﹣2y的取值范围为()A.(﹣3,3)B.[﹣3,3]C.[﹣3,3)D.[﹣2,2]【解答】解:由z=x﹣2y得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=,过点C(3,0)时,直线y=的截距最小,此时z最大,代入目标函数z=x﹣2y,得z=3,∴目标函数z=x﹣2y的最大值是3.当直线y=,过点B时,直线y=的截距最大,此时z最小,由,得,即B(1,2)代入目标函数z=x﹣2y,得z=1﹣2×2=﹣3∴目标函数z=x﹣2y的最小值是﹣3.故﹣3≤z≤3,故选:B11.(5分)如图过拋物线y2=2px(p>0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为()A.y2=x B.y2=3x C.y2=x D.y2=9x【解答】解:如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,∵|AF|=3,|AC|=3+3a,∴2|AE|=|AC|∴3+3a=6,从而得a=1,∵BD∥FG,∴,求得p=,因此抛物线方程为y2=3x,故选:B12.(5分)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A.B.C.D.【解答】解:∵在锐角△ABC中,sinA=,S△ABC=,∴bcsinA=bc=,∴bc=3,①又a=2,A是锐角,∴cosA==,∴由余弦定理得:a2=b2+c2﹣2bccosA,即(b+c)2=a2+2bc(1+cosA)=4+6(1+)=12,∴b+c=2②由①②得:,解得b=c=.故选A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若△ABC中,AC=,A=45°,C=75°,则BC=.【解答】解:∵AC=,A=45°,C=75°,B=180°﹣A﹣C=60°,∴由正弦定理,可得:BC===.故答案为:.14.(5分)已知数列{a n}满足:,且a2+a4+a6=9,则的值为﹣5.【解答】解:由,得log3(3a n)=log3a n+1,∴a n+1=3a n,且a n>0,∴数列{a n}是公比为3的等比数列,又a2+a4+a6=9,∴=35.∴=.故答案为:﹣5.15.(5分)设不等式(x﹣a)(x+a﹣2)<0的解集为N,若x∈N是的必要条件,则a的取值范围为.【解答】解:若x∈N是的必要条件,则M⊆N,若a=1时,不等式(x﹣a)(x+a﹣2)<0的解集N=∅,此时不满足条件.若a<1,则N=(a,2﹣a),则满足,得,此时a≤﹣,若a>1,则N=(2﹣a,a),则满足,得,此时a≥,综上,故答案为:16.(5分)已知椭圆的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为C,若=2,则椭圆的离心率为.【解答】解:如图,由题意,A(﹣c,),∵=2,∴,且x C﹣c=c,得x C=2c.∴C(2c,),代入椭圆,得,即5c2=a2,解得e=.故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知正项数列{a n}的前n项的和为S n,且满足:,(n∈N+)(1)求a1,a2,a3的值(2)求数列{a n}的通项公式.【解答】解:(1)由,取n=1,得,∵a n>0,得a1=1,取n=2,得,解得a2=2,取n=3,得,解a3=3;(2)∵+a n,①∴,②②﹣①得(a n+1+a n)(a n+1﹣a n﹣1)=0,∵a n>0,∴a n+1+a n>0,则a n+1﹣a n=1,∴{a n}是首项为1,公差为1的等差数列,∴a n=1+(n﹣1)×1=n.18.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且bcosC=(2a﹣c)cosB.(1)求角B的值;(2)若a,b,c成等差数列,且b=3,求ABB1A1面积.【解答】(本题满分为12分)解:(1)∵bcosC=(2a﹣c)cosB,∴由正弦定理sinBcosC=(2sinA﹣sinC)cosB,∴sinBcosC+cosBsinC=2sinAcosB,…(2分)∴sin(B+C)=2sinAcosB,…(3分)又A+B+C=π,∴sinA=2sinAcosB,…(4分)∴,又B为三角形内角…(5分)∴…(6分)(2)由题意得2b=a+c=6,…(7分)又,∴…(9分)∴ac=9…(10分)∴…(12分)19.(12分)已知递增的等比数列{a n}满足:a2•a3=8,a1+a4=9 (1)求数列{a n}的通项公式;(2)设数列,求数列{b n}的前n项的和T n.【解答】解:(1)由题意,得a2a3=a1a4=8,又a1+a4=9,所以a1=1,a4=8,或a1=8,a4=1,由{a n}是递增的等比数列,知q>1所以a1=1,a4=8,且q=2,∴,即a n=2n﹣1;(2)由(1)得,所以所以,两式相减,得,得.20.(12分)已知点A(﹣,0),B(,0),P是平面内的一个动点,直线PA与PB交于点P,且它们的斜率之积是﹣.(1)求动点P的轨迹C的方程;(2)设直线l:y=kx+1与曲线C交于M、N两点,当线段MN的中点在直线x+2y=0上时,求直线l的方程.【解答】解:(1)设,由,整理得+y2=1,x≠(2)设MN的中点坐标为(x0,y0),联立得(2k2+1)x2+4kx=0,所以,由x0+2y0=0,得k=1,所以直线的方程为:y=x+121.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D ﹣AF﹣E与二面角C﹣BE﹣F都是60°.(1)证明平面ABEF⊥平面EFDC;(2)证明:CD∥EF(3)求二面角E﹣BC﹣A的余弦值.【解答】证明:(1)∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC.(2)由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角,由CE⊥BE,BE⊥EF,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF.解:(3)以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,),=(﹣2a,0,0),设平面BEC的法向量=(x1,y1,z1),则,取x1=,则=(),设平面ABC的法向量为=(x,y,z),则,取y=,得,设二面角E﹣BC﹣A的平面角为θ.则cosθ===﹣,∴二面角E﹣BC﹣A的余弦值为﹣.22.(12分)已知O是坐标系的原点,F是抛物线C:x2=4y 的焦点,过点F的直线交抛物线于A,B两点,弦AB的中点为M,△OAB的重心为G.(Ⅰ)求动点G的轨迹方程;(Ⅱ)设(Ⅰ)中的轨迹与y轴的交点为D,当直线AB与x 轴相交时,令交点为E,求四边形DEMG的面积最小时直线AB的方程.【解答】解:(Ⅰ)焦点F(0,1),显然直线AB的斜率存在,设AB:y=kx+1,联立x2=4y,消去y得,x2﹣4kx﹣4=0,设A(x1,y1),B(x2,y2),G(x,y),则x1+x2=4k,x1x2=﹣4,所以,所以,消去k,得重心G的轨迹方程为;(Ⅱ)由已知及(Ⅰ)知,,因为,所以DG∥ME,(注:也可根据斜率相等得到),,D点到直线AB的距离,所以四边形DEMG的面积,当且仅当,即时取等号,此时四边形DEMG的面积最小,所求的直线AB的方程为.。
河北省衡水中学高二(上)期末数学模拟试卷(理科) (2)

河北省衡水中学高二(上)期末数学模拟试卷(理科)一、选择题(本大题共有12个小题,每小题5分,共60分,在每小题给出的四选项中只有一项是符合题目要求的.)1.(5分)已知点(3,2)在椭圆+=1上,则()A.点(﹣3,﹣2)不在椭圆上B.点(3,﹣2)不在椭圆上C.点(﹣3,2)在椭圆上D.无法判断点(﹣3,﹣2)、(3,﹣2)、(﹣3,2)是否在椭圆上2.(5分)设椭圆的左、右焦点分别为F1,F2,P是C 上任意一点,则△PF1F2的周长为()A.9 B.13 C.15 D.183.(5分)阅读如图的程序框图.若输入n=5,则输出k的值为()A.2 B.3 C.4 D.54.(5分)已知焦点在x轴上,中心在的椭圆上一点到两焦点的距离之和为6,若该椭圆的离心率为,则椭圆的方程是()A.B.C.D.5.(5分)已知双曲线的一条渐近线方程为,它的焦距为8,则此双曲线的方程为()A.B.C.D.6.(5分)方程(t为参数)表示的曲线是()A.一条直线B.两条射线C.一条线段D.抛物线的一部分7.(5分)把二进制的数11111(2)化成十进制的数为()A.31 B.15 C.16 D.118.(5分)已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的离心率为()A.B.C.D.9.(5分)抛物线x2=4y的准线方程是()A.y=﹣1 B.y=﹣2 C.x=﹣1 D.x=﹣210.(5分)已知双曲线C的中心为原点,点是双曲线C 的一个焦点,点F到渐近线的距离为1,则C的方程为()A.x2﹣y2=1 B.C.D.11.(5分)椭圆+=1的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则∠F1PF2的余弦值为()A.B.C.D.12.(5分)设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=()A.B.C.D.二、填空题(本大题共有4个小题,每小题5分,共20分)13.(5分)在极坐标系中,点P的坐标为,则点P的直角坐标为.14.(5分)已知椭圆与坐标轴依次交于A,B,C,D四点,则四边形ABCD的面积为.15.(5分)过抛物线y2=6x的焦点且与x轴垂直的直线交抛物线M,N,则|MN|=.16.(5分)l是经过双曲线C:﹣=1(a>0,b>0)焦点F 且与实轴垂直的直线,A,B是双曲线C的两个顶点,点在l存在一点P,使∠APB=60°,则双曲线离心率的最大值为.三、解答题(本大题共有6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知曲线C1的参数方程为(θ为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=1.把C1的参数方程式化为普通方程,C2的极坐标方程式化为直角坐标方程.18.(12分)求与椭圆有相同的焦距,且离心率为的椭圆的标准方程.19.(12分)已知直线l:,圆C的极坐标方程为ρ=2sinθ.(Ⅰ)求圆C在直角坐标方程;(Ⅱ)若圆C与直线l相切,求实数a的值.20.(12分)在抛物线上找一点P,使P到直线y=4x﹣5的距离最短.21.(12分)以直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsi n2θ=4cosθ.(1)求曲线C的直角坐标方程;(2)若直线l的参数方程为(t为参数),设点P(1,1),直线l与曲线C相交于A,B两点,求|PA|+|PB|的值.22.(12分)椭圆的离心率为,右顶点为.(Ⅰ)求椭圆方程.(Ⅱ)该椭圆的左右焦点分别为F1,F2,过F1的直线l与椭圆交于点A、B,且△F2AB面积为,求直线l的方程.2017-2018学年黑龙江省牡丹江一中高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共有12个小题,每小题5分,共60分,在每小题给出的四选项中只有一项是符合题目要求的.)1.(5分)已知点(3,2)在椭圆+=1上,则()A.点(﹣3,﹣2)不在椭圆上B.点(3,﹣2)不在椭圆上C.点(﹣3,2)在椭圆上D.无法判断点(﹣3,﹣2)、(3,﹣2)、(﹣3,2)是否在椭圆上【解答】解:因为点(3,2)在椭圆+=1上,由椭圆的对称性可得点(3,﹣2)(﹣3,2)(﹣3,﹣2)均在椭圆+=1上故选C2.(5分)设椭圆的左、右焦点分别为F1,F2,P是C 上任意一点,则△PF1F2的周长为()A.9 B.13 C.15 D.18【解答】解:根据题意,椭圆,其中a==5,b==3,则c==4,P是C上任意一点,则△PF1F2的周长l=|PF1|+|PF 2|+|F1F2|=2a+2c=10+8=18;故选:D.3.(5分)阅读如图的程序框图.若输入n=5,则输出k的值为()A.2 B.3 C.4 D.5【解答】解:第一次执行循环体,n=16,不满足退出循环的条件,k=1;第二次执行循环体,n=49,不满足退出循环的条件,k=2;第三次执行循环体,n=148,不满足退出循环的条件,k=3;第四次执行循环体,n=445,满足退出循环的条件,故输出k值为3,故选:B4.(5分)已知焦点在x轴上,中心在的椭圆上一点到两焦点的距离之和为6,若该椭圆的离心率为,则椭圆的方程是()A.B.C.D.【解答】解:根据题意,中心在的椭圆上一点到两焦点的距离之和为6,即2a=6,则a=3,又由椭圆的离心率为,即e==,则c=1,则有b2=a2﹣c2=8,又由椭圆的焦点在x轴上,则其标准方程为:+=1,故选:B.5.(5分)已知双曲线的一条渐近线方程为,它的焦距为8,则此双曲线的方程为()A.B.C.D.【解答】解:根据题意,双曲线的方程为,则双曲线的焦点在x轴上,若其一条渐近线方程为,则有=,即b=a,又由双曲线的焦距为8,即2c=8,则有c2=a2+b2=4a2=16,解可得:a2=4,b2=12,则双曲线的标准方程为﹣=1;故选:C.6.(5分)方程(t为参数)表示的曲线是()A.一条直线B.两条射线C.一条线段D.抛物线的一部分【解答】解:根据已知条件:,在x=2t(﹣1≤t≤1)时,函数y=2.所以,该函数的图象是平行于x轴的一条线段.故选:C7.(5分)把二进制的数11111(2)化成十进制的数为()A.31 B.15 C.16 D.11【解答】解:11111(2)=20+21+22+23+24=1+2+4+8+16=31.故选:A.8.(5分)已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的离心率为()A.B.C.D.【解答】解:∵抛物线y2=12x的p=6,开口方向向右,∴焦点是(3,0),∴双曲线的c=3,a2=9﹣4=5,∴e=.故选:B.9.(5分)抛物线x2=4y的准线方程是()A.y=﹣1 B.y=﹣2 C.x=﹣1 D.x=﹣2【解答】解:由x2=2py(p>0)的准线方程为y=﹣,则抛物线x2=4y的准线方程是y=﹣1,故选A.10.(5分)已知双曲线C的中心为原点,点是双曲线C 的一个焦点,点F到渐近线的距离为1,则C的方程为()A.x2﹣y2=1 B.C.D.【解答】解:根据题意,点是双曲线C的一个焦点,则双曲线的焦点在x轴上,且c=,设其方程为﹣=1,则有a2+b2=2,则双曲线的渐近线方程为y=±x,即ay±bx=0,点F到渐近线的距离为1,则有=1,解可得b=1;则a=1,则双曲线的方程为x2﹣y2=1;故选:A.11.(5分)椭圆+=1的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则∠F1PF2的余弦值为()A.B.C.D.【解答】解:根据题意,椭圆的标准方程为+=1,其中a==3,b=,则c=,F2|=2,则有|F若a=3,则|PF1|+|PF2|=2a=6,又由|PF1|=4,则|PF2|=6﹣|PF1|=2,则cos∠F1PF2==﹣;故选:A.12.(5分)设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=()A.B.C.D.【解答】解:如图过B作准线l:x=﹣的垂线,垂足分别为A1,B1,∵=,又∵△B1BC∽△A1AC、∴=,由拋物线定义==.由|BF|=|BB 1|=2知x B=,y B=﹣,∴AB:y﹣0=(x﹣).把x=代入上式,求得y A=2,x A=2,∴|AF|=|AA1|=.故===.故选A.二、填空题(本大题共有4个小题,每小题5分,共20分)13.(5分)在极坐标系中,点P的坐标为,则点P的直角坐标为.【解答】解:∵在极坐标系中,点P的坐标为,∴=1,y=2sin=,∴点P的直角坐标为(1,).故答案为:(1,).14.(5分)已知椭圆与坐标轴依次交于A,B,C,D四点,则四边形ABCD的面积为30.【解答】解:根据题意,椭圆中,a==5,b==3,如图椭圆与坐标轴依次交于A,B,C,D四点,则A(﹣5,0),B(0,﹣3),C(5,0),D(0,3),则|AO|=5,|DO|=3,四边形ABCD的面积S=4S△AOD=4××5×3=30;故答案为:30.15.(5分)过抛物线y2=6x的焦点且与x轴垂直的直线交抛物线M,N,则|MN|=6.【解答】解:根据题意,抛物线y2=6x的焦点为(,0)直线MN过抛物线y2=6x的焦点且与x轴垂直,设M的坐标(,b),则N的坐标为(,﹣b),M在抛物线上,则有b2=6×,解可得b=±3,|MN|=2|b|=6;故答案为:6.16.(5分)l是经过双曲线C:﹣=1(a>0,b>0)焦点F且与实轴垂直的直线,A,B是双曲线C的两个顶点,点在l存在一点P,使∠APB=60°,则双曲线离心率的最大值为.【解答】解:设双曲线的焦点F(c,0),直线l:x=c,可设点P(c,n),A(﹣a,0),B(a,0),由两直线的夹角公式可得tan∠APB=||=≤,∴≤,化简可得3c2≤4a2,即c≤a,即有e≤.当且仅当n=±,即P(c,±),离心率取得最大值.故答案为.三、解答题(本大题共有6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知曲线C1的参数方程为(θ为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=1.把C1的参数方程式化为普通方程,C2的极坐标方程式化为直角坐标方程.【解答】解:曲线C1的参数方程为(θ为参数),消去参数θ,得C1的普通方程是:(x﹣1)2+(y﹣1)2=1;曲线C2的极坐标方程为ρ=1,化为直角坐标方程是=1,即x2+y2=1.18.(12分)求与椭圆有相同的焦距,且离心率为的椭圆的标准方程.【解答】解:根据题意,椭圆的焦距为2=2,要求椭圆的焦距也为2,即2c=2,则c=,又由要求椭圆的离心率e=,则a=5,则其中b==20,当椭圆的焦点在x轴上时,椭圆的标准方程为;当椭圆的焦点在y轴上时,椭圆的标准方程为.19.(12分)已知直线l:,圆C的极坐标方程为ρ=2sinθ.(Ⅰ)求圆C在直角坐标方程;(Ⅱ)若圆C与直线l相切,求实数a的值.【解答】解:(Ⅰ)圆C的极坐标方程为ρ=2sinθ.即ρ2=2ρsinθ,化为:x2+y2=2y,配方为:x2+(y﹣1)2=1.(Ⅱ)⊙C的圆心C(0,1),r=1.圆C与直线l相切,∴=1,解得a=﹣3或1.20.(12分)在抛物线上找一点P,使P到直线y=4x﹣5的距离最短.【解答】解法一:设与y=4x﹣5平行的直线y=4x+b与y=4x2相切,则y=4x+b代入y=4x2,得4x2﹣4x﹣b=0.①△=16+16b=0时b=﹣1,代入①得x=,∴所求点为(,1).解法二:设该点坐标为A(x0,y0),那么有y0=4x02.设点A到直线y=4x﹣5的距离为d,则d==|﹣4x02+4x0﹣5|=|4x02﹣4x0+5|=|4(x0﹣)2+1|.当且仅当x0=时,d有最小值,将x0=代入y=4x2解得y0=1.故P点坐标为(,1).点P到直线y=4x﹣5的距离最短.21.(12分)以直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=4cosθ.(1)求曲线C的直角坐标方程;(2)若直线l的参数方程为(t为参数),设点P(1,1),直线l与曲线C相交于A,B两点,求|PA|+|PB|的值.【解答】解:(1)∵曲线C的极坐标方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ,∴曲线C的直角坐标方程为y2=4x.(2)直线l的参数方程为(t为参数),代入曲线C方程y2=4x.可得(1+t)2=4(1+t),整理得,∵t1•t2=﹣15<0,∴点P在AB之间,∴|PA|+|PB|=|t 1﹣t2|==4.22.(12分)椭圆的离心率为,右顶点为.(Ⅰ)求椭圆方程.(Ⅱ)该椭圆的左右焦点分别为F1,F2,过F1的直线l与椭圆交于点A、B,且△F2AB面积为,求直线l的方程.【解答】解:(Ⅰ)由题意可得:a=,离心率e==,∴c=1,b2=a2﹣c2=1,所以椭圆C的方程为.…5分(Ⅱ)焦点F1(﹣1,0),因为直线l的斜率不为0,所以可设直线方程为x=ky﹣1,将其代入x2+2y2﹣2=0,并化简得:k2y2﹣2ky+1+2y2=2,整理得:(k2+2)y2﹣2ky﹣1=0,设A(x1,y1),B(x2,y2),由韦达定理得:,.∴|y 1﹣y2|==,∵×|F1F2|•|y1﹣y2|=,代入解出k2=1.∴直线的方程为x﹣y+1=0或x+y+1=0.。
河北省衡水中学10-11学年高二上学期期末考试(数学理)

2010—2011学年度第一学期期末考试高二年级数学(理科)试卷第Ⅰ卷(选择题 共60分) 共120分钟一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上) 1。
在复平面内,复数(12)z i i =+对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.i 是虚数单位,若17(,)2i a bi a b R i+=+∈-,则乘积ab 的值是( )A. -15B. -3 C 。
3 D 。
153. 设1z i =+(i 是虚数单位),则22z z+= ( ) www 。
k @s @5@高#考#资#源#网 A .1i + B .1i -+ C .1i - D . 1i --4。
已知复数),()2(R y x yi x ∈+-的模为3,则xy 的最大值是:( )A 。
23B 。
33C. 21 D 。
35. 将参加夏令营的600名学生编号为:001,002,……600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数一次为( )A .26, 16, 8B .25,17,8C .25,16,9D .24,17,96.设函数)(x f 在区间],[b a 上连续,用分点b x x x x xa n i i =<<<<<=- 110,把区间],[b a 等分成n 个小区间,在每个小区间],[1i i x x-上任取一点),,2,1(n i i =ξ,作和式∑=∆=n i i n x f S 1)(ξ(其中x ∆为小区间的长度),那么n S 的大小( )A 。
与)(x f 和区间],[b a 有关,与分点的个数n 和iξ的取法无关B. 与)(x f 和区间],[b a 和分点的个数n 有关,与iξ的取法无关C 。
易错汇总2014-2015年河北省衡水中学高二上学期期末数学试卷(理科)与解析

5.(5 分)在直角坐标系 xOy 中,一个质点从 A(a1,a2)出发沿图中路线依次
经过 B(a3, a4), C( a5,a6),D(a7, a8), …,按此规律#43;a2015=(
)
A.1006
B.1007
C.1008
D.1009
【解答】 解:由直角坐标系可知 A( 1,1),B(﹣ 1,2),C(2,3),D(﹣ 2,4), E(3,5), F(﹣ 3, 6),
根据分步计数原理不同保送方案共有 故选: B.
=36 种.
3.(5 分)已知函数 f(x)=x3+2x+sinx(x∈ R),f(x1)+f (x2)> 0,则下列不
等式正确的是(
)
A.x1>x2
B. x1 < x2
C.x1+x2<0
D.x1+x2>0
【解答】 解:∵ f(x)=x3+2x+sinx ∴ f ′( x)=3x2+2+cosx=3x2+(2+cosx) ∵ 3x2≥ 0, 2+cosx>0 恒成立, 故 f ′(x)> 0, 故函数 f(x)是 R 上单调递增函数; 又因为 f(﹣ x)=(﹣ x)3+2(﹣ x)+sin(﹣ x)=﹣x3﹣ 2x﹣sinx=﹣( x3+2x+sinx)
是( ) A.f( 1)< f (0) B.f( 2)> ef(0) C.f (3)> e3f (0) D.f( 4)< e4f
( 0)
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分,把答案填在答题卷的横 线上. .
13.(5 分)已知 i 为虚数单位,复数 z1=3﹣ai,z2=1+2i,若 复平面内对应的点
河北省衡水市北卷子中学2019年高二数学理上学期期末试题

河北省衡水市北卷子中学2019年高二数学理上学期期末试题一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4的值时,v4的值为()A.-57 B.-845 C. 220 D .3392参考答案:C2. 已知函数f(x)=2x+(x>0),则( )A.x=±1时,函数f(x)的最小值为4 B.x=±2时,函数f(x)的最小值为2C.x=1时,函数f(x)的最小值为4 D.x=2时,函数f(x)的最小值为2参考答案:C考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式的性质即可得出.解答:解:∵x>0,∴f(x)≥2×=4,当且仅当x=1时取等号.∴函数f(x)的最小值为4.故选:C.点评:本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.3. 在实数集上定义运算:,若不等式对任意实数都成立,则实数的取值范围是..参考答案:C略4. 如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第行有个数且两端的数均为,每个数是它下一行左右相邻两数的和,如,,,…,则第7行第4个数(从左往右数)为( )………………………………A. B. C. D.参考答案:A5. 在2008年第29届北京奥运会上,我国代表团的金牌数雄踞榜首.如图是位居金牌榜前十二位的代表团获得的金牌数的茎叶图,则这十二个代表团获得的金牌数的平均数与中位数的差m的值为()A.3.5 B.4 C.4.5 D.5参考答案:B略6. 函数的单调递减区间为( ).A.(0,1)B.(-1,1)C.(-∞,-1)D. (-∞,-1)∪(1,+∞)参考答案:A7. 函数的图像大致为( )A. B.C. D.参考答案:A【分析】由题意,可得函数为偶函数,图象关于y轴对称,根据且,,排除C、D,进而利用函数的导数和函数的极小值点,得到答案.【详解】由题意,函数,满足,所以函数为偶函数,图象关于y轴对称,且,,排除C、D,又由当时,,则,则,即,所以函数在之间有一个极小值点,故选A.【点睛】本题主要考查了函数图象的识别问题其中解答中熟练应用函数的奇偶性和单调性,以及利用导数研究函数的极值点,进而识别函数的图象上解答的关键,着重考查了分析问题和解答问题的能力,试题有一定的综合性,属于中档试题.8. 某产品的广告费用与销售额的统计数据如下表:4 2 3 5广告费用(万元)销售额(万元)根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.61.5万元B.62.5万元C.63.5万元D.65.0万元参考答案:C略9. 与直线l:mx﹣m2y﹣1=0垂直,垂足为点P(2,1)的直线方程是()A.mx+m2y﹣1=0 B.x+y+3=0 C.x﹣y﹣3=0 D.x+y﹣3=0参考答案:D【考点】直线的一般式方程与直线的垂直关系.【分析】设与直线l1:mx﹣m2y﹣1=0垂直的直线方程为m2x+my+t=0,把P(2,1)代入可得2m2+m+t=0,2m﹣m2﹣1=0,联立解得即可.【解答】解:设与直线l1:mx﹣m2y﹣1=0垂直的直线方程为m2x+my+t=0,把P(2,1)代入可得2m2+m+t=0,2m﹣m2﹣1=0,解得m=1,t=﹣3.所求直线的方程为x+y﹣3=0.故选:D.【点评】本题考查了相互垂直的直线向量之间的关系,属于基础题.10. 由①安梦怡是高二(1)班的学生,②安梦怡是独生子女,③高二(1)班的学生都是独生子女,写一个“三段论”形式的推理,则大前提,小前提和结论分别为()A. ②①③B. ③①②C. ①②③D. ②③①参考答案:B根据三段论的定义得,大前提为:高二(1)班的学生都是独生子女,小前提是安梦怡是高二(1)班的学生,结论是安梦怡是独生子女,故答案为:B二、填空题:本大题共7小题,每小题4分,共28分11. 已知向量,曲线上的一点到的距离为11,是的中点,则(为坐标原点)的值为参考答案:略12. 已知圆柱M的底面圆的半径与球O的半径相同,若圆柱M与球O的体积相等,则它们的表面积之比______.(用数值作答)参考答案:【分析】由已知中圆柱M与球O的体积相等,可以求出圆柱的高与圆柱底面半径的关系,进而求出圆柱和球的表面积后,即可得到S圆柱:S球的值.【详解】∵设圆柱M的底面圆的半径与球O的半径均为R,M的高为h则球的表面积S球=4πR2又∵圆柱M与球O的体积相等即解得h=,4πR2=2πR2+2πR?h则S圆柱=2πR2+2πR?h=,S球,∴S圆柱:S球,故答案为:.【点睛】本题考查的知识点是球的体积和表面积,圆柱的体积和表面积,其中根据已知求出圆柱的高,是解答本题的关键.13. 圆在矩阵对应的变换作用下的结果为.参考答案:略14. (5分)已知复数z满足z?(1+i)=1﹣i(i为虚数单位),则复数z的虚部为.参考答案:由z?(1+i)=1﹣i,得.所以复数z的虚部等于﹣1.故答案为﹣1.把给出的等式两边同时乘以,然后利用复数的除法运算求解.15. 下列说法:(1)命题“”的否定是“”;(2)关于的不等式恒成立,则的取值范围是;(3)对于函数,则有当时,,使得函数在上有三个零点;(4)已知,且是常数,又的最小值是,则7.其中正确的个数是。
(答案版)衡水中学2018-2019学年高二上学期理科期末预测卷(一)

的最短距离是( )
A. 2 5 5
B. 2 2
C.1
D. 6 3
第Ⅱ卷
二、填空题:本大题共 4 小题,每小题 5 分. 13.[2018ꞏ营口期中]若不等式 2x 3 4 与关于 x 不等式 ax2 px q 0 的解集相同,则 p _____.
q 14 . [2018ꞏ 泸 州 质 检 ] 在 △ABC 中 , 角 A , B , C 所 对 的 边 分 别 为 a , b , c , 若
则 f13 q12 2 ,∴ f8 q6 2 .故选 A.
f1
f2
6.【答案】D
【解析】由正弦定理得 AB AC , sinC 3 ,所以 C π 或者 C 2π ,
sinC sinB
2
3
3
当 C π 时, A π B C π ,三角形面积为 1 AC AB sinA 3 .
1 2
时,
loga
2
1 ,
log2
a
1,不等式不成立,故命题
q
是假命题,则
q
是真命题,
则 p q 是真命题,其余为假命题.故选 A.
8.【答案】B
【解析】抛物线 y2 16x 的焦点 F 4,0 ,准线方程为 x 4 ,
圆 x 42 y2 1的圆心为 4,0 ,半径为 1,
1.【答案】B
【解析】由 log2x 1,得 0 x 2 .
∵ 0,2
1, 2
,∴
p
是
q
成立的必要不充分条件.故选
B.
2.【答案】C
【解析】由双曲线
x2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省衡水中学高二(上)期末数学模拟试卷(理科)一、选择题:(本大题共计12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.)1.(5分)若a+i=(b+i)(2﹣i)(其中a,b是实数,i为虚数单位),则复数a+bi在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)命题“∃x0∈(0,+∞),lnx0=x0﹣1”的否定是()A.∃x0∈(0,+∞),lnx0≠x0﹣1 B.∃x0∉(0,+∞),lnx0=x0﹣1 C.∀x∈(0,+∞),lnx≠x﹣1 D.∀x∉(0,+∞),lnx=x﹣1 3.(5分)[文]已知直线y=x+b的横截距在[﹣2,3]范围内,则直线在y轴上的截距b大于1的概率是()A.B.C.D.4.(5分)已知p:|x|<2;q:x2﹣x﹣2<0,则q是p的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)执行如图所示的程序框图,则输出S的值是()A.B.C.D.6.(5分)甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为,则下列判断正确的是()A.;甲比乙成绩稳定 B.;乙比甲成绩稳定C.;甲比乙成绩稳定 D.;乙比甲成绩稳定7.(5分)对具有线性相关关系的变量x,y,测得一组数据如下根据上表,利用最小二乘法得它们的回归直线方程为=10.5x+,据此模型预测当x=10时,y的估计值为()A.105.5 B.106 C.106.5 D.1078.(5分)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为()A.2 B.3 C.4 D.59.(5分)过抛物线y2=4x的焦点作直线l交抛物线于A、B两点,若线段AB中点的横坐标为3,则|AB|等于()A.10 B.8 C.6 D.410.(5分)天气预报显示,在今后的三天中,每一天下雨的概率为40%,现用随机模拟的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0﹣9之间整数值的随机数,并制定用1,2,3,4,5表示下雨,用5,6,7,8,9,0表示不下雨,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989则这三天中恰有两天下雨的概率近似为()A.B.C. D.11.(5分)设点P是以F1,F2为左、右焦点的双曲线﹣=1(a >0,b>0)左支上一点,且满足=0,tan∠PF 2F1=,则此双曲线的离心率为()A. B.C.D.12.(5分)已知双曲线的右焦点为F,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是()A.(1,2]B.(1,2)C.[2,+∞)D.(2,+∞)二.填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知双曲线的一个焦点与抛物线x2=20y的焦点重合,且其渐近线方程为3x±4y=0,则该双曲线的标准方程为.14.(5分)已知下列四个命题(1)“若xy=0,则x=0且y=0”的逆否命题;(2)“正方形是菱形”的否命题;(3)“若ac2>bc2,则a>b”的逆命题;(4)“若m>2,则不等式x2﹣2x+m>0的解集为R”,其中真命题为.15.(5分)过双曲线左焦点F1的弦AB长为6,则△ABF2(F2为右焦点)的周长是.16.(5分)P为抛物线x2=﹣4y上一点,A(1,0),则P到此抛物线的准线的距离与P到点A之和的最小值为.三、解答题(共70分,其中第17题10分其余各题12分需要写出必要的解答和计算步骤)17.(10分)在平面直角坐标系xOy中,已知C1:(θ为参上的所有点的横坐标、纵坐标分别伸长为原来的和2倍数),将C后得到曲线C2以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ+sinθ)=4(1)试写出曲线C1的极坐标方程与曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最小,并求此最小值.18.(12分)已知命题p:函数y=(1﹣a)x是增函数,q:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,若p∧q为假,p∨q为真,求a的取值范围.19.(12分)已知抛物线C:y2=4x与直线y=2x﹣4交于A,B两点.(1)求弦AB的长度;(2)若点P在抛物线C上,且△ABP的面积为12,求点P的坐标.20.(12分)椭圆C:+=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且PF1⊥PF2,|PF1|=,|PF2|=,(1)求椭圆的方程(2)若直线L过圆x2+y2+4x﹣2y=0的圆心M,交椭圆C于A,B两点,且A,B关于点M对称,求直线L的方程.21.(12分)已知椭圆C:+=1(a>b>0)的离心率为,直线y=x+2过椭圆C的左焦点F1.(1)求椭圆C的标准方程;(2)设过点A(0,﹣1)的直线l与椭圆交于不同两点M、N,当△MON的面积为时,求直线l的方程.22.(12分)已知椭圆+=1(a>b>0)中,离心率e=,过点A(0,﹣b)和B(a,0)的直线和原点的距离为.(1)求椭圆的方程;(2)已知定点E(﹣1,0),若直线l:y=kx+2(k≠0)与椭圆交于C,D两点,是否存在k的值,使以CD为直径的圆恰过点E?若存在,求出直线l的方程,若不存在,说明理由.2017-2018学年吉林省长春市田家炳实验中学高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:(本大题共计12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.)1.(5分)若a+i=(b+i)(2﹣i)(其中a,b是实数,i为虚数单位),则复数a+bi在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由a+i=(b+i)(2﹣i)=(2b+1)+(2﹣b)i,得,解得a=3,b=1.∴复数a+bi在复平面内所对应的点的坐标为(3,1),位于第一象限.故选:A.2.(5分)命题“∃x0∈(0,+∞),lnx0=x0﹣1”的否定是()A.∃x0∈(0,+∞),lnx0≠x0﹣1 B.∃x0∉(0,+∞),lnx0=x0﹣1 C.∀x∈(0,+∞),lnx≠x﹣1 D.∀x∉(0,+∞),lnx=x﹣1【解答】解:命题的否定是:∀x∈(0,+∞),lnx≠x﹣1,故选:C3.(5分)[文]已知直线y=x+b的横截距在[﹣2,3]范围内,则直线在y轴上的截距b大于1的概率是()A.B.C.D.【解答】解:所有的基本事件构成的区间长度为3﹣(﹣2)=5,∵直线在y轴上的截距b大于1,∴直线横截距小于﹣1,∴“直线在y轴上的截距b大于1”包含的基本事件构成的区间长度为﹣1﹣(﹣2)=1,由几何概型概率公式得直线在y轴上的截距b大于1的概率为P=故选A.4.(5分)已知p:|x|<2;q:x2﹣x﹣2<0,则q是p的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由|x|<2,得﹣2<x<2,由x2﹣x﹣2<0得﹣1<x<2,则q是p的充分不必要条件,故选:A5.(5分)执行如图所示的程序框图,则输出S的值是()A.B.C.D.【解答】解:模拟执行程序框图,可得i=1,s=1i=2,s=不满足条件i≥5,i=3,s=不满足条件i≥5,i=4,s=不满足条件i≥5,i=5,s=满足条件i≥5,退出循环,输出s的值为:.故选:B.6.(5分)甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为,则下列判断正确的是()A.;甲比乙成绩稳定 B.;乙比甲成绩稳定C.;甲比乙成绩稳定 D.;乙比甲成绩稳定【解答】解:5场比赛甲的得分为16、17、28、30、34,5场比赛乙的得分为15、26、28、28、33∴=(16+17+28+30+34)=25,=(15+26+28+28+33)=26 =(81+64+9+25+81)=52,=(121+4+4+49)=35.6∴,乙比甲成绩稳定故选D.7.(5分)对具有线性相关关系的变量x,y,测得一组数据如下根据上表,利用最小二乘法得它们的回归直线方程为=10.5x+,据此模型预测当x=10时,y的估计值为()A.105.5 B.106 C.106.5 D.107【解答】解:根据表中数据,计算=×(2+4+5+6+8)=5,=×(20+40+60+70+80)=54,代入回归直线方程=10.5x+中,计算=﹣10.5=54﹣10.5×5=1.5,∴回归直线方程为=10.5x+1.5;当x=10时,y的估计值为=10.5×10+1.5=106.5.故选:C.8.(5分)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为()A.2 B.3 C.4 D.5【解答】解:∵直方图中各个矩形的面积之和为1,∴10×(0.005+0.035+a+0.02+0.01)=1,解得a=0.03.由直方图可知三个区域内的学生总数为100×10×(0.03+0.02+0.01)=60人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为×10=3人.故选B.9.(5分)过抛物线y2=4x的焦点作直线l交抛物线于A、B两点,若线段AB中点的横坐标为3,则|AB|等于()A.10 B.8 C.6 D.4【解答】解:由题设知知线段AB的中点到准线的距离为4,设A,B两点到准线的距离分别为d1,d2,由抛物线的定义知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故选D.10.(5分)天气预报显示,在今后的三天中,每一天下雨的概率为40%,现用随机模拟的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0﹣9之间整数值的随机数,并制定用1,2,3,4,5表示下雨,用5,6,7,8,9,0表示不下雨,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989则这三天中恰有两天下雨的概率近似为()A.B.C. D.【解答】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,所求概率为=,故选B.11.(5分)设点P是以F1,F2为左、右焦点的双曲线﹣=1(a >0,b>0)左支上一点,且满足=0,tan∠PF 2F1=,则此双曲线的离心率为()A. B.C.D.【解答】解:∵=0,tan∠PF 2F1=,∴PF1⊥PF2,且|PF1|:|PF2|=2:3,∵|PF2|﹣|PF1|=2a,∴|PF2|=6a,|PF1|=4a,在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=36a2+16a2,解得e=故选:D.12.(5分)已知双曲线的右焦点为F,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是()A.(1,2]B.(1,2)C.[2,+∞)D.(2,+∞)【解答】解:已知双曲线的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,∴≥,离心率e2=,∴e≥2,故选C二.填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知双曲线的一个焦点与抛物线x2=20y的焦点重合,且其渐近线方程为3x±4y=0,则该双曲线的标准方程为﹣=1.【解答】解:根据题意,双曲线的渐近线方程为3x±4y=0,则设双曲线的方程为﹣=1,(t≠0),抛物线x2=20y的焦点为(0,5),则双曲线的焦点在y轴上,且c=5,则t>0,则有9t+16t=25,解可得t=1;则双曲线的标准方程为﹣=1;故答案为:﹣=1.14.(5分)已知下列四个命题(1)“若xy=0,则x=0且y=0”的逆否命题;(2)“正方形是菱形”的否命题;(3)“若ac2>bc2,则a>b”的逆命题;(4)“若m>2,则不等式x2﹣2x+m>0的解集为R”,其中真命题为(4).【解答】解:“若xy=0,则x=0且y=0”的逆否命题,可通过判断原命题的真假判断不正确;故(1)不正确,“正方形是菱形”的否命题,写出否命题进行判断知(2)不正确,“若ac2>bc2,则a>b”的逆命题,写出逆命题进行判断,当c=0时,(3)不正确;“若m>2,则不等式x2﹣2x+m>0的解集为R”,由判断式结合一元二次方程的判别式看出函数与横轴没有交点,判断出(4)正确,故答案为:(4)15.(5分)过双曲线左焦点F1的弦AB长为6,则△ABF2(F2为右焦点)的周长是28.【解答】解:由双曲线的标准方程可得a=4,由双曲线的定义可得:AF2﹣AF1=2a,BF2 ﹣BF1=2a,∴AF2+BF2 ﹣AB=4a=16,即AF2+BF2 ﹣6=16,AF2+BF2 =22.△ABF2(F2为右焦点)的周长是:(AF1 +AF2)+(BF1+BF2 )=(AF2+BF2)+AB=22+6=28.故答案为:28.16.(5分)P为抛物线x2=﹣4y上一点,A(1,0),则P到此抛物线的准线的距离与P到点A之和的最小值为.【解答】解:∵抛物线方程为x2=﹣4y,∴焦点F(0,﹣1),又∵A(1,0),∴|AF|==,由抛物线定义可知点P到准线的距离d与|PF|相等,∴d+|PA|=|PF|+|PA|≥|AF|=,故答案为:.三、解答题(共70分,其中第17题10分其余各题12分需要写出必要的解答和计算步骤)17.(10分)在平面直角坐标系xOy中,已知C1:(θ为参上的所有点的横坐标、纵坐标分别伸长为原来的和2倍数),将C后得到曲线C2以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ+sinθ)=4(1)试写出曲线C1的极坐标方程与曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最小,并求此最小值.【解答】解:(1)把C1:(θ为参数),消去参数化为普通方程为x2+y2=1,故曲线C1:的极坐标方程为ρ=1.再根据函数图象的伸缩变换规律可得曲线C2的普通方程为+=1,即+=1.故曲线C2的极参数方程为(θ为参数).(2)直线l:ρ(cosθ+sinθ)=4,即x+y﹣4=0,设点P(cosθ,2sinθ),则点P到直线的距离为d==,故当sin(θ+)=1时,d取得最小值,此时,θ=2kπ+,k∈z,点P(1,),故曲线C 2上有一点P(1,)满足到直线l的距离的最小值为﹣.18.(12分)已知命题p:函数y=(1﹣a)x是增函数,q:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,若p∧q为假,p∨q为真,求a的取值范围.【解答】解:若y=(1﹣a)x是增函数,则1﹣a>1,即a<0,若不等式x2+2ax+4>0对一切x∈R恒成立,则判别式△=4a2﹣16<0,即a2<4,得﹣2<a<2,若p∧q为假,p∨q为真,则p,q为一真一假,若p真q假,则,即a≤﹣2,若p假q真,则,即0≤a<2,综上0≤a<2或a≤﹣219.(12分)已知抛物线C:y2=4x与直线y=2x﹣4交于A,B两点.(1)求弦AB的长度;(2)若点P在抛物线C上,且△ABP的面积为12,求点P的坐标.【解答】解:(1)∵抛物线C:y2=4x与直线y=2x﹣4交于A,B两点.把y=2x﹣4代入抛物线C:y2=4x,得y2﹣2y﹣8=0,解得y1=﹣2,y2=4,∴A(1,﹣2),B(4,4),∴弦AB的长度|AB|==3.(2)设P(,y),点P到直线AB的距离d=,∵△ABP的面积为12,∴S△ABP===12,解得|y2﹣2y﹣8|=16,解得y=﹣4或y=6.∴P(4,﹣4)或P(9,6).20.(12分)椭圆C:+=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且PF1⊥PF2,|PF1|=,|PF2|=,(1)求椭圆的方程(2)若直线L过圆x2+y2+4x﹣2y=0的圆心M,交椭圆C于A,B两点,且A,B关于点M对称,求直线L的方程.【解答】解(1)∵PF1⊥PF2,|PF1|=,|PF2|=,∴2a=|PF1|+|PF2|=+=6,即a=3,且4c2═|PF1|2+|PF2|2=()2+()2=解得c2=,∴b2=9﹣=,故椭圆的方程为,(2)设A(m,n),B(x,y),圆的标准方程为(x+2)2+(y﹣1)2=5,圆心M(﹣2,1),∵A,B关于M对称,∴,即,∵A,B都在椭圆上,∴,两式相减得,即,即直线AB的斜率k=,∴直线方程为y﹣1=(x+2),即56x﹣81y+193=0.21.(12分)已知椭圆C:+=1(a>b>0)的离心率为,直线y=x+2过椭圆C的左焦点F1.(1)求椭圆C的标准方程;(2)设过点A(0,﹣1)的直线l与椭圆交于不同两点M、N,当△MON的面积为时,求直线l的方程.【解答】解:(1)∵直线y=x+2过椭圆C的左焦点F1.∴F1(﹣2,0),即c=2.由离心率e=,得a=2,∴b2=a2﹣c2=4∴椭圆C的标准方程为:(2)依题意知过点A(0,﹣1)的直线l的斜率一定存在,故设直线l的方程为y=kx﹣1,设M(x1,y1),N(x2,y2)由,得(1+2k2)x2﹣4kx﹣6=0,S△MON===解得k=±1直线l的方程为:y=±x﹣122.(12分)已知椭圆+=1(a>b>0)中,离心率e=,过点A(0,﹣b)和B(a,0)的直线和原点的距离为.(1)求椭圆的方程;(2)已知定点E(﹣1,0),若直线l:y=kx+2(k≠0)与椭圆交于C,D两点,是否存在k的值,使以CD为直径的圆恰过点E?若存在,求出直线l的方程,若不存在,说明理由.【解答】解:(1)直线AB:=1,化为bx﹣ay﹣ab=0,∵过点A(0,﹣b)和B(a,0)的直线和原点的距离为.∴=,又,a2=b2+c2,联立解得a2=3,b=1,∴椭圆的方程为:=1.(2)假设存在k的值,使以CD为直径的圆恰过点E.设C(x1,y1),D(x2,y2).联立,化为(1+3k2)x2+12kx+9=0,△=144k2﹣36(1+3k2)>0,化为k2>1.∴x1+x2=﹣,x1x2=.y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4.=(x1+1,y1)•(x2+1,y2)=(x1+1)(x2+1)+y1y2=(1+k2)x1x2+(2k+1)(x1+x2)+5=0,∴﹣+5=0,化为,满足△>0.∴直线CD的方程为:,化为7x﹣6y+12=0.。